1
|
Tu CY, Zheng L, Yan J, Shen RF, Zhu XF. ACS2 and ACS6, especially ACS2 is involved in MPK6 evoked production of ethylene under Cd stress, which exacerbated Cd toxicity in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112354. [PMID: 39672386 DOI: 10.1016/j.plantsci.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
As one of the heavy metal pollutants with strong biological toxicity, cadmium (Cd) is easily absorbed by plant roots, which seriously restricts the growth of plants, causes the quality of agricultural products to decline and threatens human health. Many complex signal transduction pathways are involved in the process of plant response to Cd stress. Among them, plant hormone ethylene is an important signal molecule for plant response to various environmental stresses, and its regulatory mechanism and signal transduction pathway in Cd stress response need to be further clarified. Here, we discovered that Cd stress induced a significant increment in ethylene production in Arabidopsis roots, and the amount of ethylene produced was positively correlated with the inhibition of Arabidopsis root growth and Cd accumulation. Simultaneously, Cd stress stimulated the detoxification mechanism within cells and promoted the expression of METAL TOLERANCE PROTEIN 3 (MTP3), IRON-REGULATED TRANSPORTER2 (IRT2), IRON REGULATED GENE 2 (IREG2) genes implicated in Cd vacuolar compartmentation. However, whether this is associated with ethylene signal transduction remains to be further explored. Further studies have revealed that the Cd induced ethylene burst is attributed to the up-regulation of the expression of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE (ACS) genes that mediated by MITONGEN-ACTIVATED PROTEIN KINASE 6 (MAPK6) in Arabidopsis roots, and among them, ACS2 and ACS6, especially ACS2, are involved in MAPK6-induced ethylene production under Cd stress. The results of this study provide new ideas for understanding the signal transduction pathway of plant response to Cd stress.
Collapse
Affiliation(s)
- Chun Yan Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Jing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
2
|
Shi J, Wang Y, Fan X, Li R, Yu C, Peng Z, Gao Y, Liu Z, Duan L. A novel plant growth regulator B2 mediates drought resistance by regulating reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and starch metabolism pathways in Carex breviculmis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108860. [PMID: 38936070 DOI: 10.1016/j.plaphy.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Drought is one of the most common environmental stressors that severely threatens plant growth, development, and productivity. B2 (2,4-dichloroformamide cyclopropane acid), a novel plant growth regulator, plays an essential role in drought adaptation, significantly enhancing the tolerance of Carex breviculmis seedlings. Its beneficial effects include improved ornamental value, sustained chlorophyll content, increased leaf dry weight, elevated relative water content, and enhanced root activity under drought conditions. B2 also directly scavenges hydrogen peroxide and superoxide anion contents while indirectly enhancing the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) to detoxify reactive oxygen species (ROS) oxidative damage. Transcriptome analysis demonstrated that B2 activates drought-responsive transcription factors (AP2/ERF-ERF, WRKY, and mTERF), leading to significant upregulation of genes associated with phenylpropanoid biosynthesis (HCT, POD, and COMT). Additionally, these transcription factors were found to suppress the degradation of starch. B2 regulates phytohormone signaling related-genes, leading to an increase in abscisic acid contents in drought-stressed plants. Collectively, these findings offer new insights into the intricate mechanisms underlying C. breviculmis' resistance to drought damage, highlighting the potential application of B2 for future turfgrass establishment and management with enhanced drought tolerance.
Collapse
Affiliation(s)
- Jiannan Shi
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ye Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xifeng Fan
- Institute of Grassland Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Runzhi Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Chunxin Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuerong Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ziyan Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liusheng Duan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China; Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100093, China.
| |
Collapse
|
3
|
Moll L, Giralt N, Planas M, Feliu L, Montesinos E, Bonaterra A, Badosa E. Prunus dulcis response to novel defense elicitor peptides and control of Xylella fastidiosa infections. PLANT CELL REPORTS 2024; 43:190. [PMID: 38976088 PMCID: PMC11231009 DOI: 10.1007/s00299-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
KEY MESSAGE New defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied. In this work, the response of almond plants to the defense elicitor peptide flg22-NH2 was studied in depth using RNA-seq, confirming the activation of the salicylic acid and abscisic acid pathways. Marker genes related to the response triggered by flg22-NH2 were used to study the effect of the application strategy of the peptide on almond plants and to depict its time course. The application of flg22-NH2 by endotherapy triggered the highest number of upregulated genes, especially at 6 h after the treatment. A library of peptides that includes BP100-flg15, HpaG23, FV7, RIJK2, PIP-1, Pep13, BP16-Pep13, flg15-BP100 and BP16 triggered a stronger defense response in almond plants than flg22-NH2. The best candidate, FV7, when applied by endotherapy on almond plants inoculated with X. fastidiosa, significantly reduced levels of the pathogen and decreased disease symptoms. Therefore, these novel plant defense elicitors are suitable candidates to manage diseases caused by X. fastidiosa, in particular almond leaf scorch.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Núria Giralt
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, University of Girona, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
4
|
Li D, Wang J, Chen R, Chen J, Zong J, Li L, Hao D, Guo H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112054. [PMID: 38423392 DOI: 10.1016/j.plantsci.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Rongrong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China.
| |
Collapse
|
5
|
Cheng J, Xiang L, Yang M, Liu Y, Pan L, Guo Z, Lu S. Transcriptome Analysis of Native Kentucky Bluegrass ( Poa pratensis L.) in Response to Osmotic Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3971. [PMID: 38068609 PMCID: PMC10708062 DOI: 10.3390/plants12233971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/01/2025]
Abstract
Kentucky bluegrass (Poa pratensis L.) is an important cool season turfgrass species with a high cold tolerance, but it is sensitive to drought. It is valuable for the applications of Kentucky bluegrass to improve its drought tolerance. However, little is known about the underlying drought mechanism. In the present study, transcriptomic profiling in the roots and leaves of the Kentucky bluegrass cultivar 'Qinghai', in response to osmotic stress in the form of treatment with 2 h and 50 h of 25% (v/v) PEG-6000, was analyzed. The results showed that a large number of genes were significantly up-regulated or down-regulated under osmotic stress. The majority of genes were up-regulated in leaves but down-regulated in roots after 2 h and 50 h of osmotic stress, among them were 350 up-regulated DEGs and 20 down-regulated DEGs shared in both leaves and roots. GO and KEGG analysis showed that carbohydrate metabolism, polyamine and amino acid metabolism and the plant hormone signaling pathway were enriched in the leaves and roots of 'Qinghai' after osmotic stress. The genes involving in carbohydrate metabolism were up-regulated, and sucrose, trehalose and raffinose levels were consistently increased. The genes involved in polyamine and amino acid metabolism were up-regulated in leaves in response to osmotic stress and several amino acids, such as Glu, Met and Val levels were increased, while the genes involved in photosynthesis, carbon fixation and citrate cycle in leaves were down-regulated. In addition, the genes involved in plant hormone biosynthesis and signal transduction were altered in leaves after osmotic stress. This study provided promising candidate genes for studying drought mechanisms in 'Qinghai' and improving the drought tolerance of Kentucky bluegrass and drought-sensitive crops.
Collapse
Affiliation(s)
- Jinjing Cheng
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| | - Ying Liu
- College of Grassland Science, Qinhai University, Xining 210095, China;
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou 510642, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoyun Lu
- Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.X.); (M.Y.)
| |
Collapse
|
6
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Ceusters J, Van de Poel B. Effect of ethylene pretreatment on tomato plant responses to salt, drought, and waterlogging stress. PLANT DIRECT 2023; 7:e548. [PMID: 38028648 PMCID: PMC10654692 DOI: 10.1002/pld3.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Salinity, drought, and waterlogging are common environmental stresses that negatively impact plant growth, development, and productivity. One of the responses to abiotic stresses is the production of the phytohormone ethylene, which induces different coping mechanisms that help plants resist or tolerate stress. In this study, we investigated if an ethylene pretreatment can aid plants in activating stress-coping responses prior to the onset of salt, drought, and waterlogging stress. Therefore, we measured real-time transpiration and CO2 assimilation rates and the impact on biomass during and after 3 days of abiotic stress. Our results showed that an ethylene pretreatment of 1 ppm for 4 h did not significantly influence the negative effects of waterlogging stress, while plants were more sensitive to salt stress as reflected by enhanced water losses due to a higher transpiration rate. However, when exposed to drought stress, an ethylene pretreatment resulted in reduced transpiration rates, reducing water loss during drought stress. Overall, our findings indicate that pretreating tomato plants with ethylene can potentially regulate their responses during the forthcoming stress period, but optimization of the ethylene pre-treatment duration, timing, and dose is needed. Furthermore, it remains tested if the effect is related to the stress duration and severity and whether an ethylene pretreatment has a net positive or negative effect on plant vigor during stress recovery. Further investigations are needed to elucidate the mode of action of how ethylene priming impacts subsequent stress responses.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
| | - Johan Ceusters
- Research Group for sustainable plant production and protection, Division of Crop Biotechnics, Department of BiosystemsKU LeuvenGeelBelgium
- Leuven Plant Institute (LPI)University of LeuvenLeuvenBelgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of BiosystemsKU LeuvenLeuvenBelgium
- Leuven Plant Institute (LPI)University of LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Aruwajoye NN, Mditshwa A, Magwaza LS, Ngidi MSC, Tesfay SZ. Impact of Preharvest Ethephon Foliar Spray on the Postharvest Fatty Acid Profile and Dietary Indicators of Macadamia Nuts. AGRICULTURE (BASEL, SWITZERLAND) 2023; 13:1898. [PMID: 39659297 PMCID: PMC7617197 DOI: 10.3390/agriculture13101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The use of ethephon, designed to stimulate nut detachment, initiates the release of ethylene, a well-established regulator of postharvest shelf-life in various agricultural products. This study aimed to assess the impact of ethephon application on individual fatty acids and dietary indicators in two macadamia nut cultivars, namely '788' and 'Beaumont,' during postharvest storage. Nuts that naturally abscised and those detached through ethephon treatment were divided into two groups: the ethylene-treated group (ED) and the control group (CD). Nuts were stored at 25 °C and sampled at 0, 36, and 72 days for fatty profile analysis. Our findings indicated a significant increase in stearic acid content in ED nuts (24,622 µg/g) compared to CD nuts (16,764 µg/g) at the end of the storage period for the 'Beaumont' cultivar. Additionally, unsaturated fatty acids (USFAs), such as eicosatrienoic acid + erucic acid (C20:3n3 + C22:1) and eicosatrienoic acid + alpha-linolenic acid (C20:1 + C18:3n3), were notably reduced. Hierarchical clustering analysis revealed positive correlations between ethylene treatment and saturated fatty acids (SFAs) in both 'Beaumont' (0.78) and '788' (0.80) cultivars. This also coincided with an increase in atherogenic indices, thrombogenic index, and saturation index and a decrease in the hypocholesterolemic/hypercholesterolemic ratio and arachidonic acid (C20:4n6) within the ED group of the 'Beaumont' cultivar, collectively potentially impacting nutritional quality negatively. Furthermore, our findings indicated that the PUFA:SFA ratio was higher in CD (0.51) compared to ED (0.45) on day 72 for the 'Beaumont' cultivar, revealing differences in fatty acid compositions between the two treatment groups. Conversely, for '788', both ED and CD had a PUFA:SFA ratio below 0.45, indicating an increased risk of cardiovascular diseases. These results suggest that ethephon treatment increases SFA levels and reduces USFA levels in the 'Beaumont' cultivar, while the response to ethylene varies between the two cultivars. Thus, the study provides insight into the significant role of modifying ethephon treatment methods and careful cultivar selection in the attainment of optimal nutritional value and shelf-life of macadamia nuts.
Collapse
Affiliation(s)
- Noluthando Noxolo Aruwajoye
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3209, South Africa
| | - Asanda Mditshwa
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3209, South Africa
| | - Lembe Samukelo Magwaza
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3209, South Africa
| | - Mjabuliseni Simon Cloapas Ngidi
- Department of Agricultural Extension and Rural Resource Management, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3201, South Africa
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3201, South Africa
| | - Samson Zeray Tesfay
- Discipline of Crop and Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg3209, South Africa
| |
Collapse
|