1
|
Chen YM, Huang J, Fan H, Li WY, Shi TS, Zhao J, Wang CN, Chen WJ, Zhu BL, Qian JJ, Guan W, Jiang B. QRFP and GPR103 in the paraventricular nucleus play a role in chronic stress-induced depressive-like symptomatology by enhancing the hypothalamic-pituitary-adrenal axis. Neuropharmacology 2025; 262:110198. [PMID: 39442911 DOI: 10.1016/j.neuropharm.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for depression neurobiology. As the latest member of the RFamide peptide family in mammals, pyroglutamylated RFamide peptide (QRFP) is closely implicated in neuroendocrine maintenance by activating G-protein-coupled receptor 103 (GPR103). We hypothesized that QRFP and GPR103 might contribute to chronic stress-induced depression by promoting corticotropin-releasing hormone (CRH) release from neurons in the paraventricular nucleus (PVN), and various methods were employed in this study, with male C57BL/6J mice adopted as the experimental subjects. Chronic stress induced not only depression-like behaviors but also significant enhancement in QRFP and GPR103 in the PVN. Genetic overexpression of QRFP/GPR103 and stereotactic infusion of QRFP-26/QRFP-43 peptide in the PVN all mimicked chronic stress that induced various depression-like phenotypes in naïve mice, and this was mediated by promoting CRH biosynthesis and HPA activity. In contrast, genetic knockdown of QRFP/GPR103 in the PVN produced notable antidepressant-like effects in mice exposed to chronic stress. Furthermore, genetic knockout of QRFP also protected against chronic stress in mice. In addition, both the C-terminal biological region of QRFP and the downstream PKA/PKC-CREB signaling coupled to GPR103 stimulation underlie the role of QRFP and GPR103 in depression. Collectively, QRFP and GPR103 in PVN neurons could be viable targets for novel antidepressants.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Fan
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, Henan, China
| | - Wei-Yu Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Tian-Shun Shi
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Zhao
- Department of Pharmacy, The Sixth People's Hospital of Nantong, Nantong, 226011 Jiangsu, China
| | - Cheng-Niu Wang
- Basic Medical Research Centre, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei-Jia Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bao-Lun Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jun-Jie Qian
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
2
|
Lu Z, Zhang T, Zhao Y, Pang Y, Guo M, Zhu X, Li Y, Li Z. The influence of host genotype and gut microbial interactions on feed efficiency traits in pigs. Front Microbiol 2024; 15:1459773. [PMID: 39606106 PMCID: PMC11599184 DOI: 10.3389/fmicb.2024.1459773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Feed efficiency and growth performance are economically important traits in pigs. Precious studies have been revealed that both genetics and gut microbes could influence host phenotypes, however, the mechanisms by which they affect pig growth and feed efficiency remain poorly understood. In this study, 361 crossbred Duroc × (Landrace × Yorkshire) commercial pigs were genotyped using GeneSeek Porcine SNP50K BeadChip, and the microbiotas from fecal samples were acquired using microbial 16S rRNA gene sequencing technology to investigate the impact of host genetics and gut microorganisms on growth and feed efficiency. The results showed that the heritability and enterobacterial force ranged from 0.27 to 0.46 and 0 to 0.03, respectively. Genome-wide association studies (GWAS) identified seven significant SNPs to be associated with growth and feed efficiency, and several genes, including AIF1L, ASS1, and QRFP were highlighted as candidates for the analyzed traits. Additionally, microbiome-genome-wide association studies GWAS revealed potential links between CCAR2, EGR3, GSTM3, and GPR61 genes and the abundance of microorganisms, such as Trueperella, Victivallis, and Erysipelatoclostridium. In addition, six microbial genera linked to growth and feed efficiency were identified as follows Lachnospiraceae_UCG-005, Prevotellaceae_UCG-003, Prevotellaceae_NK3B31_group, Prevotella_1, Prevotella_9, and Veillonella. Our findings provide novel insights into the factors influencing host phenotypic complexity and identify potential microbial targets for enhancing pig feed efficiency through selective breeding. This could aid in the development of strategies to manipulate the gut microbiota to optimize growth rates and feed efficiency in pig breeding.
Collapse
Affiliation(s)
- Zhuoda Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Tao Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Yunxiang Zhao
- Guangxi Yangxiang Co., Ltd., Guigang, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanqin Pang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Meng Guo
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Xiaoping Zhu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Ying Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhili Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
3
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
4
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024; 115:111-127. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
5
|
Ignatieva EV, Lashin SA, Mustafin ZS, Kolchanov NA. Evolution of human genes encoding cell surface receptors involved in the regulation of appetite: an analysis based on the phylostratigraphic age and divergence indexes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:829-838. [PMID: 38213702 PMCID: PMC10777300 DOI: 10.18699/vjgb-23-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 01/13/2024] Open
Abstract
Genes encoding cell surface receptors make up a significant portion of the human genome (more than a thousand genes) and play an important role in gene networks. Cell surface receptors are transmembrane proteins that interact with molecules (ligands) located outside the cell. This interaction activates signal transduction pathways in the cell. A large number of exogenous ligands of various origins, including drugs, are known for cell surface receptors, which accounts for interest in them from biomedical researchers. Appetite (the desire of the animal organism to consume food) is one of the most primitive instincts that contribute to survival. However, when the supply of nutrients is stable, the mechanism of adaptation to adverse factors acquired in the course of evolution turned out to be excessive, and therefore obesity has become one of the most serious public health problems of the twenty-first century. Pathological human conditions characterized by appetite violations include both hyperphagia, which inevitably leads to obesity, and anorexia nervosa induced by psychosocial stimuli, as well as decreased appetite caused by neurodegeneration, inflammation or cancer. Understanding the evolutionary mechanisms of human diseases, especially those related to lifestyle changes that have occurred over the past 100-200 years, is of fundamental and applied importance. It is also very important to identify relationships between the evolutionary characteristics of genes in gene networks and the resistance of these networks to changes caused by mutations. The aim of the current study is to identify the distinctive features of human genes encoding cell surface receptors involved in appetite regulation using the phylostratigraphic age index (PAI) and divergence index (DI). The values of PAI and DI were analyzed for 64 human genes encoding cell surface receptors, the orthologs of which were involved in the regulation of appetite in model animal species. It turned out that the set of genes under consideration contains an increased number of genes with the same phylostratigraphic age (PAI = 5, the stage of vertebrate divergence), and almost all of these genes (28 out of 31) belong to the superfamily of G-protein coupled receptors. Apparently, the synchronized evolution of such a large group of genes (31 genes out of 64) is associated with the development of the brain as a separate organ in the first vertebrates. When studying the distribution of genes from the same set by DI values, a significant enrichment with genes having a low DIs was revealed: eight genes (GPR26, NPY1R, GHSR, ADIPOR1, DRD1, NPY2R, GPR171, NPBWR1) had extremely low DIs (less than 0.05). Such low DI values indicate that most likely these genes are subjected to stabilizing selection. It was also found that the group of genes with low DIs was enriched with genes that had brain-specific patterns of expression. In particular, GPR26, which had the lowest DI, is in the group of brain-specific genes. Because the endogenous ligand for the GPR26 receptor has not yet been identified, this gene seems to be an extremely interesting object for further theoretical and experimental research. We believe that the features of the genes encoding cell surface receptors we have identified using the evolutionary metrics PAI and DI can be a starting point for further evolutionary analysis of the gene network regulating appetite.
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Lashin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Z S Mustafin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
6
|
Gaitonde KD, Andrabi M, Burger CA, D’Souza SP, Vemaraju S, Koritala BSC, Smith DF, Lang RA. Diurnal regulation of metabolism by Gs-alpha in hypothalamic QPLOT neurons. PLoS One 2023; 18:e0284824. [PMID: 37141220 PMCID: PMC10159165 DOI: 10.1371/journal.pone.0284824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023] Open
Abstract
Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.
Collapse
Affiliation(s)
- Kevin D. Gaitonde
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular & Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
- Medical Scientist Training Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Mutahar Andrabi
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Courtney A. Burger
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Shane P. D’Souza
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Molecular & Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, United States of America
| | - Shruti Vemaraju
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| | - Bala S. C. Koritala
- Division of Pediatric Otolaryngology–Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - David F. Smith
- Division of Pediatric Otolaryngology–Head and Neck Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Otolaryngology–Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- The Center for Circadian Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Abrahamson Pediatric Eye Institute, Visual Systems Group, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Science of Light Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
7
|
Martin CT, Primeaux SD. The hypothalamic neuropeptide, QRFP, regulates high fat diet intake in female Long-Evans rats following ovariectomy. Peptides 2023; 162:170960. [PMID: 36690209 PMCID: PMC9992330 DOI: 10.1016/j.peptides.2023.170960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Obesity rates in women continue to increase throughout the lifespan and obesity-related comorbidities are prevalent in women in estrogen deficiency. The hypothalamic neuropeptide, QRFP, is an orexigenic peptide that increases the intake of high fat diet (HFD) in female rats and is overexpressed following ovariectomy (OVX). Therefore, the goal of the current series of experiments was to elucidate the effect of QRFP on HFD intake following OVX and determine if QRFP-26 administration in ovariectomized females altered expression of prepro-neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) mRNA in the mediobasal hypothalamus (MBH) and prepro-orexin in the lateral hypothalamus (LH). The intake of HFD was measured following acute administration of QRFP-26 prior to or following estradiol benzoate (EB) treatment in ovariectomized females. When administered prior to EB treatment, QRFP-26 increased HFD intake. EB treatment attenuated the effects of QRFP-26 on HFD intake. Sub-chronic, continuous administration of QRFP-26 increased HFD intake and weight gain following OVX. Subchronic, continuous administration of QRFP siRNA into the 3rd ventricle via osmotic pump decreased prepro-QRFP mRNA levels in the MBH by ∼75%, decreased HFD intake and decreased weight gain following OVX. QRFP-26administration did not alter the expression of prepro-NPY, AgRP or POMC mRNA in the MBH, but decreased prepro-orexin mRNA in the LH of ovariectomized females. Overall, results from these studies support the orexigenic neuropeptide, QRFP, as an important mediator of the ingestion of highly palatable foods and subsequent weight gain in females during estrogen deficiency.
Collapse
Affiliation(s)
- Cade T Martin
- Department of Physiology, LSU Health Sciences Center-NO, New Orleans, LA 70112, USA
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center-NO, New Orleans, LA 70112, USA; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|