1
|
Wang X, Xie Z, Zhang J, Chen Y, Li Q, Yang Q, Chen X, Liu B, Xu S, Dong Y. Interaction between lipid metabolism and macrophage polarization in atherosclerosis. iScience 2025; 28:112168. [PMID: 40201117 PMCID: PMC11978336 DOI: 10.1016/j.isci.2025.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory condition associated with lipid deposition. The interaction between abnormal lipid metabolism and the inflammatory response has been identified as the underlying cause of AS. Lipid metabolism disorders are considered the basis of atherosclerotic lesion formation and macrophages are involved in the entire process of AS formation. Macrophages have a high degree of plasticity, and the change of their polarization direction can determine the progress or regression of AS. The disturbances in bioactive lipid metabolism affect the polarization of different phenotypes of macrophages, thus, affecting lipid metabolism and the expression of key signal factors. Therefore, understanding the interaction between lipid metabolism and macrophages as well as their key targets is important for preventing and treating AS and developing new drugs. Recent studies have shown that traditional Chinese medicines play a positive role in the prevention and treatment of AS, providing a basis for clinical individualized treatment.
Collapse
Affiliation(s)
- Xinge Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zheng Xie
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Chen
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xu Chen
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bing Liu
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Dong
- Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
2
|
Mishra S, Jain S, Agadzi B, Yadav H. A Cascade of Microbiota-Leaky Gut-Inflammation- Is it a Key Player in Metabolic Disorders? Curr Obes Rep 2025; 14:32. [PMID: 40208464 DOI: 10.1007/s13679-025-00624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE OF REVIEW This review addresses critical gaps in knowledge and provides a literature overview of the molecular pathways connecting gut microbiota dysbiosis to increased intestinal permeability (commonly referred to as "leaky gut") and its contribution to metabolic disorders. Restoring a healthy gut microbiota holds significant potential for enhancing intestinal barrier function and metabolic health. These interventions offer promising therapeutic avenues for addressing leaky gut and its associated pathologies in metabolic syndrome. RECENT FINDINGS In metabolic disorders such as obesity and type 2 diabetes (T2D), beneficial microbes such as those producing short-chain fatty acids (SCFAs) and other key metabolites like taurine, spermidine, glutamine, and indole derivatives are reduced. Concurrently, microbes that degrade toxic metabolites such as ethanolamine also decline, while proinflammatory, lipopolysaccharide (LPS)-enriched microbes increase. These microbial shifts place a higher burden on intestinal epithelial cells, which are in closest proximity to the gut lumen, inducing detrimental changes that compromise the structural and functional integrity of the intestinal barrier. Such changes include exacerbation of tight junction protein (TJP)s dysfunction, particularly through mechanisms such as destabilization of zona occludens (Zo)-1 mRNA or post-translational modifications. Emerging therapeutic strategies including ketogenic and Mediterranean diets, as well as probiotics, prebiotics, synbiotics, and postbiotics have demonstrated efficacy in restoring beneficial microbial populations, enhancing TJP expression and function, supporting gut barrier integrity, reducing leaky gut and inflammation, and ultimately improving metabolic disorders. This review summarizes the mechanisms by which gut microbiota contribute to the development of leaky gut and inflammation associated with metabolic syndrome. It also explores strategies for restoring gut microbiota balance and functionality by promoting beneficial microbes, increasing the production of beneficial metabolites, clearing toxic metabolites, and reducing the proportion of proinflammatory microbes. These approaches can alleviate the burden on intestinal epithelial cells, reduce leaky gut and inflammation, and improve metabolic health.
Collapse
Affiliation(s)
- Sidharth Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bryan Agadzi
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Center for Excellence of Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Byrd Alzheimer's Institute, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
- Director of USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, MDC78, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Tang R, Zha H, Liu R, Lv J, Cao D, Li L. Sodium butyrate attenuates liver fibrogenesis via promoting H4K8 crotonylation. Mol Cell Biochem 2025:10.1007/s11010-025-05274-3. [PMID: 40180786 DOI: 10.1007/s11010-025-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor derived from dietary sources, demonstrates its potential in improving liver fibrosis in mice. This study explored NaB's impact on liver fibrosis through histone crotonylation. In vitro, NaB significantly inhibited the growth of TGF-β-stimulated LX2 hepatic stellate cells and reduced the expression of fibrotic markers ACTA2, the encoding gene of αSMA, and COL1A1 proportionally to the dosage. In vivo, NaB treatment of CCl4-induced ICR mice led to notable gains in liver function and a marked suppression in liver fibrosis. NaB inhibited Hdac2 and Hdac3 expression leading to increased H4K8 crotonylation, and modulated key fibrosis-related genes, providing a mechanistic basis for its therapeutic potential. Trichostatin A (TSA) exhibited similar effects to NaB, supporting the importance of HDAC inhibition in modulating these pathways. Overall, NaB's modulation of HDAC activity and histone crotonylation reveals a novel mechanism underlying its impact on liver fibrosis, highlighting its promise as a treatment for liver disease.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Rongrong Liu
- Center of Pediatric Hematology-oncology, Pediatric Leukemia Diagnostic, Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, 57 Zhuganxiang Rd., Yan-an St., Hangzhou, 310003, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
| |
Collapse
|
4
|
Guo L, Du Y, Li H, He T, Yao L, Yang G, Yang X. Metabolites-mediated posttranslational modifications in cardiac metabolic remodeling: Implications for disease pathology and therapeutic potential. Metabolism 2025; 165:156144. [PMID: 39864796 DOI: 10.1016/j.metabol.2025.156144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The nonenergy - producing functions of metabolism are attracting increasing attention, as metabolic changes are involved in discrete pathways modulating enzyme activity and gene expression. Substantial evidence suggests that myocardial metabolic remodeling occurring during diabetic cardiomyopathy, heart failure, and cardiac pathological stress (e.g., myocardial ischemia, pressure overload) contributes to the progression of pathology. Within the rewired metabolic network, metabolic intermediates and end-products can directly alter protein function and/or regulate epigenetic modifications by providing acyl groups for posttranslational modifications, thereby affecting the overall cardiac stress response and providing a direct link between cellular metabolism and cardiac pathology. This review provides a comprehensive overview of the functional diversity and mechanistic roles of several types of metabolite-mediated histone and nonhistone acylation, namely O-GlcNAcylation, lactylation, crotonylation, β-hydroxybutyrylation, and succinylation, as well as fatty acid-mediated modifications, in regulating physiological processes and contributing to the progression of heart disease. Furthermore, it explores the potential of these modifications as therapeutic targets for disease intervention.
Collapse
Affiliation(s)
- Lifei Guo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; Cadet Team 6 of School of Basic Medicine, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Yuting Du
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China; The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Heng Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China
| | - Li Yao
- Department of Pathology, Xi' an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi' an 710018, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi' an 710032, China.
| |
Collapse
|
5
|
Liu W, Wang J, Yang H, Li C, Lan W, Chen T, Tang Y. The Metabolite Indole-3-Acetic Acid of Bacteroides Ovatus Improves Atherosclerosis by Restoring the Polarisation Balance of M1/M2 Macrophages and Inhibiting Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413010. [PMID: 39840614 PMCID: PMC11924036 DOI: 10.1002/advs.202413010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Indexed: 01/23/2025]
Abstract
Emerging research has highlighted the significant role of the gut microbiota in atherosclerosis (AS), with microbiota-targeted interventions offering promising therapeutic potential. A central component of this process is gut-derived metabolites, which play a crucial role in mediating the distal functioning of the microbiota. In this study, a comprehensive microbiome-metabolite analysis using fecal and serum samples from patients with atherosclerotic cardiovascular disease and volunteers with risk factors for coronary heart disease and culture histology is performed, and identified the core strain Bacteroides ovatus (B. ovatus). Fecal microbiota transplantation experiments further demonstrated that the gut microbiota significantly influences AS progression, with B. ovatus alone exerting effects comparable to volunteer feces from volunteers. Notably, B. ovatus alleviated AS primarily by restoring the intestinal barrier and enhancing bile acid metabolism, particularly through the production of indole-3-acetic acid (IAA), a tryptophan-derived metabolite. IAA inhibited the TLR4/MyD88/NF-κB pathway in M1 macrophages, promoted M2 macrophage polarisation, and restored the M1/M2 polarisation balance, ultimately reducing aortic inflammation. These findings clarify the mechanistic interplay between the gut microbiota and AS, providing the first evidence that B. ovatus, a second-generation probiotic, can improve bile acid metabolism and reduce inflammation, offering a theoretical foundation for future AS therapeutic applications involving this strain.
Collapse
Affiliation(s)
- Wu Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330008, China
| | - Jingyu Wang
- The Second Clinical Medical College of Nanchang University, Nanchang, 330008, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330008, China
| | - Heng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330008, China
| | - Congcong Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330008, China
| | - Wanqi Lan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China
- The Second Clinical Medical College of Nanchang University, Nanchang, 330008, China
| | - Tingtao Chen
- The Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330036, China
- Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330036, China
| | - Yanhua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, China
| |
Collapse
|
6
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
7
|
Theodoropoulou MA, Mantzourani C, Kokotos G. Histone Deacetylase (HDAC) Inhibitors as a Novel Therapeutic Option Against Fibrotic and Inflammatory Diseases. Biomolecules 2024; 14:1605. [PMID: 39766311 PMCID: PMC11674560 DOI: 10.3390/biom14121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Histone deacetylases (HDACs) are enzymes that play an essential role in the onset and progression of cancer. As a consequence, a variety of HDAC inhibitors (HDACis) have been developed as potent anticancer agents, several of which have been approved by the FDA for cancer treatment. However, recent accumulated research results have suggested that HDACs are also involved in several other pathophysiological conditions, such as fibrotic, inflammatory, neurodegenerative, and autoimmune diseases. Very recently, the HDAC inhibitor givinostat has been approved by the FDA for an indication beyond cancer: the treatment of Duchenne muscular dystrophy. In recent years, more and more HDACis have been developed as tools to understand the role that HDACs play in various disorders and as a novel therapeutic approach to fight various diseases other than cancer. In the present perspective article, we discuss the development and study of HDACis as anti-fibrotic and anti-inflammatory agents, covering the period from 2020-2024. We envision that the discovery of selective inhibitors targeting specific HDAC isozymes will allow the elucidation of the role of HDACs in various pathological processes and will lead to the development of promising treatments for such diseases.
Collapse
Affiliation(s)
- Maria A. Theodoropoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christiana Mantzourani
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; (M.A.T.); (C.M.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024; 102:418-429. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Chen J, Xiong J, Hu JQ, Yang LY, Sun YX, Wei Y, Zhao Y, Li X, Zheng QH, Qi WC, Liang FR. Potential cardiac-derived exosomal miRNAs involved in cardiac healing and remodeling after myocardial ischemia-reperfusion injury. Sci Rep 2024; 14:24275. [PMID: 39414956 PMCID: PMC11484883 DOI: 10.1038/s41598-024-75517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Migratory cells exist in the heart, such as immune cells, fibroblasts, endothelial cells, etc. During myocardium injury, such as ischemia-reperfusion (MIRI), cells migrate to the site of injury to perform repair functions. However, excessive aggregation of these cells may exacerbate damage to the structure and function of the heart, such as acute myocarditis and myocardial fibrosis. Myocardial injury releases exosomes, which are a type of vesicle with signal transduction function and the miRNA carried by exosomes can control cell migration function. Therefore, regulating this migratory cell population through cardiac-derived exosomal miRNA is crucial for protecting and maintaining cardiac function. Through whole transcriptome RNA sequencing, exosomal miRNA sequencing and single-cell dataset analysis, we (1) determined the potential molecular regulatory role of the lncRNA‒miRNA‒mRNA axis in MIRI, (2) screened four important exosomal miRNAs that could be released by cardiac tissue, and (3) screened seven genes related to cell locomotion that are regulated by four miRNAs, among which Tradd and Ephb6 may be specific for promoting migration of different cells of myocardial tissue in myocardial infarct. We generated a core miRNA‒mRNA network based on the functions of the target genes, which may be not only a target for cardiac repair but also a potential diagnostic marker for interactions between the heart and other tissues or organs. In conclusion, we elucidated the potential mechanism of MIRI in cardiac remodeling from the perspective of cell migration, and inhibition of cellular overmigration based on this network may provide new therapeutic targets for MIRI and to prevent MIRI from developing into other diseases.
Collapse
Affiliation(s)
- Yu Liu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiao Chen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jian Xiong
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jin-Qun Hu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Li-Yuan Yang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu-Xin Sun
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ying Wei
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yi Zhao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiao Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qian-Hua Zheng
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wen-Chuan Qi
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Fan-Rong Liang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Sichuan Clinical Medicine Research Center of Acupuncture-Moxibustion, Chengdu, 610075, China.
| |
Collapse
|
10
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Mi L, Wang Y, Jiang J, Hu Y. Meta-analysis of the effects of probiotics on hyperlipidemia. Curr Res Food Sci 2024; 9:100885. [PMID: 39469722 PMCID: PMC11513789 DOI: 10.1016/j.crfs.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Background The potential role of probiotics in mitigating hyperlipidemia has garnered increasing evidence, yet the specific mechanisms warrant further investigation. Objective This study aimed to examine the alterations in short-chain fatty acids (SCFAs), a hypothesized lipid-lowering mechanism of probiotics, in animal models and to evaluate the lipid-lowering effects of probiotics on hyperlipidemic animal models through a meta-analysis of preclinical experiments. Methods: A comprehensive search of PubMed, Web of Science, EMBASE, Cochrane Library and Google Scholar up to June 2024 yielded nine studies that met the inclusion criteria (INPLASY registration number: No. CRD42024559937). Result The analysis revealed that mice receiving probiotics exhibited a significant increase in SCFA levels compared with control mice (acetic acid: standard mean difference [SMD] = 1.26, 95% confidence interval [CI] 0.80 to 1.72, P < 0.00001, I2 = 28%; propionic acid: SMD = 1.99, 95% CI 1.47 to 2.51; butyric acid: SMD = 0.66, 95% CI 0.04 to 1.28, P = 0.04, I2 = 22%; acetate: SMD = 4.5, 95% CI 3.57 to 5.42, P < 0.00001, I2 = 48%; propionate: SMD = 0.76, 95% CI 0.37 to 1.15, P = 0.0002, I2 = 44%; butyrate: SMD = 2.8, 95% CI 2.18 to 3.41, P < 0.00001, I2 = 26%). Additionally, probiotic consumption reduced markers of oxidation and inflammation as well as liver damage enzymes. Conclusion The findings from this meta-analysis suggest that probiotics can enhance SCFA content in the body, decrease lipid levels in animals, improve oxidative stress and inflammation, reduce liver damage, and effectively alleviate hyperlipidemia.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Mi
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yinzhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
11
|
Singh A, Kishore PS, Khan S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024; 16:e70877. [PMID: 39497887 PMCID: PMC11533101 DOI: 10.7759/cureus.70877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.
Collapse
Affiliation(s)
- Akhilesh Singh
- Emergency Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | | | - Sharleen Khan
- Ophthalmology, Heritage Institute of Medical Sciences, Varanasi, IND
| |
Collapse
|
12
|
Zhang SY, Zhang LY, Wen R, Yang N, Zhang TN. Histone deacetylases and their inhibitors in inflammatory diseases. Biomed Pharmacother 2024; 179:117295. [PMID: 39146765 DOI: 10.1016/j.biopha.2024.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Despite considerable research efforts, inflammatory diseases remain a heavy burden on human health, causing significant economic losses annually. Histone deacetylases (HDACs) play a significant role in regulating inflammation (via histone and non-histone protein deacetylation) and chromatin structure and gene expression regulation. Herein, we present a detailed description of the different HDACs and their functions and analyze the role of HDACs in inflammatory diseases, including pro-inflammatory cytokine production reduction, immune cell function modulation, and anti-inflammatory cell activity enhancement. Although HDAC inhibitors have shown broad inflammatory disease treatment potentials, their clinical applicability remains limited because of their non-specific effects, adverse effects, and drug resistance. With further research and insight, these inhibitors are expected to become important tools for the treatment of a wide range of inflammatory diseases. This review aims to explore the mechanisms and application prospects of HDACs and their inhibitors in multiple inflammatory diseases.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Li-Ying Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
13
|
Majumdar A, Siva Venkatesh IP, Swarup V, Basu A. Short-chain fatty acids abrogate Japanese encephalitis virus-induced inflammation in microglial cells via miR-200a-3p/ZBTB20/IKβα axis. mBio 2024; 15:e0132124. [PMID: 38869276 PMCID: PMC11253640 DOI: 10.1128/mbio.01321-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
Japanese encephalitis virus (JEV), a member of the Flaviviridae family, is a leading cause of viral encephalitis in humans. Survivors of this infection often develop lifelong neurological sequelae. Short-chain fatty acids (SCFAs) produced in the gut are vital mediators of the gut-brain axis. We aimed to study microRNA-based mechanisms of SCFAs in an in vitro model of JEV infection. N9 microglial cells were pretreated with SCFA cocktail before JEV infection. Cytokine bead analysis, immunoblotting, and PCR were performed to analyze relevant inflammatory markers. microRNA sequencing was performed using Illumina Hiseq, and bioinformatics tools were used for differentially expressed (DE) miRNAs and weighted gene co-expression network analysis (WGCNA). microRNA mimic/inhibitor experiments and luciferase assay were performed to study miRNA-target interaction. A significant reduction in monocyte chemoattractant protein (MCP1) and tumor necrosis factor alpha (TNFα) along with reduced expression of phospho-nuclear factor kappa B (phospho-NF-κB) was observed in SCFA conditions. Significant attenuation of histone deacetylase activity and protein expression was recorded. miRNA sequencing revealed 160 DE miRNAs in SCFA + JEV-treated cells at 6 h post-infection. WGCNA revealed miR-200a-3p, a hub miRNA significantly upregulated in SCFA conditions. Transcription factor ZBTB20 was bioinformatically predicted and validated as a gene target for miR-200a-3p. Further miRNA mimic/inhibitor assay demonstrated that miR-200-3p regulated ZBTB20 along with Iκβα that possibly dampened NF-κB signal activation downstream. IMPORTANCE The gut-brain axis plays a pivotal role in the physiological state of an organism. Gut microbiota-derived metabolites are known to play a role in brain disorders including neuroviral infections. Short-chain fatty acids (SCFAs) appear to quench inflammatory markers in Japanese encephalitis virus-infected microglial cells in vitro. Mechanistically, we demonstrate the interaction between miR-200a-3p and ZBTB20 in regulating the canonical nuclear factor kappa B (NF-κB) signaling pathway via transcriptional regulation of Iκβα. Findings of this study pave the way to a better understanding of SCFA mechanisms that can be used to develop strategies against viral neuroinflammation.
Collapse
Affiliation(s)
| | | | - Vivek Swarup
- Department of Neurobiology and Behaviour, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, California, USA
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
14
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
15
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Lee DH, Kim MT, Han JH. GPR41 and GPR43: From development to metabolic regulation. Biomed Pharmacother 2024; 175:116735. [PMID: 38744220 DOI: 10.1016/j.biopha.2024.116735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors are a diverse class of cell surface receptors that orchestrate numerous physiological functions. The G-protein-coupled receptors, GPR41 and GPR43, sense short-chain fatty acids (SCFAs), which are metabolites of dietary fermentation by the host's intestinal bacteria. These receptors have gained attention as potential therapeutic targets against various diseases because of their SCFA-mediated beneficial effects on the host's intestinal health. Mounting evidence has associated the activity of these receptors with chronic metabolic diseases, including obesity, diabetes, inflammation, and cardiovascular disease. However, despite intensive research using various strategies, including gene knockout (KO) mouse models, evidence about the precise roles of GPR41 and GPR43 in disease treatment remains inconsistent. Here, we comprehensively review the latest findings from functional studies of the signaling mechanisms that underlie the activities of GPR41 and GPR43, as well as highlight their multifaceted roles in health and disease. We anticipate that this knowledge will guide future research priorities and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Do-Hyung Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, the Republic of Korea
| | - Min-Tae Kim
- Department of Pharmaceutical Research, KyongBo Pharmaceutical Co., Ltd, 174, Sirok-ro, Asan-si, Chungcheongnam-do 31501, the Republic of Korea
| | - Joo-Hui Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, the Republic of Korea.
| |
Collapse
|
17
|
Mousavi Ghahfarrokhi SS, Mohamadzadeh M, Samadi N, Fazeli MR, Khaki S, Khameneh B, Khameneh Bagheri R. Management of Cardiovascular Diseases by Short-Chain Fatty Acid Postbiotics. Curr Nutr Rep 2024; 13:294-313. [PMID: 38656688 DOI: 10.1007/s13668-024-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khaki
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Khameneh Bagheri
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Sá AK, Olímpio F, Vasconcelos J, Rosa P, Faria Neto HC, Rocha C, Camacho MF, Barcick U, Zelanis A, Aimbire F. Involvement of GPR43 Receptor in Effect of Lacticaseibacillus rhamnosus on Murine Steroid Resistant Chronic Obstructive Pulmonary Disease: Relevance to Pro-Inflammatory Mediators and Oxidative Stress in Human Macrophages. Nutrients 2024; 16:1509. [PMID: 38794746 PMCID: PMC11124176 DOI: 10.3390/nu16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.
Collapse
Affiliation(s)
- Ana Karolina Sá
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Jessica Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Paloma Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
| | - Hugo Caire Faria Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Foundation Fundação Oswaldo Cruz, Av. Brazil, Rio de Janeiro 4036, Brazil;
| | - Carlos Rocha
- Medical School, Group of Phytocomplexes and Cell Signaling, Anhembi Morumbi University, São José dos Campos 04039-002, Brazil;
| | - Maurício Frota Camacho
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Uilla Barcick
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Andre Zelanis
- Functional Proteomics Laboratory, Institute of Science and Technology, Federal University of São Paulo, São José dos Campos 12231-280, Brazil; (M.F.C.); (U.B.); (A.Z.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo 720–2 Andar, Vila Clementino, São Paulo 04039-002, Brazil; (A.K.S.); (F.O.); (J.V.); (P.R.)
- Laboratory of Immunopharmacology, Institute of Science and Technology, Federal University of São Paulo, Rua Talim, 330, Vila Nair, São José dos Campos 12231-280, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, Brazil
| |
Collapse
|
19
|
Miao G, Guo J, Zhang W, Lai P, Xu Y, Chen J, Zhang L, Zhou Z, Han Y, Chen G, Chen J, Tao Y, Zheng L, Zhang L, Huang W, Wang Y, Xian X. Remodeling Intestinal Microbiota Alleviates Severe Combined Hyperlipidemia-Induced Nonalcoholic Steatohepatitis and Atherosclerosis in LDLR -/- Hamsters. RESEARCH (WASHINGTON, D.C.) 2024; 7:0363. [PMID: 38694198 PMCID: PMC11062505 DOI: 10.34133/research.0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
Combined hyperlipidemia (CHL) manifests as elevated cholesterol and triglycerides, associated with fatty liver and cardiovascular diseases. Emerging evidence underscores the crucial role of the intestinal microbiota in metabolic disorders. However, the potential therapeutic viability of remodeling the intestinal microbiota in CHL remains uncertain. In this study, CHL was induced in low-density lipoprotein receptor-deficient (LDLR-/-) hamsters through an 8-week high-fat and high-cholesterol (HFHC) diet or a 4-month high-cholesterol (HC) diet. Placebo or antibiotics were administered through separate or cohousing approaches. Analysis through 16S rDNA sequencing revealed that intermittent antibiotic treatment and the cohousing approach effectively modulated the gut microbiota community without impacting its overall abundance in LDLR-/- hamsters exhibiting severe CHL. Antibiotic treatment mitigated HFHC diet-induced obesity, hyperglycemia, and hyperlipidemia, enhancing thermogenesis and alleviating nonalcoholic steatohepatitis (NASH), concurrently reducing atherosclerotic lesions in LDLR-/- hamsters. Metabolomic analysis revealed a favorable liver lipid metabolism profile. Increased levels of microbiota-derived metabolites, notably butyrate and glycylglycine, also ameliorated NASH and atherosclerosis in HFHC diet-fed LDLR-/- hamsters. Notably, antibiotics, butyrate, and glycylglycine treatment exhibited protective effects in LDLR-/- hamsters on an HC diet, aligning with outcomes observed in the HFHC diet scenario. Our findings highlight the efficacy of remodeling gut microbiota through antibiotic treatment and cohousing in improving obesity, NASH, and atherosclerosis associated with refractory CHL. Increased levels of beneficial microbiota-derived metabolites suggest a potential avenue for microbiome-mediated therapies in addressing CHL-associated diseases.
Collapse
Affiliation(s)
- Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Zihao Zhou
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Gonglie Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Jinxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yijun Tao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Nakashima M, Suga N, Yoshikawa S, Ikeda Y, Matsuda S. Potential Molecular Mechanisms of Alcohol Use Disorder with Non-Coding RNAs and Gut Microbiota for the Development of Superior Therapeutic Application. Genes (Basel) 2024; 15:431. [PMID: 38674366 PMCID: PMC11049149 DOI: 10.3390/genes15040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Many investigations have evaluated the expression of noncoding RNAs (ncRNAs) as well as their related molecular functions and biological machineries in individuals with alcohol dependence. Alcohol dependence may be one of the most prevailing psychological disorders globally, and its pathogenesis is intricate and inadequately comprehended. There is substantial evidence indicating significant links between multiple genetic factors and the development of alcohol dependence. In particular, the critical roles of ncRNAs have been emphasized in the pathology of mental illnesses, probably including alcohol dependence. In the comprehension of the action of ncRNAs and their machineries of modification, furthermore, they have emerged as therapeutic targets for a variety of psychiatric illnesses, including alcohol dependence. It is worth mentioning that the dysregulated expression of ncRNAs has been regularly detected in individuals with alcohol dependence. An in-depth knowledge of the roles of ncRNAs and m6A modification may be valuable for the development of a novel treatment against alcohol dependence. In general, a more profound understanding of the practical roles of ncRNAs might make important contributions to the precise diagnosis and/or actual management of alcohol dependence. Here, in this review, we mostly focused on up-to-date knowledge regarding alterations and/or modifications in the expression of ncRNAs in individuals with alcohol dependence. Then, we present prospects for future research and therapeutic applications with a novel concept of the engram system.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
21
|
Li T, Ma X, Wang T, Tian W, Liu J, Shen W, Liu Y, Li Y, Zhang X, Ma J, Zhang X, Ma J, Wang H. Clostridium butyricum inhibits the inflammation in children with primary nephrotic syndrome by regulating Th17/Tregs balance via gut-kidney axis. BMC Microbiol 2024; 24:97. [PMID: 38521894 PMCID: PMC10960420 DOI: 10.1186/s12866-024-03242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Primary nephrotic syndrome (PNS) is a common glomerular disease in children. Clostridium butyricum (C. butyricum), a probiotic producing butyric acid, exerts effective in regulating inflammation. This study was designed to elucidate the effect of C. butyricum on PNS inflammation through the gut-kidney axis. METHOD BALB/c mice were randomly divided into 4 groups: normal control group (CON), C. butyricum control group (CON+C. butyricum), PNS model group (PNS), and PNS with C. butyricum group (PNS+C. butyricum). The PNS model was established by a single injection of doxorubicin hydrochloride (DOX) through the tail vein. After 1 week of modeling, the mice were treated with C. butyricum for 6 weeks. At the end of the experiment, the mice were euthanized and associated indications were investigated. RESULTS Since the successful modeling of the PNS, the 24 h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), urine urea nitrogen (UUN), urine creatinine (UCr), lipopolysaccharides (LPS), pro-inflammatory interleukin (IL)-6, IL-17A were increased, the kidney pathological damage was aggravated, while a reduction of body weights of the mice and the anti-inflammatory IL-10 significantly reduced. However, these abnormalities could be dramatically reversed by C. butyricum treatment. The crucial Th17/Tregs axis in PNS inflammation also was proved to be effectively regulated by C. butyricum treatment. This probiotic intervention notably affected the expression levels of signal transducer and activator of transcription 3 (STAT3), Heme oxygenase-1 (HO-1) protein, and retinoic acid-related orphan receptor gamma t (RORγt). 16S rRNA sequencing showed that C. butyricum could regulate the composition of the intestinal microbial community and found Proteobacteria was more abundant in urine microorganisms in mice with PNS. Short-chain fatty acids (SCFAs) were measured and showed that C. butyricum treatment increased the contents of acetic acid, propionic acid, butyric acid in feces, acetic acid, and valeric acid in urine. Correlation analysis showed that there was a closely complicated correlation among inflammatory indicators, metabolic indicators, microbiota, and associated metabolic SCFAs in the gut-kidney axis. CONCLUSION C. butyricum regulates Th17/Tregs balance via the gut-kidney axis to suppress the immune inflammatory response in mice with PNS, which may potentially contribute to a safe and inexpensive therapeutic agent for PNS.
Collapse
Affiliation(s)
- Ting Li
- Department of Pediatrics, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaolong Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Ting Wang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wenyan Tian
- Department of Gastroenterology, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian Liu
- Department of Hepatobiliary, The First Clinical College of Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenke Shen
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Liu
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxu Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Junbai Ma
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.
| | - Jinhai Ma
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
22
|
Yu Z, Yin J, Tang Z, Hu T, Wang Z, Chen Y, Liu T, Zhang W. Non-coding RNAs are key players and promising therapeutic targets in atherosclerosis. Front Cell Dev Biol 2023; 11:1237941. [PMID: 37719883 PMCID: PMC10502512 DOI: 10.3389/fcell.2023.1237941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Cardiovascular disease (CVD) is the primary cause of death in humans. Atherosclerosis (AS) is the most common CVD and a major cause of many CVD-related fatalities. AS has numerous risk factors and complex pathogenesis, and while it has long been a research focus, most mechanisms underlying its progression remain unknown. Noncoding RNAs (ncRNAs) represent an important focus in epigenetics studies and are critical biological regulators that form a complex network of gene regulation. Abnormal ncRNA expression disrupts the normal function of tissues or cells, leading to disease development. A large body of evidence suggests that ncRNAs are involved in all stages of atherosclerosis, from initiation to progression, and that some are significantly differentially expressed during AS development, suggesting that they may be powerful markers for screening AS or potential treatment targets. Here, we review the role of ncRNAs in AS development and recent developments in the use of ncRNAs for AS-targeted therapy, providing evidence for ncRNAs as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zhun Yu
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - JinZhu Yin
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhiTong Tang
- Department of Massage, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Ting Hu
- Internal Medicine of Chinese Medicine, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - ZhuoEr Wang
- School of Clinical Medical, Changchun University of Chinese Medicine, Jilin, China
| | - Ying Chen
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| | - Tianjia Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Jilin, China
| | - Wei Zhang
- Orthopedics Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
23
|
Yang Y, Karampoor S, Mirzaei R, Borozdkin L, Zhu P. The interplay between microbial metabolites and macrophages in cardiovascular diseases: A comprehensive review. Int Immunopharmacol 2023; 121:110546. [PMID: 37364331 DOI: 10.1016/j.intimp.2023.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome has emerged as a crucial player in developing and progressing cardiovascular diseases (CVDs). Recent studies have highlighted the role of microbial metabolites in modulating immune cell function and their impact on CVD. Macrophages, which have a significant function in the pathogenesis of CVD, are very vulnerable to the effects of microbial metabolites. Microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), have been linked to atherosclerosis and the regulation of immune functions. Butyrate has been demonstrated to reduce monocyte migration and inhibit monocyte attachment to injured endothelial cells, potentially contributing to the attenuation of the inflammatory response and the progression of atherosclerosis. On the other hand, TMAO, another compound generated by gut bacteria, has been linked to atherosclerosis due to its impact on lipid metabolism and the accumulation of cholesterol in macrophages. Indole-3-propionic acid, a tryptophan metabolite produced solely by microbes, has been found to promote the development of atherosclerosis by stimulating macrophage reverse cholesterol transport (RCT) and raising the expression of ABCA1. This review comprehensively discusses how various microbiota-produced metabolites affect macrophage polarization, inflammation, and foam cell formation in CVD. We also highlight the mechanisms underlying these effects and the potential therapeutic applications of targeting microbial metabolites in treating CVD.
Collapse
Affiliation(s)
- Yongzheng Yang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leonid Borozdkin
- Department of Maxillofacial Surgery, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510100, China.
| |
Collapse
|