1
|
Jiang R, Dai L, Xu X, Zhang Z. Multiple machine learning algorithms identify 13 types of cell death-critical genes in large and multiple non-alcoholic steatohepatitis cohorts. Lipids Health Dis 2025; 24:169. [PMID: 40340817 PMCID: PMC12060327 DOI: 10.1186/s12944-025-02588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Dysregulated programmed cell death pathways mechanistically contribute to hepatic inflammation and fibrogenesis in non-alcoholic steatohepatitis (NASH). Identification of cell death genes may offer insights into diagnostic and therapeutic strategies for NASH. METHODS Data from multiple NASH cohorts were integrated, and 12 machine learning algorithms were applied to identify key dysregulated cell death-related genes and develop a binary classification model for NASH. Spearman's rank correlation coefficients quantified associations between these genes and clinical markers, immune infiltration profiles, and signature genes encoding pro-inflammatory mediators, metabolic regulators, and fibrotic drivers. Gene set enrichment analysis (GSEA) was performed to delineate the mechanistic underpinnings of these key genes. Consensus clustering analysis was then used to stratify patients with NASH into distinct phenotypic subgroups based on expression levels of these genes. RESULTS A NASH prediction model, developed using the random forest (RF) algorithm, demonstrated high diagnostic accuracy across multiple cohorts. Four key genes, enriched in lipid metabolism and inflammation pathways, were identified. Their transcriptional levels were significantly correlated with the non-alcoholic fatty liver disease activity score (NAS), hepatic inflammatory infiltration, molecular signatures of metabolic dysregulation (lipid homeostasis regulators), and fibrosis progression. These genes also enabled accurate classification of patients with NASH into clusters reflecting varying disease severity. CONCLUSIONS A binary classification model, developed using the RF algorithm, accurately identified patients with NASH. The four cell death genes, identified through 12 machine learning algorithms, represent potential biomarkers and therapeutic targets for NASH. These genes contribute to inflammation-related immune cell activation, lipid metabolism dysregulation, and liver fibrosis, highlighting the complex interplay between cell death and NASH progression.
Collapse
Affiliation(s)
- Renao Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, China
| | - Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, China
| | - Xinjian Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
2
|
Tu S, Jing X, Bu X, Zhang Q, Liao S, Zhu X, Guo Y, Sha W. Identification of pyroptosis-associated gene to predict fibrosis and reveal immune characterization in non-alcoholic fatty liver disease. Sci Rep 2025; 15:14944. [PMID: 40301412 PMCID: PMC12041580 DOI: 10.1038/s41598-025-96158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/26/2025] [Indexed: 05/01/2025] Open
Abstract
Despite advances in research, studies on predictive models for Non-Alcoholic Fatty Liver Disease (NAFLD)-related fibrosis remain limited. Identifying new biomarkers to distinguish Non-Alcoholic Steatohepatitis (NASH) from NAFLD would aid in the treatment of NASH. Gene expression and clinical profiles of NAFL and NASH patients were collected from databases. Differentially expressed genes with prognostic value were used to construct predictive model. Validation of fibrosis stage-related pyroptosis-related genes (PRGs) was performed using Sprague-Dawley rats liver fibrosis models induced by CCl4 or PS. Immune cell infiltration assessment demonstrated that stromal score, immune score, and ESTIMATE score were higher in patients with NASH compared to those with NAFL. BAX, BAK1, PYCARD, and NLRP3 were identified as hub genes that exhibit a strong correlation with fibrosis stage. Additionally, the expression of these genes was increased in fibrotic liver tissues induced by CCl4 and PS. The pyroptosis-associated gene signature effectively predicts the degree of liver fibrosis in NASH patients. Our study indicates that BAX, BAK1, PYCARD, and NLRP3 might serve as biomarkers for NASH-associated fibrosis.
Collapse
Affiliation(s)
- Sha Tu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Bu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Qingfang Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Shanying Liao
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xiaobo Zhu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Ying Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Kurbatova IV, Topchieva LV, Dudanova OP, Shipovskaya AA. Role of MMP-2 and MMP-9 in the Relationship between Inflammation, Fibrosis, and Apoptosis during Progression of Non-Alcoholic Fatty Liver Disease and Diagnostic Significance of Plasma Levels of Their Active Forms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1998-2022. [PMID: 39647828 DOI: 10.1134/s0006297924110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/10/2024]
Abstract
MMP-2 and MMP-9 play an important role in pathogenesis of chronic liver diseases, participating in the processes of inflammation and fibrosis. Their role in progression of non-alcoholic fatty liver disease (NAFLD) is poorly understood. Analysis of MMP-2, -9 levels in the blood plasma of patients with different forms of NAFLD [liver steatosis (LS) and non-alcoholic steatohepatitis (NASH) of weak (-WA), moderate (MA), high (-HA) activity without pronounced fibrosis] was performed. Correlations between the levels of MMP-2, -9 and mRNA of the genes MMP2, MMP9, ADAM17, NLRP3, caspase 3 activity in peripheral blood leukocytes (PBL), TNFα, IL-6, sIL-6R, cytokeratin-18 fragments in plasma were assessed. In steatosis, the levels of MMP2 gene mRNA in PBL and MMP-2 in plasma are lower than in the control, and expression of the NLRP3 gene in PBL is increased relative to other groups. In the NASH-WA, the level of MMP-9 is higher than in the control, in LS, and in NASH-MA, which could be associated with activation of inflammation during transformation of LS into NASH. The plasma level of MMP-9 over 389.50 pg/ml has been shown to be diagnostically significant for identification of NASH-WA among the patients with steatosis (AUC ROC = 0.818, 95% CI = 0.689-0.948, p < 0.001). In NAFLD, the level of MMP-9 could be associated not only with inflammation, but also with apoptosis. ADAM17 probably plays a certain role in this regard. In the advanced NASH, hepatocyte apoptosis is increased, the level of caspase 3 activity in PBL is increased, the level of MMP-9 in the blood is reduced to the level of the control and LS. In the NASH-HA, the level of mRNA of the ADAM17 gene in PBL is increased compared to the control, NASH-WA, and NASH-MA. Thus, MMP-2 and MMP-9 are involved in pathogenesis of NAFLD already at the early stages and their level in blood could be associated with the presence and severity of inflammation in the liver parenchyma.
Collapse
Affiliation(s)
- Irina V Kurbatova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia.
| | - Lyudmila V Topchieva
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Karelia, 185910, Russia
| | - Olga P Dudanova
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| | - Anastasia A Shipovskaya
- Zilber Medical Institute, Petrozavodsk State University, Petrozavodsk, Karelia, 185910, Russia
| |
Collapse
|
4
|
Martín-Saladich Q, Pericàs JM, Ciudin A, Ramirez-Serra C, Escobar M, Rivera-Esteban J, Aguadé-Bruix S, González Ballester MA, Herance JR. Metabolic-associated fatty liver voxel-based quantification on CT images using a contrast adapted automatic tool. Med Image Anal 2024; 95:103185. [PMID: 38718716 DOI: 10.1016/j.media.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS Metabolic-dysfunction associated fatty liver disease (MAFLD) is highly prevalent and can lead to liver complications and comorbidities, with non-invasive tests such as vibration-controlled transient elastography (VCTE) and invasive liver biopsies being used for diagnosis The aim of the present study was to develop a new fully automatized method for quantifying the percentage of fat in the liver based on a voxel analysis on computed tomography (CT) images to solve previously unconcluded diagnostic deficiencies either in contrast (CE) or non-contrast enhanced (NCE) assessments. METHODS Liver and spleen were segmented using nn-UNet on CE- and NCE-CT images. Radiodensity values were obtained for both organs for defining the key benchmarks for fatty liver assessment: liver mean, liver-to-spleen ratio, liver-spleen difference, and their average. VCTE was used for validation. A classification task method was developed for detection of suitable patients to fulfill maximum reproducibility across cohorts and highlight subjects with other potential radiodensity-related diseases. RESULTS Best accuracy was attained using the average of all proposed benchmarks being the liver-to-spleen ratio highly useful for CE and the liver-to-spleen difference for NCE. The proposed whole-organ automatic segmentation displayed superior potential when compared to the typically used manual region-of-interest drawing as it allows to accurately obtain the percent of fat in liver, among other improvements. Atypical patients were successfully stratified through a function based on biochemical data. CONCLUSIONS The developed method tackles the current drawbacks including biopsy invasiveness, and CT-related weaknesses such as lack of automaticity, dependency on contrast agent, no quantification of the percentage of fat in liver, and limited information on region-to-organ affectation. We propose this tool as an alternative for individualized MAFLD evaluation by an early detection of abnormal CT patterns based in radiodensity whilst abording detection of non-suitable patients to avoid unnecessary exposure to CT radiation. Furthermore, this work presents a surrogate aid for assessing fatty liver at a primary assessment of MAFLD using elastography data.
Collapse
Affiliation(s)
- Queralt Martín-Saladich
- Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; Department of Information and Communication Technologies, BCN MedTech, Universitat Pompeu Fabra, Barcelona 08018, Spain
| | - Juan M Pericàs
- Vall d'Hebron Institute for Research, Liver Unit, Vall d'Hebron University Hospital, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Andreea Ciudin
- Endocrinology Department, Diabetes and Metabolism Research Group, VHIR, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Clara Ramirez-Serra
- Clinical Biochemistry Research Group, Vall d'Hebron Research Institute (VHIR), Biochemical Core Facilities, Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain
| | - Manuel Escobar
- Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain
| | - Jesús Rivera-Esteban
- Vall d'Hebron Institute for Research, Liver Unit, Vall d'Hebron University Hospital, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Santiago Aguadé-Bruix
- Nuclear Medicine, Radiology and Cardiology Departments, Medical Molecular Imaging Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Autonomous University Barcelona, Barcelona 08035, Spain
| | - Miguel A González Ballester
- Department of Information and Communication Technologies, BCN MedTech, Universitat Pompeu Fabra, Barcelona 08018, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - José Raul Herance
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
5
|
Liu KX, Wang ZY, Ying YT, Wei RM, Dong DL, Sun ZJ. The antiprotozoal drug nitazoxanide improves experimental liver fibrosis in mice. Biochem Pharmacol 2024; 224:116205. [PMID: 38615918 DOI: 10.1016/j.bcp.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-β1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zeng-Yang Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ya-Ting Ying
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rui-Miao Wei
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
6
|
Boutari C, Athyros VG. The Association Between Liver Histology and Cardiovascular Risk: Time to Introduce Steatotic Liver Disease Screening in High-Risk Patient Groups? Angiology 2024; 75:205-207. [PMID: 37691291 DOI: 10.1177/00033197231201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
- Chrysoula Boutari
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Vasilios G Athyros
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
7
|
Kirchmeyer M, Gaigneaux A, Servais FA, Arslanow A, Casper M, Krawczyk M, Lammert F, Behrmann I. Altered profiles of circulating cytokines in chronic liver diseases (NAFLD/HCC): Impact of the PNPLA3I148M risk allele. Hepatol Commun 2023; 7:e0306. [PMID: 38015590 PMCID: PMC10667005 DOI: 10.1097/hc9.0000000000000306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Individuals carrying the risk variant p.I148M of patatin-like phospholipase domain-containing protein 3 (PNPLA3) have a higher susceptibility to fatty liver diseases and associated complications, including HCC, a cancer closely linked to chronic inflammation. Here, we assessed circulating cytokine profiles for patients with chronic liver diseases genotyped for PNPLA3. METHODS Serum concentrations of 22 cytokines were measured by multiplex sandwich-ELISA. The cohort comprised 123 individuals: 67 patients with NAFLD without cirrhosis (57 steatosis, 10 NASH), 24 patients with NAFLD with cirrhosis, 21 patients with HCC (15 cirrhosis), and 11 healthy controls. Receiver operator characteristic analyses were performed to assess the suitability of the cytokine profiles for the prediction of steatosis, cirrhosis, and HCC. RESULTS HGF, IL-6, and IL-8 levels were increased in patients, with ∼2-fold higher levels in patients with cirrhosis versus healthy, while platelet derived growth factor-BB (PDGF-BB) and regulated on activation, normal T cell expressed and secreted (RANTES) showed lower concentrations compared to controls. Migration inhibitory factor and monocyte chemoattractant protein-1 (MCP-1) were found at higher levels in NAFLD samples (maximum: NAFLD-cirrhosis) versus healthy controls and HCC samples. In receiver operator characteristic analyses, migration inhibitory factor, IL-8, IL-6, and monocyte chemoattractant protein-1 yielded high sensitivity scores for predicting noncirrhotic NAFLD (vs. healthy). The top combination to predict cirrhosis was HGF plus PDGF-BB. Migration inhibitory factor performed best to discriminate HCC from NAFLD; the addition of monokine induced gamma (MIG), RANTES, IL-4, macrophage colony-stimulating factor (M-CSF), or IL-17A as second parameters further increased the AUC values (> 0.9). No significant impact of the PNPLA3I148M allele on cytokine levels was observed in this cohort. CONCLUSIONS Cytokines have biomarker potential in patients with fatty liver, possibly suited for early HCC detection in patients with fatty liver. Patients carrying the PNPLA3 risk allele did not present significantly different levels of circulating cytokines.
Collapse
Affiliation(s)
- Mélanie Kirchmeyer
- Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg
| | - Anthoula Gaigneaux
- Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg
| | - Florence A. Servais
- Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Markus Casper
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
- Health Sciences, Hannover Medical School MHH, Hannover, Germany
| | - Iris Behrmann
- Department of Life Sciences and Medicine, University of Luxembourg, Luxembourg
| |
Collapse
|
8
|
Zyśk B, Ostrowska L, Smarkusz-Zarzecka J, Witczak-Sawczuk K, Gornowicz A, Bielawska A. Pro-Inflammatory Adipokine and Cytokine Profiles in the Saliva of Obese Patients with Non-Alcoholic Fatty Liver Disease (NAFLD)-A Pilot Study. Int J Mol Sci 2023; 24:ijms24032891. [PMID: 36769216 PMCID: PMC9917694 DOI: 10.3390/ijms24032891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Undiagnosed and untreated non-alcoholic fatty liver disease (NAFLD) can lead to the development of many complications, such as cirrhosis, hepatocellular carcinoma, or cardiovascular diseases. Obese people are at increased risk of developing NAFLD. Due to the current lack of routine diagnostics, it is extremely important to look for new diagnostic methods and markers for this disease. The aim of this study was to assess the concentration of selected pro-inflammatory adipokines and cytokines in the unstimulated saliva of obese people with fatty liver disease in various stages (with or without slight fibrosis) and to analyze them for possible use as early markers of NAFLD diagnosis. The study involved 96 people who were divided into 5 groups based on the criterion of body mass index (BMI) and the degree of fatty liver (liver elastography). There were statistically significant differences between the groups in the concentrations of MMP-9 (matrix metalloproteinase 9), resistin, and IL-1β (interleukin 1β) in saliva. Statistically significant, positive correlations between hepatic steatosis and the concentration of MMP-2 (matrix metalloproteinase 2), resistin, and IL-1β in saliva were also found. Statistically significant positive correlations were also found between the concentration of resistin in saliva and the concentration of ALT (alanine aminotransferase) and GGTP (gamma-glutamyl transpeptidase) in serum. MMP-2, IL-1β, and resistin may be potential markers of NAFLD development, assessed in saliva. However, further research is needed because this is the first study to evaluate the concentrations of the selected pro-inflammatory parameters in the saliva of patients with NAFLD.
Collapse
Affiliation(s)
- Beata Zyśk
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Mieszka I Street 4B, 15-054 Bialystok, Poland
| | - Lucyna Ostrowska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Mieszka I Street 4B, 15-054 Bialystok, Poland
- Correspondence: ; Tel.: +48-85-686-53-13
| | - Joanna Smarkusz-Zarzecka
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Mieszka I Street 4B, 15-054 Bialystok, Poland
| | - Katarzyna Witczak-Sawczuk
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Mieszka I Street 4B, 15-054 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego Street 1, 15-089 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Jana Kilinskiego Street 1, 15-089 Bialystok, Poland
| |
Collapse
|
9
|
Trampuž SR, van Riet S, Nordling Å, Ingelman-Sundberg M. The Role of CTGF in Liver Fibrosis Induced in 3D Human Liver Spheroids. Cells 2023; 12:cells12020302. [PMID: 36672237 PMCID: PMC9857203 DOI: 10.3390/cells12020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Connective tissue growth factor (CTGF) is involved in the regulation of extracellular matrix (ECM) production. Elevated levels of CTGF can be found in plasma from patients with liver fibrosis and in experimental animal models of liver fibrosis, but the exact role of CTGF in, e.g., diet-induced human liver fibrosis is not entirely known. To address this question, we utilized a 3D human liver co-culture spheroid model composed of hepatocytes and non-parenchymal cells, in which fibrosis is induced by TGF-β1, CTGF or free fatty acids (FFA). Treatment of the spheroids with TGF-β1 or FFA increased COL1A1 deposition as well as the expression of TGF-β1 and CTGF. Recombinant CTGF, as well as angiotensin II, caused increased expression and/or production of CTGF, TGF-β1, COL1A1, LOX, and IL-6. In addition, silencing of CTGF reduced both TGF-β1- and FFA-induced COL1A1 deposition. Furthermore, we found that IL-6 induced CTGF, COL1A1 and TGF-β1 production, suggesting that IL-6 is a mediator in the pathway of CTGF-induced fibrosis. Taken together, our data indicate a specific role for CTGF and CTGF downstream signaling pathways for the development of liver inflammation and fibrosis in the human 3D liver spheroid model.
Collapse
Affiliation(s)
- Sara Redenšek Trampuž
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sander van Riet
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Åsa Nordling
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
10
|
Wagner J, Kumar Y, Lautenbach A, von Kroge P, Wolter S, Mann O, Izbicki J, Gagliani N, Duprée A. Fatty acid-binding protein-4 (FABP4) and matrix metalloproteinase-9 (MMP9) as predictive values for nonalcoholic steatohepatitis (NASH). Lipids Health Dis 2023; 22:1. [PMID: 36609276 PMCID: PMC9817352 DOI: 10.1186/s12944-022-01764-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD), especially nonalcoholic steatohepatitis (NASH) increases the risk for liver cirrhosis. Noninvasive tests for NAFLD/NASH exist, but they are unreliable and thus liver biopsy remains the standard for diagnosis and new noninvasive diagnostic approaches are of great interest. The aim of this study was to test whether the serum levels of fatty acid-binding protein-4 (FABP4) and matrix metalloproteinase-9 (MMP9) could be used as a diagnostic tool for NASH. METHODS Patients who underwent bariatric surgery and simultaneous liver biopsy were identified. Biopsies were assigned a NAFLD activity score (NAS). MMP9- and FABP4- Enzyme-linked Immunosorbent Assays (ELISAs) on serum samples were performed. The serum levels of FABP4/MMP9 were compared and different models to predict NASH were developed. RESULTS A total of 84 patients were included, 28 patients (33.3%) were diagnosed with NASH. Higher concentrations of MMP9 in NASH patients (p < 0.01) were detected. FABP4 concentrations were not significantly increased. A moderate correlation between the NAS and MMP9 concentrations (r = 0.32, P < 0.01) was observed. The neural network model fit best with the dataset, with an area under the curve (AUC) of 83% and an accuracy of 88%. CONCLUSION Serum MMP9 levels are increased in patients with NASH and should routinely be measured in patients with obesity, but further investigations are needed to improve noninvasive NASH diagnosis.
Collapse
Affiliation(s)
- Jonas Wagner
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Yogesh Kumar
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Anne Lautenbach
- grid.13648.380000 0001 2180 3484Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Philipp von Kroge
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Wolter
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Oliver Mann
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jakob Izbicki
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicola Gagliani
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ,grid.13648.380000 0001 2180 3484Department of Medicine, Section of Molecular Immunology und Gastroenterology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Duprée
- grid.13648.380000 0001 2180 3484Department of General-, Visceral- and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Qiu T, Hu W, Rao Z, Fang T. The molecular basis of the associations between non-alcoholic fatty liver disease and colorectal cancer. Front Genet 2022; 13:1007337. [PMID: 36568397 PMCID: PMC9780501 DOI: 10.3389/fgene.2022.1007337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Given the ongoing research on non-alcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC), the number of studies suggesting a strong link between NAFLD and CRC is on the rise, while its underlying pathological mechanisms remain uncertain. This study aims to explore the shared genes and mechanisms and to reveal the molecular basis of the association between CRC and NAFLD through bioinformatics approaches. Methods: The Gene Expression Omnibus (GEO) dataset GSE89632 is downloaded for NAFLD cases and healthy controls. Additionally, the GSE4107 and GSE9348 datasets are obtained for CRC cases and healthy controls. Differentially expressed genes (DEGs) are obtained for NAFLD and CRC datasets, as well as shared genes between the two disorders. GO and KEGG enrichment analyses are further conducted. Subsequently, the STRING database and Cytoscape software are utilized to establish the PPI network and identify the hub genes. Then, co-expression analysis is performed using GeneMANIA. Subsequently, ROC curves and external datasets validation were applied to further screen the candidate markers. Finally, NetworkAnalyst is available as a means to construct a miRNA-gene regulatory network. Results: Under the threshold of FDR ≤ 0.01, 147 common genes are obtained in NAFLD and CRC. Categorization of GO functions shows that DEGs are predominantly enriched in "response to organic substance", "cellular response to chemical stimulus", and "response to external stimulus". The predominant KEGG pathways in DEGs are the "IL-17 signaling pathway", the "TNF signaling pathway", "Viral protein interaction with cytokine and cytokine receptor", "Cytokine-cytokine receptor interaction", and the "Toll-like receptor signaling pathway". Additionally, MYC, IL1B, FOS, CXCL8, PTGS2, MMP9, JUN, and IL6 are identified as hub genes by the evaluation of 7 algorithms. With the construction of miRNA-gene networks, 2 miRNAs, including miR-106a-5p, and miR-204-5p are predicted to be potential key miRNAs. Conclusion: This study identifies possible hub genes acting in the co-morbidity of NAFLD and CRC and discovers the interaction of miRNAs and hub genes, providing a novel understanding of the molecular basis for the relevance of CRC and NAFLD, thus contributing to the development of new therapeutic strategies to combat NAFLD and CRC.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zilan Rao
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China,*Correspondence: Taiyong Fang,
| |
Collapse
|
12
|
Shamseya AM, Afify MT, Fayad HAS, Elshafey MM. Real-time elastography “FibroScan” compared to simple non-invasive screening tools in the assessment of liver fibrosis in non-alcoholic fatty liver patients. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and aim
Non-alcoholic fatty liver disease (NAFLD) and its subtype non-alcoholic steatohepatitis (NASH) are increasing worldwide. NASH is characterized by active liver inflammation with severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma. In Egypt, the prevalence of NAFLD diagnosed by ultrasound is about 65.3% in children and 62.7% in adults. Liver biopsy, the only reliable method of differentiating simple steatosis from NASH, has a major disadvantage of being an invasive procedure with various complications. Serum tests have limitations including non-specificity for liver inflammation and affection by clearance rates. This study aimed to assess the reliability of simple non-invasive tests for liver fibrosis (namely fibrosis-4 “FIB-4” score and NAFLD fibrosis score) in comparison with real-time elastography (RTE or FibroScan) in patients diagnosed with NAFLD.
Patients and methods
This observational prospective case–control study was conducted on 100 cases with NAFLD and 30 healthy subjects. All patients and controls were subjected to serological (FIB-4 score and NAFLD fibrosis score) and radiological (ultrasonography and RTE) assessments of liver fibrosis.
Results
In advanced FIB-4 score ≥ F3, there was a good correlation between the findings of the RTE and each of the FIB-4 scores (with a sensitivity of 90%, specificity of 93.3%, positive predictive value (PPV) of 60%, negative predictive value (NPV) of 98.8%, with a total accuracy of 93%), NAFLD fibrosis score (with a sensitivity of 52.6%, specificity of 93.8%, PPV of 66.7%, NPV of 89.4%, with a total accuracy of 86%), and grading of steatosis by ultrasound.
Conclusions
RTE is beneficial in diagnosing and assessing NAFLD, especially in advanced cases “F3 and beyond.”
Collapse
|
13
|
Yang R, Yang H, Jiang D, Xu L, Feng L, Xing Y. Investigation of the potential mechanism of the Shugan Xiaozhi decoction for the treatment of nonalcoholic fatty liver disease based on network pharmacology, molecular docking and molecular dynamics simulation. PeerJ 2022; 10:e14171. [PMID: 36389420 PMCID: PMC9657198 DOI: 10.7717/peerj.14171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease, the incidence of which increases annually. Shugan Xiaozhi (SGXZ) decoction, a composite traditional Chinese medicinal prescription, has been demonstrated to exert a therapeutic effect on NAFLD. In this study, the potential bioactive ingredients and mechanism of SGXZ decoction against NAFLD were explored via network pharmacology, molecular docking, and molecular dynamics simulation. METHODS Compounds in SGXZ decoction were identified and collected from the literature, and the corresponding targets were predicted through the Similarity Ensemble Approach database. Potential targets related to NAFLD were searched on DisGeNET and GeneCards databases. The compound-target-disease and protein-protein interaction (PPI) networks were constructed to recognize key compounds and targets. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed on the targets. Molecular docking was used to further screen the potent active compounds in SGXZ. Finally, molecular dynamics (MD) simulation was applied to verify and validate the binding between the most potent compound and targets. RESULTS A total of 31 active compounds and 220 corresponding targets in SGXZ decoction were collected. Moreover, 1,544 targets of NAFLD were obtained, of which 78 targets intersected with the targets of SGXZ decoction. Key compounds and targets were recognized through the compound-target-disease and PPI network. Multiple biological pathways were annotated, including PI3K-Akt, MAPK, insulin resistance, HIF-1, and tryptophan metabolism. Molecular docking showed that gallic acid, chlorogenic acid and isochlorogenic acid A could combine with the key targets. Molecular dynamics simulations suggested that isochlorogenic acid A might potentially bind directly with RELA, IL-6, VEGFA, and MMP9 in the regulation of PI3K-Akt signaling pathway. CONCLUSION This study investigated the active substances and key targets of SGXZ decoction in the regulation of multiple-pathways based on network pharmacology and computational approaches, providing a theoretical basis for further pharmacological research into the potential mechanism of SGXZ in NAFLD.
Collapse
Affiliation(s)
- Rong Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dansheng Jiang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linyi Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
14
|
Assarrar I, Messaoudi N, Ongoth FEM, Abdellaoui W, Malki A, Rouf S, Abda N, Ismaili Z, Latrech H. Prevalence and Specific Manifestations of Non-alcoholic Fatty Liver Disease (NAFLD) and Diabetes Mellitus Type 2 Association in a Moroccan Population: A Cross-sectional Study. Rev Diabet Stud 2022; 18:140-145. [PMID: 36309775 PMCID: PMC9652707 DOI: 10.1900/rds.2022.18.140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is recognized as a common cause of chronic liver disease worldwide. Its association with type 2 diabetes mellitus (T2DM) is known to increase the risk of degenerative complications of diabetes and the likelihood of developing severe hepatic injuries. The objective of this study was to assess the prevalence of NAFLD and to describe the characteristics of its association with T2DM. METHODS: This was a descriptive analytical study, involving patients with T2DM with no history of alcohol consumption, viral hepatitis, hepatotoxic medications, or other chronic liver diseases. The patients underwent an investigation of NAFLD including abdominal ultrasound, non-invasive biomarkers of liver fibrosis, elastography and ultrasound-guided liver biopsy. RESULTS: We collected data from 180 patients with a mean age of 59.3 ± 10.9 years with strong female predominance. The mean duration of diabetes progression was 9.2 ± 7.3 years. Hepatic sonography showed signs of NAFLD in 45.6% of cases. Non-invasive hepatic biomarkers indicated significant fibrosis in 18.3% of cases. Overall, 21% of patients underwent an elastography evaluation, revealing severe fibrosis or cirrhosis in 15.4% of patients. The diagnosis of NASH (Non-alcoholic steatohepatitis) was confirmed histologically in 3 patients. The overall prevalence of NAFLD was 45.6%. Patients with NAFLD had a statistically significant incidence of obesity, metabolic syndrome, hypertension, dyslipidemia, macrovascular complications, and hypertriglyceridemia (p < 0.05). CONCLUSIONS: The combination of NAFLD and T2DM is often found in patients with obesity or metabolic syndrome. The presence of NAFLD can be responsible for increased morbidity and important cardiovascular risks in patients with T2DM.
Collapse
Affiliation(s)
- Imane Assarrar
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Najoua Messaoudi
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Farel Elilie Mawa Ongoth
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Wahiba Abdellaoui
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Abdessamad Malki
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Siham Rouf
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Naima Abda
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Zahi Ismaili
- Department of Hepatology and Gastroentorology, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Hanane Latrech
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
- Address correspondence to: Hanane Latrech, e-mail:
| |
Collapse
|
15
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
16
|
Chen Y, Ma L, Ge Z, Pan Y, Xie L. Key Genes Associated With Non-Alcoholic Fatty Liver Disease and Polycystic Ovary Syndrome. Front Mol Biosci 2022; 9:888194. [PMID: 35693550 PMCID: PMC9174783 DOI: 10.3389/fmolb.2022.888194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrinopathies disorder in women of reproductive age and non-alcoholic fatty liver (NAFLD) is one of the most common liver diseases worldwide. Previous research has indicated potential associations between PCOS and NAFLD, but the underlying pathophysiology is still not clear. The present study aims to identify the differentially expressed genes (DEGs) between PCOS and NAFLD through the bioinformatics method, and explore the associated molecular mechanisms. Methods: The microarray datasets GSE34526 and GSE63067 were downloaded from Gene Expression Omnibus (GEO) database and analyzed to obtain the DEGs between PCOS and NAFLD with the GEO2R online tool. Next, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the DEGs were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, NetworkAnalyst was used to construct the network between the targeted microRNAs (miRNAs) and the hub genes. Results: A total of 52 genes were identified as DEGs in the above two datasets. GO and KEGG enrichment analysis indicated that DEGs are mostly enriched in immunity and inflammation related pathways. In addition, nine hub genes, including TREM1, S100A9, FPR1, NCF2, FCER1G, CCR1, S100A12, MMP9, and IL1RN were selected from the PPI network by using the cytoHubba and MCODE plug-in. Then, four miRNAs, including miR-20a-5p, miR-129-2-3p, miR-124-3p, and miR-101-3p, were predicted as possibly the key miRNAs through the miRNA-gene network construction. Conclusion: In summary, we firstly constructed a miRNA-gene regulatory network depicting interactions between the predicted miRNA and the hub genes in NAFLD and PCOS, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for PCOS and NAFLD.
Collapse
Affiliation(s)
- Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yizhao Pan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lubin Xie
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|