1
|
Santos-Peral A, Zaucha M, Nikolova E, Yaman E, Puzek B, Winheim E, Goresch S, Scheck MK, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Jia S, Luppa F, Pritsch M, Butt J, Metz-Zumaran C, Barba-Spaeth G, Endres S, Kim-Hellmuth S, Waterboer T, Krug AB, Rothenfusser S. Basal T cell activation predicts yellow fever vaccine response independently of cytomegalovirus infection and sex-related immune variations. Cell Rep Med 2025; 6:101946. [PMID: 39938525 DOI: 10.1016/j.xcrm.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is a model of acute viral infection that induces long-lasting protective immunity. Among immunocompetent adults, responses to YF17D vary significantly. To understand the sources of this variability, we investigate the influence of sex, age, human leukocyte antigen (HLA) type, and 20 prior infections on basal immune parameters and the cellular and antibody response to YF17D in 250 healthy young individuals. Multivariate regression found that sex and cytomegalovirus (CMV) infection significantly contribute to baseline immune variation but do not affect vaccine responses except for reduced YF17D-specific CD8+ frequencies in CMV-infected males. However, the abundance at baseline of non-specific cytokine-expressing T helper cells in circulation is associated with stronger vaccine responses, a state that smoking favors. Additionally, an elevated baseline level of interferon-stimulated CXCL10 is linked to poorer vaccination outcomes. Altogether, YF17D reactivity is conditioned by the baseline immune status independent of sex and CMV-related variations.
Collapse
Affiliation(s)
- Antonio Santos-Peral
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Nikolova
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ekin Yaman
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Barbara Puzek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena K Scheck
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Dahlstroem
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Shenzhi Jia
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fabian Luppa
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Camila Metz-Zumaran
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Stefan Endres
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
2
|
Santos-Peral A, Luppa F, Goresch S, Nikolova E, Zaucha M, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Winheim E, Schuster EM, Dobler G, Hoelscher M, Kümmerer BM, Endres S, Schober K, Krug AB, Pritsch M, Barba-Spaeth G, Rothenfusser S. Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat Commun 2024; 15:1696. [PMID: 38402207 PMCID: PMC10894228 DOI: 10.1038/s41467-024-45806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.
Collapse
Affiliation(s)
- Antonio Santos-Peral
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fabian Luppa
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Nikolova
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Dahlstroem
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center (BMC), Medical Faculty, LMU Munich, Munich, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Infection Research, Partner Site Munich, 80799, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Immunology, Infection and Pandemic Research, 80799, Munich, Germany
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127, Bonn, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, 53127, Bonn, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center (BMC), Medical Faculty, LMU Munich, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France.
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
3
|
Simões M, da Silva SA, Lúcio KA, de Oliveira Vieira R, Schwarcz WD, de Lima SMB, Camacho LAB. Standardization, validation, and comparative evaluation of a faster and high-performance test for quantification of yellow fever neutralizing antibodies. J Immunol Methods 2023; 522:113568. [PMID: 37748728 DOI: 10.1016/j.jim.2023.113568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Although it is considered the reference for quantification of neutralizing antibodies, classical method of the plaque reduction neutralization test (PRNT) is labor intensive, requires specific equipment and inputs, besides a long time for its finalization, even in the micro-PRNT version (in 96-well plates). It has a higher sample throughput, however the smaller wells make the reading of plaques more difficult. With an immunoenzymatic revelation step and a semi-automated reading, the μFRN-HRP (micro Focus Reduction Neutralization - Horseradish Peroxidase) is a faster and more efficient test for the quantification of YF neutralizing antibodies. This study aimed to standardize, validate, and compare it with the reference method in 6-well plates (PRNT). Once the execution protocol was standardized, precision, accuracy, selectivity, and robustness were evaluated to validate the μFRN-HRP. In addition, 200 sera of vaccinees were processed by the μFRN-HRP and by the micro-PRNT to compare with the reference test, estimating agreement by Intraclass Correlation Coefficient (ICC). The standardization and validation of the μFRN-HRP was carried out successfully. Weak to moderate agreement was observed between μFRN-HRP and PRNT for titers in reciprocal dilution, while the same comparison between the classical tests resulted in a better ICC. However, titers in milli-international units obtained by μFRN-HRP showed a substantial agreement with PRNT, while the agreement between micro-PRNT and PRNT was inferior. Therefore, μFRN-HRP can be used in the confirmation of natural YF infection and immune response to vaccination, replacing the micro-PRNT, gaining agility, while preserving the specificity of the result.
Collapse
Affiliation(s)
- Marisol Simões
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Stephanie Almeida da Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Kelly Araújo Lúcio
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Renan de Oliveira Vieira
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Sheila Maria Barbosa de Lima
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
4
|
Vaidya SR. Immuno-Colorimetric Neutralization Test: A Surrogate for Widely Used Plaque Reduction Neutralization Tests in Public Health Virology. Viruses 2023; 15:v15040939. [PMID: 37112919 PMCID: PMC10143445 DOI: 10.3390/v15040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Since their first documentation in 1952, plaque reduction neutralization tests (PRNTs) have become the choice of test for the measurement of neutralizing antibodies against a particular virus. However, PRNTs can be performed only against viruses that cause cytopathic effects (CPE). PRNTs also require skilled personnel and can be time-consuming depending on the time required for the virus to cause CPE. Hence, their application limits large-scale studies or epidemiological and laboratory investigations. Since 1978, many surrogate PRNTs or immunocolorimetric assay (ICA)-based focus reduction neutralization tests (FRNT) have been developed. In this article, ICAs and their utility in FRNTs for the characterization of neutralizing antibodies, homologous or heterologous cross-neutralization, and laboratory diagnosis of viruses of public health importance have been discussed. Additionally, possible advancements and automations have been described that may help in the development and validation of novel surrogate tests for emerging viruses.
Collapse
Affiliation(s)
- Sunil R Vaidya
- Virus Registry and Virus Repository, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| |
Collapse
|
5
|
Lücke AC, vom Hemdt A, Wieseler J, Fischer C, Feldmann M, Rothenfusser S, Drexler JF, Kümmerer BM. High-Throughput Platform for Detection of Neutralizing Antibodies Using Flavivirus Reporter Replicon Particles. Viruses 2022; 14:v14020346. [PMID: 35215941 PMCID: PMC8880525 DOI: 10.3390/v14020346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Flavivirus outbreaks require fast and reliable diagnostics that can be easily adapted to newly emerging and re-emerging flaviviruses. Due to the serological cross-reactivity among flavivirus antibodies, neutralization tests (NT) are considered the gold standard for sero-diagnostics. Here, we first established wild-type single-round infectious virus replicon particles (VRPs) by packaging a yellow fever virus (YFV) replicon expressing Gaussia luciferase (Gluc) with YFV structural proteins in trans using a double subgenomic Sindbis virus (SINV) replicon. The latter expressed the YFV envelope proteins prME via the first SINV subgenomic promoter and the capsid protein via a second subgenomic SINV promoter. VRPs were produced upon co-electroporation of replicon and packaging RNA. Introduction of single restriction enzyme sites in the packaging construct flanking the prME sequence easily allowed to exchange the prME moiety resulting in chimeric VRPs that have the surface proteins of other flaviviruses including dengue virus 1-4, Zika virus, West Nile virus, and tick-borne encephalitis virus. Besides comparing the YF-VRP based NT assay to a YF reporter virus NT assay, we analyzed the neutralization efficiencies of different human anti-flavivirus sera or a monoclonal antibody against all established VRPs. The assays were performed in a 96-well high-throughput format setting with Gluc as readout in comparison to classical plaque reduction NTs indicating that the VRP-based NT assays are suitable for high-throughput analyses of neutralizing flavivirus antibodies.
Collapse
Affiliation(s)
- Arlen-Celina Lücke
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
| | - Marie Feldmann
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, LMU Munich, 80337 Munich, Germany;
- Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, 80337 Munich, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universtät Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (C.F.); (J.F.D.)
- Martinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119435 Moskow, Russia
- German Center for Infection Research (DZIF), Associated Partner Site Berlin, 10117 Berlin, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (A.-C.L.); (A.v.H.); (J.W.); (M.F.)
- German Center for Infection Research (DZIF), Associated Partner Site Bonn-Cologne, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|