1
|
Bai T, Li J, Chi X, Li H, Tang Y, Liu Z, Ma X. Cooperative and Independent Functionality of tmRNA and SmpB in Aeromonas veronii: A Multifunctional Exploration Beyond Ribosome Rescue. Int J Mol Sci 2025; 26:409. [PMID: 39796263 PMCID: PMC11722516 DOI: 10.3390/ijms26010409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the ssrA gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the ssrA and smpB genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in Aeromonas veronii, a pathogen that poses threats in aquaculture and human health. We characterized the expression dynamics of the ssrA and smpB genes at different growth stages of the pathogen, assessed the responses of deletion strains ΔssrA and ΔsmpB to various environmental stressors and carbon source supplementations, and identified the gene-regulatory networks involving both genes by integrating transcriptomic and phenotypic analyses. Our results showed that the gene ssrA maintained stable expression throughout the bacterial growth period, while smpB exhibited upregulated expression in response to nutrient deficiencies. Compared to the wild type, both the ΔssrA and ΔsmpB strains exhibited attenuated resistance to most stress conditions. However, ΔssrA independently responded to starvation, while ΔsmpB specifically showed reduced resistance to lower concentrations of Fe3+ and higher concentrations of Na+ ions, as well as increased utilization of the carbon source β-Methyl-D-glucoside. The transcriptomic analysis supported these phenotypic results, demonstrating that tmRNA and SmpB cooperate under nutrient-deficient conditions but operate independently in nutrient-rich environments. Phenotypic experiments confirmed that SsrA and SmpB collaboratively regulate genes involved in siderophore synthesis and iron uptake systems in response to extracellular iron deficiency. The findings of the present study provide crucial insights into the functions of the trans-translation system and highlight new roles for tmRNA and SmpB beyond trans-translation.
Collapse
Affiliation(s)
- Taipeng Bai
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Juanjuan Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Xue Chi
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Hong Li
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Yanqiong Tang
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| | - Zhu Liu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China;
| | - Xiang Ma
- Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (T.B.); (J.L.); (X.C.); (H.L.); (Y.T.)
| |
Collapse
|
2
|
T N, Govindarajan S, Munavar MH. trans-translation system is important for maintaining genome integrity during DNA damage in bacteria. Res Microbiol 2023; 174:104136. [PMID: 37690591 DOI: 10.1016/j.resmic.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
DNA integrity in bacteria is regulated by various factors that act on the DNA. trans-translation has previously been shown to be important for the survival of Escherichia coli cells exposed to certain DNA-damaging agents. However, the mechanisms underlying this sensitivity are poorly understood. In this study, we explored the involvement of the trans-translation system in the maintenance of genome integrity using various DNA-damaging agents and mutant backgrounds. Relative viability assays showed that SsrA-defective cells were sensitive to DNA-damaging agents, such as nalidixic acid (NA), ultraviolet radiation (UV), and methyl methanesulfonate (MMS). The viability of SsrA-defective cells was rescued by deleting sulA, although the expression of SulA was not more pronounced in SsrA-defective cells than in wild-type cells. Live cell imaging using a Gam-GFP fluorescent reporter showed increased double-strand breaks (DSBs) in SsrA-defective cells during DNA damage. We also showed that the ribosome rescue function of SsrA was sufficient for DNA damage tolerance. DNA damage sensitivity can be alleviated by partial uncoupling of transcription and translation by using sub-lethal concentrations of ribosome inhibiting antibiotic (tetracycline) or by mutating the gene coding for RNase H (rnhA). Taken together, our results highlight the importance of trans-translation system in maintaining genome integrity and bacterial survival during DNA damage.
Collapse
Affiliation(s)
- Nagarajan T
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India; Department of Biological Sciences, SRM University-AP, Amaravati, India
| | | | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India.
| |
Collapse
|
3
|
Vázquez-Hernández M, Leedom SL, Keiler KC, Bandow JE. Physiology of trans-translation deficiency in Bacillus subtilis - a comparative proteomics study. Proteomics 2023; 23:e2200474. [PMID: 37496314 PMCID: PMC11426337 DOI: 10.1002/pmic.202200474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
trans-Translation is the most effective ribosome rescue system known in bacteria. While it is essential in some bacteria, Bacillus subtilis possesses two additional alternative ribosome rescue mechanisms that require the proteins BrfA or RqcH. To investigate the physiology of trans-translation deficiency in the model organism B. subtilis, we compared the proteomes of B. subtilis 168 and a ΔssrA mutant in the mid-log phase using gel-free label-free quantitative proteomics. In chemically defined medium, the growth rate of the ssrA deletion mutant was 20% lower than that of B. subtilis 168. An 35 S-methionine incorporation assay demonstrated that protein synthesis rates were also lower in the ΔssrA strain. Alternative rescue factors were not detected. Among the 34 proteins overrepresented in the mutant strain were eight chemotaxis proteins. Indeed, both on LB agar and minimal medium the ΔssrA strain showed an altered motility and chemotaxis phenotype. Despite the lower growth rate, in the mutant proteome ribosomal proteins were more abundant while proteins related to amino acid biosynthesis were less abundant than in the parental strain. This overrepresentation of ribosomal proteins coupled with a lower protein synthesis rate and down-regulation of precursor supply reflects the slow ribosome recycling in the trans-translation-deficient mutant.
Collapse
Affiliation(s)
| | - Stephanie L Leedom
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kenneth C Keiler
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Miranda RP, Turrini PCG, Bonadio DT, Zerillo MM, Berselli AP, Creste S, Van Sluys MA. Genome Organization of Four Brazilian Xanthomonas albilineans Strains Does Not Correlate with Aggressiveness. Microbiol Spectr 2023; 11:e0280222. [PMID: 37052486 PMCID: PMC10269729 DOI: 10.1128/spectrum.02802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
An integrative approach combining genomics, transcriptomics, and cell biology is presented to address leaf scald disease, a major problem for the sugarcane industry. To gain insight into the biology of the causal agent, the complete genome sequences of four Brazilian Xanthomonas albilineans strains with differing virulence capabilities are presented and compared to the GPEPC73 reference strain and FJ1. Based on the aggressiveness index, different strains were compared: Xa04 and Xa11 are highly aggressive, Xa26 is intermediate, and Xa21 is the least, while, based on genome structure, Xa04 shares most of its genomic features with Xa26, and Xa11 share most of its genomic features with Xa21. In addition to presenting more clustered regularly interspaced short palindromic repeats (CRISPR) clusters, four more novel prophage insertions are present than the previously sequenced GPEPC73 and FJ1 strains. Incorporating the aggressiveness index and in vitro cell biology into these genome features indicates that disease establishment is not a result of a single determinant factor, as in most other Xanthomonas species. The Brazilian strains lack the previously described plasmids but present more prophage regions. In pairs, the most virulent and the least virulent share unique prophages. In vitro transcriptomics shed light on the 54 most highly expressed genes among the 4 strains compared to ribosomal proteins (RPs), of these, 3 outer membrane proteins. Finally, comparative albicidin inhibition rings and in vitro growth curves of the four strains also do not correlate with pathogenicity. In conclusion, the results disclose that leaf scald disease is not associated with a single shared characteristic between the most or the least pathogenic strains. IMPORTANCE An integrative approach is presented which combines genomics, transcriptomics, and cell biology to address leaf scald disease. The results presented here disclose that the disease is not associated with a single shared characteristic between the most pathogenic strains or a unique genomic pattern. Sequence data from four Brazilian strains are presented that differ in pathogenicity index: Xa04 and Xa11 are highly virulent, Xa26 is intermediate, and Xa21 is the least pathogenic strain, while, based on genome structure, Xa04 shares with Xa26, and Xa11 shares with X21 most of the genome features. Other than presenting more CRISPR clusters and prophages than the previously sequenced strains, the integration of aggressiveness and cell biology points out that disease establishment is not a result of a single determinant factor as in other xanthomonads.
Collapse
Affiliation(s)
- Raquel P. Miranda
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Paula C. G. Turrini
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Dora T. Bonadio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Marcelo M. Zerillo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Arthur P. Berselli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico de Campinas (IAC), Campinas, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| |
Collapse
|
5
|
Onodera H, Niwa T, Taguchi H, Chadani Y. Prophage excision switches the primary ribosome rescue pathway and rescue-associated gene regulations in Escherichia coli. Mol Microbiol 2023; 119:44-58. [PMID: 36471624 PMCID: PMC10107115 DOI: 10.1111/mmi.15003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Escherichia coli has multiple pathways to release nonproductive ribosome complexes stalled at the 3' end of nonstop mRNA: tmRNA (SsrA RNA)-mediated trans-translation and stop codon-independent termination by ArfA/RF2 or ArfB (YaeJ). The arfA mRNA lacks a stop codon and its expression is repressed by trans-translation. Therefore, ArfA is considered to complement the ribosome rescue activity of trans-translation, but the physiological situations in which ArfA is expressed have not been elucidated. Here, we found that the excision of CP4-57 prophage adjacent to E. coli ssrA leads to the inactivation of tmRNA and switches the primary rescue pathway from trans-translation to ArfA/RF2. This "rescue-switching" rearranges not only the proteome landscape in E. coli but also the phenotype such as motility. Furthermore, among the proteins with significantly increased abundance in the ArfA+ cells, we found ZntR, whose mRNA is transcribed together as the upstream part of nonstop arfA mRNA. Repression of ZntR and reconstituted model genes depends on the translation of the downstream nonstop ORFs that trigger the trans-translation-coupled exonucleolytic degradation by polynucleotide phosphorylase (PNPase). Namely, our studies provide a novel example of trans-translation-dependent regulation and re-define the physiological roles of prophage excision.
Collapse
Affiliation(s)
- Haruka Onodera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
6
|
Xu S, Cao Q, Liu Z, Chen J, Yan P, Li B, Xu Y. Transcriptomic Analysis Reveals the Role of tmRNA on Biofilm Formation in Bacillus subtilis. Microorganisms 2022; 10:microorganisms10071338. [PMID: 35889057 PMCID: PMC9319509 DOI: 10.3390/microorganisms10071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus strains are widely distributed in terrestrial and marine environments, and some of them are used as biocontrol organisms for their biofilm-formation ability. In Bacillus subtilis, biofilm formation is fine-tuned by a complex network, a clear understanding of which still requires study. In bacteria, tmRNA, encoded by the ssrA gene, catalyzes trans-translation that can rescue ribosomes stalled on mRNA transcripts lacking a functional stop codon. tmRNA also affects physiological bioprocesses in some bacteria. In this study, we constructed a ssrA mutant in B. subtilis and found that the biofilm formation in the ssrA mutant was largely impaired. Moreover, we isolated a biofilm-formation suppressor of ssrA, in which the biofilm formation was restored to a level even stronger than that in the wild type. We further performed RNAseq assays with the wild type, ssrA mutant, and suppressor of ssrA for comparisons of their transcriptomes. By analyzing the transcriptomic data, we predicted the possible functions of some differentially expressed genes (DEGs) in the tmRNA regulation of biofilm formation in B. subtilis. Finally, we found that the overexpression of two DEGs, acoA and yhjR, could restore the biofilm formation in the ssrA mutant, indicating that AcoA and YhjR were immediate regulators involved in the tmRNA regulatory web controlling biofilm formation in B. subtilis. Our data can improve the knowledge about the molecular network involved in Bacillus biofilm formation and provide new targets for manipulation of Bacillus biofilms for future investigation.
Collapse
Affiliation(s)
- Shanshan Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Qianqian Cao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Zengzhi Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Junpeng Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
| | - Peiguang Yan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Bingyu Li
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Health Science Center, Shenzhen University, Shenzhen 518055, China
- Correspondence: (B.L.); (Y.X.)
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (S.X.); (Q.C.); (Z.L.); (J.C.)
- Correspondence: (B.L.); (Y.X.)
| |
Collapse
|
7
|
Baseggio L, Silayeva O, Buller N, Landos M, Englestädter J, Barnes AC. Complete, closed and curated genome sequences of Photobacterium damselae subsp. piscicida isolates from Australia indicate mobilome-driven localized evolution and novel pathogenicity determinants. Microb Genom 2021; 7:000562. [PMID: 33885359 PMCID: PMC8208687 DOI: 10.1099/mgen.0.000562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the recent advances in sequencing technologies, the complete assembly of multi-chromosome genomes of the Vibrionaceae, often containing several plasmids, remains challenging. Using a combination of Oxford Nanopore MinION long reads and short Illumina reads, we fully sequenced, closed and curated the genomes of two strains of a primary aquatic pathogen Photobacterium damselae subsp. piscicida isolated in Australia. These are also the first genome sequences of P. damselae subsp. piscicida isolated in Oceania and, to our knowledge, in the Southern hemisphere. We also investigated the phylogenetic relationships between Australian and overseas isolates, revealing that Australian P. damselae subsp. piscicida are more closely related to the Asian and American strains rather than to the European ones. We investigated the mobilome and present new evidence showing that a host specialization process and progressive adaptive evolution to fish are ongoing in P. damselae subsp. piscicida, and are largely mediated by transposable elements, predominantly in chromosome 2, and by plasmids. Finally, we identified two novel potential virulence determinants in P. damselae subsp. piscicida - a chorismate mutase gene, which is ubiquitously retained and co-localized with the AIP56 apoptogenic toxin-encoding gene on the pPHDP10 plasmid, and transfer-messenger RNA gene ssrA located on the main chromosome, homologous to a critical-to-virulence determinant in Yersinia pseudotuberculosis. Our study describes, to our knowledge, the only fully closed and manually curated genomes of P. damselae subsp. piscicida available to date, offering new insights into this important fish pathogen and its evolution.
Collapse
Affiliation(s)
- Laura Baseggio
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Oleksandra Silayeva
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicky Buller
- Diagnostic and Laboratory Services (DDLS), Department of Primary Industries and Regional Development (DPIRD), 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Matt Landos
- Future Fisheries Veterinary Services, East Ballina, New South Wales 2478, Australia
| | - Jan Englestädter
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew C. Barnes
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
- *Correspondence: Andrew C. Barnes,
| |
Collapse
|
8
|
Susat J, Bonczarowska JH, Pētersone-Gordina E, Immel A, Nebel A, Gerhards G, Krause-Kyora B. Yersinia pestis strains from Latvia show depletion of the pla virulence gene at the end of the second plague pandemic. Sci Rep 2020; 10:14628. [PMID: 32884081 PMCID: PMC7471286 DOI: 10.1038/s41598-020-71530-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022] Open
Abstract
Ancient genomic studies have identified Yersinia pestis (Y. pestis) as the causative agent of the second plague pandemic (fourteenth–eighteenth century) that started with the Black Death (1,347–1,353). Most of the Y. pestis strains investigated from this pandemic have been isolated from western Europe, and not much is known about the diversity and microevolution of this bacterium in eastern European countries. In this study, we investigated human remains excavated from two cemeteries in Riga (Latvia). Historical evidence suggests that the burials were a consequence of plague outbreaks during the seventeenth century. DNA was extracted from teeth of 16 individuals and subjected to shotgun sequencing. Analysis of the metagenomic data revealed the presence of Y. pestis sequences in four remains, confirming that the buried individuals were victims of plague. In two samples, Y. pestis DNA coverage was sufficient for genome reconstruction. Subsequent phylogenetic analysis showed that the Riga strains fell within the diversity of the already known post-Black Death genomes. Interestingly, the two Latvian isolates did not cluster together. Moreover, we detected a drop in coverage of the pPCP1 plasmid region containing the pla gene. Further analysis indicated the presence of two pPCP1 plasmids, one with and one without the pla gene region, and only one bacterial chromosome, indicating that the same bacterium carried two distinct pPCP1 plasmids. In addition, we found the same pattern in the majority of previously published post-Black Death strains, but not in the Black Death strains. The pla gene is an important virulence factor for the infection of and transmission in humans. Thus, the spread of pla-depleted strains may, among other causes, have contributed to the disappearance of the second plague pandemic in eighteenth century Europe.
Collapse
Affiliation(s)
- Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Joanna H Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | | | - Alexander Immel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Guntis Gerhards
- Institute of Latvian History, University of Latvia, Kalpaka bulvāris 4, Riga, 1050, Latvia
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Volk M, Vollmer I, Heroven AK, Dersch P. Transcriptional and Post-transcriptional Regulatory Mechanisms Controlling Type III Secretion. Curr Top Microbiol Immunol 2019; 427:11-33. [PMID: 31218505 DOI: 10.1007/82_2019_168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Type III secretion systems (T3SSs) are utilized by numerous Gram-negative bacteria to efficiently interact with host cells and manipulate their function. Appropriate expression of type III secretion genes is achieved through the integration of multiple control elements and regulatory pathways that ultimately coordinate the activity of a central transcriptional activator usually belonging to the AraC/XylS family. Although several regulatory elements are conserved between different species and families, each pathogen uses a unique set of control factors and mechanisms to adjust and optimize T3SS gene expression to the need and lifestyle of the pathogen. This is reflected by the complex set of sensory systems and diverse transcriptional, post-transcriptional and post-translational control strategies modulating T3SS expression in response to environmental and intrinsic cues. Whereas some pathways regulate solely the T3SS, others coordinately control expression of one or multiple T3SSs together with other virulence factors and fitness traits on a global scale. Over the past years, several common regulatory themes emerged, e.g., environmental control by two-component systems and carbon metabolism regulators or coupling of T3SS induction with host cell contact/translocon-effector secretion. One of the remaining challenges is to resolve the understudied post-transcriptional regulation of T3SS and the dynamics of the control process.
Collapse
Affiliation(s)
- Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Brunswick, Germany.
- Institute for Infectiology, University Münster, Münster, Germany.
| |
Collapse
|
10
|
Chatterjee R, Shreenivas MM, Sunil R, Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front Microbiol 2019; 9:3303. [PMID: 30687282 PMCID: PMC6338047 DOI: 10.3389/fmicb.2018.03303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Enteropathogenic bacteria have been the cause of the majority of foodborne illnesses. Much of the research has been focused on elucidating the mechanisms by which these pathogens evade the host immune system. One of the ways in which they achieve the successful establishment of a niche in the gut microenvironment and survive is by a chain of elegantly regulated gene expression patterns. Studies have shown that this process is very elaborate and is also regulated by several factors. Pathogens like, enteropathogenic Escherichia coli (EPEC), Salmonella Typhimurium, Shigella flexneri, Yersinia sp. have been seen to employ various regulated gene expression strategies. These include toxin-antitoxin systems, quorum sensing systems, expression controlled by nucleoid-associated proteins (NAPs), several regulons and operons specific to these pathogens. In the following review, we have tried to discuss the common gene regulatory systems of enteropathogenic bacteria as well as pathogen-specific regulatory mechanisms.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Meghanashree M. Shreenivas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Rohith Sunil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Undergraduate Studies, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
11
|
Liao L, Liu C, Zeng Y, Zhao B, Zhang J, Chen B. Multipartite genomes and the sRNome in response to temperature stress of an Arctic Pseudoalteromonas fuliginea BSW20308. Environ Microbiol 2018; 21:272-285. [PMID: 30362272 DOI: 10.1111/1462-2920.14455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Little is known about the survival and effect of rapid climate warming on Pseudoalteromonas in the Arctic, although it is abundant and important in this ecosystem. Here, we investigated a cold-adapted Pseudoalteromonas fuliginea BSW20308 from the Arctic Ocean, from the genome to its transcriptomic responses towards temperature changes. It contained two circular chromosomes, with the second chromosome probably evolved from an ancestral plasmid. The evolution of multipartite genomes may be advantageous for its survival under changing environments. RNA-seq analysis revealed the extensive involvement of sRNome in response to temperature stress for the first time, especially tmRNA and a novel Pf1 sRNA strongly induced under heat stress. The present study makes significant contributions towards the understanding of Pseudoalteromonas in two aspects: the genome structure and evolution of its two chromosomes, and the important discovery of the sRNome in response to temperature stress.
Collapse
Affiliation(s)
- Li Liao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yinxin Zeng
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bin Zhao
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China.,School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Zhang
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Division of Polar Biological Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai, 200136, China
| |
Collapse
|
12
|
Knittel V, Vollmer I, Volk M, Dersch P. Discovering RNA-Based Regulatory Systems for Yersinia Virulence. Front Cell Infect Microbiol 2018; 8:378. [PMID: 30460205 PMCID: PMC6232918 DOI: 10.3389/fcimb.2018.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
13
|
Hu Y, Zhang L, Wang X, Sun F, Kong X, Dong H, Xu H. Two virulent sRNAs identified by genomic sequencing target the type III secretion system in rice bacterial blight pathogen. BMC PLANT BIOLOGY 2018; 18:237. [PMID: 30326834 PMCID: PMC6192180 DOI: 10.1186/s12870-018-1470-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/05/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Small non-coding RNA (sRNA) short sequences regulate various biological processes in all organisms, including bacteria that are animal or plant pathogens. Virulent or pathogenicity-associated sRNAs have been increasingly elucidated in animal pathogens but little is known about similar category of sRNAs in plant-pathogenic bacteria. This is particularly true regarding rice bacterial blight pathogen Xanthomonas oryzae pathovar oryzae (Xoo) as studies on the virulent role of Xoo sRNAs is very limited at present. RESULTS The number and genomic distribution of sRNAs in Xoo were determined by bioinformatics analysis based on high throughput sequencing (sRNA-Seq) of the bacterial cultures from virulence-inducing and standard growth media, respectively. A total of 601 sRNAs were identified in the Xoo genome and ten virulent sRNA candidates were screened out based on significant differences of their expression levels between the culture conditions. In addition, trans3287 and trans3288 were also selected as candidates due to high expression levels in both media. The differential expression of 12 sRNAs evidenced by the sRNA-Seq data was confirmed by a convincing quantitative method. Based on genetic analysis of Xoo ΔsRNA mutants generated by deletion of the 12 single sRNAs, trans217 and trans3287 were characterized as virulent sRNAs. They are essential not only for the formation of bacterial blight in a susceptible rice variety Nipponbare but also for the induction of hypersensitive response (HR) in nonhost plant tobacco. Xoo Δtrans217 and Δtrans3287 mutants fail to induce bacterial blight in Nipponbare and also fail to induce the HR in tobacco, whereas, genetic complementation restores both mutants to the wild type in the virulent performance and HR induction. Similar effects of gene knockout and complementation were found in the expression of hrpG and hrpX genes, which encode regulatory proteins of the type III secretion system. Consistently, secretion of a type III effector, PthXo1, is blocked in Δtrans217 or Δtrans3287 bacterial cultures but retrieved by genetic complementation to both mutants. CONCLUSIONS The genetic analysis characterizes trans217 and trans3287 as pathogenicity-associated sRNAs essential for the bacterial virulence on the susceptible rice variety and for the HR elicitation in the nonhost plant. The molecular evidence suggests that both virulent sRNAs regulate the bacterial virulence by targeting the type III secretion system.
Collapse
Affiliation(s)
- Yiqun Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Liyuan Zhang
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| | - Xuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Fengli Sun
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
- Current Address: Rural Work Bureau of Zhangpu Town, Suzhou, 215300 Jiangsu Province China
| | - Xiangxin Kong
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| | - Hansong Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province China
| | - Heng Xu
- State Ministry of Education Key Laboratory of Integrated Management of Crop Pathogens and Insect Pests, Nanjing, 210095 Jiangsu Province China
| |
Collapse
|
14
|
Gurung JM, Amer AAA, Francis MK, Costa TRD, Chen S, Zavialov AV, Francis MS. Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Front Cell Infect Microbiol 2018; 8:80. [PMID: 29616194 PMCID: PMC5864894 DOI: 10.3389/fcimb.2018.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Type III secretion systems harbored by several Gram-negative bacteria are often used to deliver host-modulating effectors into infected eukaryotic cells. About 20 core proteins are needed for assembly of a secretion apparatus. Several of these proteins are genetically and functionally conserved in type III secretion systems of bacteria associated with invertebrate or vertebrate hosts. In the Ysc family of type III secretion systems are two poorly characterized protein families, the YscX family and the YscY family. In the plasmid-encoded Ysc-Yop type III secretion system of human pathogenic Yersinia species, YscX is a secreted substrate while YscY is its non-secreted cognate chaperone. Critically, neither an yscX nor yscY null mutant of Yersinia is capable of type III secretion. In this study, we show that the genetic equivalents of these proteins produced as components of other type III secretion systems of Pseudomonas aeruginosa (PscX and PscY), Aeromonas species (AscX and AscY), Vibrio species (VscX and VscY), and Photorhabdus luminescens (SctX and SctY) all possess an ability to interact with its native cognate partner and also establish cross-reciprocal binding to non-cognate partners as judged by a yeast two-hybrid assay. Moreover, a yeast three-hybrid assay also revealed that these heterodimeric complexes could maintain an interaction with YscV family members, a core membrane component of all type III secretion systems. Despite maintaining these molecular interactions, only expression of the native yscX in the near full-length yscX deletion and native yscY in the near full-length yscY deletion were able to complement for their general substrate secretion defects. Hence, YscX and YscY must have co-evolved to confer an important function specifically critical for Yersinia type III secretion.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, Wuhan, China
| | | | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Mraheil MA, Frantz R, Teubner L, Wendt H, Linne U, Wingerath J, Wirth T, Chakraborty T. Requirement of the RNA-binding protein SmpB during intracellular growth of Listeria monocytogenes. Int J Med Microbiol 2017; 307:166-173. [PMID: 28202229 DOI: 10.1016/j.ijmm.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
Abstract
Bacterial trans-translation is the main quality control mechanism employed to relieve stalled ribosomes. Trans-translation is mediated by the small protein B (SmpB) and transfer-mRNA (tmRNA) ribonucleoprotein complex, which interacts with translational complexes stalled at the 3' end of non-stop mRNAs to release the stalled ribosomes thereby targeting the nascent polypeptides and truncated mRNAs for degradation. The trans-translation system exists with a few exceptions in all bacteria. In the present study, we assessed the contribution of SmpB to the growth and virulence of Listeria monocytogenes, a human intracellular food-borne pathogen that colonizes host tissues to cause severe invasive infections. A smpB knockout significantly decreased the intracellular growth rate of L. monocytogenes during infection of murine macrophages. In addition, the mutant strain was attenuated for virulence when examined with the Galleria mellonella larvae killing assay and the organ colonisation model of mice following infection. Proteomic analysis of whole cell extracts of ΔsmpB deletion mutant revealed elevated protein levels of several proteins involved in ribosome assembly and interaction with tRNA substrates. These included the elongation factor Tu [EF-Tu] which promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis as well as the CysK which is known to interact with bacterial toxins that cleave tRNA substrates. The data presented here shed light on the role of SmpB and trans-translation during intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| | - Renate Frantz
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Teubner
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Heiko Wendt
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Uwe Linne
- Department of Chemistry, and LOEWE-Center for Synthetic Microbiology Core Facility for Mass Spectrometry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Jessica Wingerath
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
16
|
Brito L, Wilton J, Ferrándiz MJ, Gómez-Sanz A, de la Campa AG, Amblar M. Absence of tmRNA Has a Protective Effect against Fluoroquinolones in Streptococcus pneumoniae. Front Microbiol 2017; 7:2164. [PMID: 28119681 PMCID: PMC5222879 DOI: 10.3389/fmicb.2016.02164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
The transfer messenger RNA (tmRNA), encoded by the ssrA gene, is a small non-coding RNA involved in trans-translation that contributes to the recycling of ribosomes stalled on aberrant mRNAs. In most bacteria, its inactivation has been related to a decreased ability to respond to and recover from a variety of stress conditions. In this report, we investigated the role of tmRNA in stress adaptation in the human pathogen Streptococcus pneumoniae. We constructed a tmRNA deletion mutant and analyzed its response to several lethal stresses. The ΔssrA strain grew slower than the wild type, indicating that, although not essential, tmRNA is important for normal pneumococcal growth. Moreover, deletion of tmRNA increased susceptibility to UV irradiation, to exogenous hydrogen peroxide and to antibiotics that inhibit protein synthesis and transcription. However, the ΔssrA strain was more resistant to fluoroquinolones, showing twofold higher MIC values and up to 1000-fold higher survival rates than the wild type. Deletion of SmpB, the other partner in trans-translation, also reduced survival to levofloxacin in a similar extent. Accumulation of intracellular reactive oxygen species associated to moxifloxacin and levofloxacin treatment was also highly reduced (∼100-fold). Nevertheless, the ΔssrA strain showed higher intracellular accumulation of ethidium bromide and levofloxacin than the wild type, suggesting that tmRNA deficiency protects pneumococcal cells from fluoroquinolone-mediated killing. In fact, analysis of chromosome integrity revealed that deletion of tmRNA prevented the fragmentation of the chromosome associated to levofloxacin treatment. Moreover, such protective effect appears to relay mainly on inhibition of protein synthesis, since a similar effect was observed with antibiotics that inhibit that process. The emergence and spread of drug-resistant pneumococci is a matter of concern and these results contribute to a better comprehension of the mechanisms underlying fluoroquinolones action.
Collapse
Affiliation(s)
- Liliana Brito
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Joana Wilton
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - María J Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Alicia Gómez-Sanz
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain; Presidencia, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
17
|
Colameco S, Elliot MA. Non-coding RNAs as antibiotic targets. Biochem Pharmacol 2016; 133:29-42. [PMID: 28012959 DOI: 10.1016/j.bcp.2016.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.
Collapse
Affiliation(s)
- Savannah Colameco
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Marie A Elliot
- Department of Biology and Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
18
|
Nuss AM, Heroven AK, Dersch P. RNA Regulators: Formidable Modulators of Yersinia Virulence. Trends Microbiol 2016; 25:19-34. [PMID: 27651123 DOI: 10.1016/j.tim.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/08/2016] [Accepted: 08/24/2016] [Indexed: 10/21/2022]
Abstract
A large repertoire of RNA-based regulatory mechanisms, including a plethora of cis- and trans-acting noncoding RNAs (ncRNAs), sensory RNA elements, regulatory RNA-binding proteins, and RNA-degrading enzymes have been uncovered lately as key players in the regulation of metabolism, stress responses, and virulence of the genus Yersinia. Many of them are strictly controlled in response to fluctuating environmental conditions sensed during the course of the infection, and certain riboregulators have already been shown to be crucial for virulence. Some of them are highly conserved among the family Enterobacteriaceae, while others are genus-, species-, or strain-specific and could contribute to the difference in Yersinia pathogenicity. Importantly, the analysis of Yersinia riboregulators has not only uncovered crucial elements and regulatory mechanisms governing host-pathogen interactions, it also revealed exciting new venues for the design of novel anti-infectives.
Collapse
Affiliation(s)
- Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
19
|
Liu P, Chen Y, Wang D, Tang Y, Tang H, Song H, Sun Q, Zhang Y, Liu Z. Genetic Selection of Peptide Aptamers That Interact and Inhibit Both Small Protein B and Alternative Ribosome-Rescue Factor A of Aeromonas veronii C4. Front Microbiol 2016; 7:1228. [PMID: 27588015 PMCID: PMC4988972 DOI: 10.3389/fmicb.2016.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 12/29/2022] Open
Abstract
Aeromonas veronii is a pathogenic gram-negative bacterium, which infects a variety of animals and results in mass mortality. The stalled-ribosome rescues are reported to ensure viability and virulence under stress conditions, of which primarily include trans-translation and alternative ribosome-rescue factor A (ArfA) in A. veronii. For identification of specific peptides that interact and inhibit the stalled-ribosome rescues, peptide aptamer library (pTRG-SN-peptides) was constructed using pTRG as vector and Staphylococcus aureus nuclease (SN) as scaffold protein, in which 16 random amino acids were introduced to form an exposed surface loop. In the meantime both Small Protein B (SmpB) which acts as one of the key components in trans-translation, and ArfA were inserted to pBT to constitute pBT-SmpB and pBT-ArfA, respectively. The peptide aptamer PA-2 was selected from pTRG-SN-peptides by bacterial two-hybrid system (B2H) employing pBT-SmpB or pBT-ArfA as baits. The conserved sites G133K134 and D138K139R140 of C-terminal SmpB were identified by interacting with N-terminal SN, and concurrently the residue K62 of ArfA was recognized by interacting with the surface loop of the specific peptide aptamer PA-2. The expression plasmids pN-SN or pN-PA-2, which combined the duplication origin of pRE112 with the neokanamycin promoter expressing SN or PA-2, were created and transformed into A. veronii C4, separately. The engineered A. veronii C4 which endowing SN or PA-2 expression impaired growth capabilities under stress conditions including temperatures, sucrose, glucose, potassium chloride (KCl) and antibiotics, and the stress-related genes rpoS and nhaP were down-regulated significantly by Quantitative Real-time PCR (qRT-PCR) when treating in 2.0% KCl. Thus, the engineered A. veronii C4 conferring PA-2 expression might be potentially attenuated vaccine, and also the peptide aptamer PA-2 could develop as anti-microbial drugs targeted to the ribosome rescued factors in A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Yong Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Dan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan University Chengdu, China
| | - Yueling Zhang
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
20
|
Abstract
Enteric pathogens of the family Enterobacteriaceae colonize various niches within animals and humans in which they compete with intestinal commensals and are attacked by the host immune system. To survive these hostile environments they possess complex, multilayer regulatory networks that coordinate the control of virulence factors, host-adapted metabolic functions and stress resistance. An important part of these intricate control networks are RNA-based control systems that enable the pathogen to fine-tune its responses. Recent next-generation sequencing approaches revealed a large repertoire of conserved and species-specific riboregulators, including numerous cis- and trans-acting non-coding RNAs, sensory RNA elements (RNA thermometers, riboswitches), regulatory RNA-binding proteins and RNA degrading enzymes which regulate colonization factors, toxins, host defense processes and virulence-relevant physiological and metabolic processes. All of which are important cues for pathogens to sense and respond to fluctuating conditions during the infection. This review covers infection-relevant riboregulators of E. coli, Salmonella, Shigella and Yersinia, highlights their versatile regulatory mechanisms, complex target regulons and functions, and discusses emerging topics and future challenges to fully understand and exploit RNA-based control to combat bacterial infections.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Aaron M Nuss
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Petra Dersch
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| |
Collapse
|
21
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
22
|
Martínez-Chavarría LC, Vadyvaloo V. Yersinia pestis and Yersinia pseudotuberculosis infection: a regulatory RNA perspective. Front Microbiol 2015; 6:956. [PMID: 26441890 PMCID: PMC4585118 DOI: 10.3389/fmicb.2015.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Yersinia pestis, responsible for causing fulminant plague, has evolved clonally from the enteric pathogen, Y. pseudotuberculosis, which in contrast, causes a relatively benign enteric illness. An ~97% nucleotide identity over 75% of their shared protein coding genes is maintained between these two pathogens, leaving much conjecture regarding the molecular determinants responsible for producing these vastly different disease etiologies, host preferences and transmission routes. One idea is that coordinated production of distinct factors required for host adaptation and virulence in response to specific environmental cues could contribute to the distinct pathogenicity distinguishing these two species. Small non-coding RNAs that direct posttranscriptional regulation have recently been identified as key molecules that may provide such timeous expression of appropriate disease enabling factors. Here the burgeoning field of small non-coding regulatory RNAs in Yersinia pathogenesis is reviewed from the viewpoint of adaptive colonization, virulence and divergent evolution of these pathogens.
Collapse
Affiliation(s)
- Luary C Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México Mexico
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA USA
| |
Collapse
|
23
|
|
24
|
Liu Z, Liu P, Liu S, Song H, Tang H, Hu X. Small protein B upregulates sensor kinase bvgS expression in Aeromonas veronii. Front Microbiol 2015; 6:579. [PMID: 26136727 PMCID: PMC4468919 DOI: 10.3389/fmicb.2015.00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 01/24/2023] Open
Abstract
Earlier studies reveal that Small protein B (SmpB), a class of well-conserved tmRNA-binding proteins, is essential for the trans-translation process, which functions as a system for translation surveillance and ribosome rescue. Here, we report a previously unrecognized mechanism by which SmpB alone positively regulates the expression of a sensor kinase, BvgS, in Aeromonas veronii. A reporter plasmid was constructed in which the promoter of bvgS was used to control the expression of the enhanced green fluorescent protein (eGFP) gene. When the reporter plasmid was co-transformed with a SmpB expression construct into E. coli, the relative fluorescence intensity increased about threefold. Transformation with a truncated form of smpB gene showed that the C-terminus had little effect, while N-terminus unexpectedly increased eGFP production. Next, a series of SmpB mutants were generated by site-directed mutagenesis. When the mutants SmpB (G11S) or SmpB (E32AG) was used in the experiment, eGFP expression dropped significantly compared with that of wild type SmpB. Further, purified SmpB was shown to bind the promoter regions of bvgS in the agarose gel retardation assay. Quantitative RT-PCR analysis showed that eGFP transcript levels increased approximately 25-fold in the presence of SmpB. Likewise, smpB knockout decreased bvgS transcripts significantly in A. veronii, and also displayed a reduced capability in salt tolerance. Collectively, the data presented here will facilitate a deeper understanding of SmpB-mediated regulatory circuits as a transcriptional factor in A. veronii.
Collapse
Affiliation(s)
- Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Peng Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Shuanshuan Liu
- Department of Biology, College of Sciences, Shantou University Shantou, China
| | - Haichao Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Hongqian Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| | - Xinwen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Agriculture, Hainan University Haikou, China
| |
Collapse
|
25
|
Wilton J, Acebo P, Herranz C, Gómez A, Amblar M. Small regulatory RNAs in Streptococcus pneumoniae: discovery and biological functions. Front Genet 2015; 6:126. [PMID: 25904932 PMCID: PMC4387999 DOI: 10.3389/fgene.2015.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae is a prominent human pathogen responsible for many severe diseases and the leading cause of childhood mortality worldwide. The pneumococcus is remarkably adept at colonizing and infecting different niches in the human body, and its adaptation to dynamic host environment is a central aspect of its pathogenesis. In the last decade, increasing findings have evidenced small RNAs (sRNAs) as vital regulators in a number of important processes in bacteria. In S. pneumoniae, a small antisense RNA was first discovered in the pMV158 plasmid as a copy number regulator. More recently, genome-wide screens revealed that the pneumococcal genome also encodes multiple sRNAs, many of which have important roles in virulence while some are implicated in competence control. The knowledge of the sRNA-mediated regulation in pneumococcus remains very limited, and future research is needed for better understanding of functions and mechanisms. Here, we provide a comprehensive summary of the current knowledge on sRNAs from S. pneumoniae, focusing mainly on the trans-encoded sRNAs.
Collapse
Affiliation(s)
- Joana Wilton
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Paloma Acebo
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Cristina Herranz
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Alicia Gómez
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain ; CIBER Enfermedades Respiratorias Madrid, Spain
| |
Collapse
|
26
|
Rollat-Farnier PA, Santos-Garcia D, Rao Q, Sagot MF, Silva FJ, Henri H, Zchori-Fein E, Latorre A, Moya A, Barbe V, Liu SS, Wang XW, Vavre F, Mouton L. Two host clades, two bacterial arsenals: evolution through gene losses in facultative endosymbionts. Genome Biol Evol 2015; 7:839-855. [PMID: 25714744 PMCID: PMC5322557 DOI: 10.1093/gbe/evv030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial endosymbiosis is an important evolutionary process in insects, which can harbor both obligate and facultative symbionts. The evolution of these symbionts is driven by evolutionary convergence, and they exhibit among the tiniest genomes in prokaryotes. The large host spectrum of facultative symbionts and the high diversity of strategies they use to infect new hosts probably impact the evolution of their genome and explain why they undergo less severe genomic erosion than obligate symbionts. Candidatus Hamiltonella defensa is suitable for the investigation of the genomic evolution of facultative symbionts because the bacteria are engaged in specific relationships in two clades of insects. In aphids, H. defensa is found in several species with an intermediate prevalence and confers protection against parasitoids. In whiteflies, H. defensa is almost fixed in some species of Bemisia tabaci, which suggests an important role of and a transition toward obligate symbiosis. In this study, comparisons of the genome of H. defensa present in two B. tabaci species (Middle East Asia Minor 1 and Mediterranean) and in the aphid Acyrthosiphon pisum revealed that they belong to two distinct clades and underwent specific gene losses. In aphids, it contains highly virulent factors that could allow protection and horizontal transfers. In whiteflies, the genome lost these factors and seems to have a limited ability to acquire genes. However it contains genes that could be involved in the production of essential nutrients, which is consistent with a primordial role for this symbiont. In conclusion, although both lineages of H. defensa have mutualistic interactions with their hosts, their genomes follow distinct evolutionary trajectories that reflect their phenotype and could have important consequences on their evolvability.
Collapse
Affiliation(s)
- Pierre-Antoine Rollat-Farnier
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon1, Villeurbanne, France BAMBOO Research Team, INRIA Grenoble, Rhône-Alpes, France
| | - Diego Santos-Garcia
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Qiong Rao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou, China
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon1, Villeurbanne, France BAMBOO Research Team, INRIA Grenoble, Rhône-Alpes, France
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - Hélène Henri
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon1, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, NeweYa'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública) y el Instituto Cavanilles de Biodiversitad y Biología Evolutiva (Universitat de València), Valencia, Spain
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Cremieux, Evry, France
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fabrice Vavre
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon1, Villeurbanne, France BAMBOO Research Team, INRIA Grenoble, Rhône-Alpes, France
| | - Laurence Mouton
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université de Lyon, Université Lyon1, Villeurbanne, France
| |
Collapse
|
27
|
Domingues S, Moreira RN, Andrade JM, Dos Santos RF, Bárria C, Viegas SC, Arraiano CM. The role of RNase R in trans-translation and ribosomal quality control. Biochimie 2014; 114:113-8. [PMID: 25542646 DOI: 10.1016/j.biochi.2014.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 01/11/2023]
Abstract
Gene expression not only depends on the rate of transcription but is also largely controlled at the post-transcriptional level. Translation rate and mRNA decay greatly influence the final protein levels. Surveillance mechanisms are essential to ensure the quality of the RNA and proteins produced. Trans-translation is one of the most important systems in the quality control of bacterial translation. This process guarantees the destruction of abnormal proteins and also leads to degradation of the respective defective RNAs through the action of Ribonuclease R (RNase R). This exoribonuclease hydrolyzes RNAs starting from their 3' end. Besides its involvement in trans-translation, RNase R also participates in the quality control of rRNA molecules involved in ribosomal biogenesis. RNase R is thus emerging as a key factor in ensuring translation accuracy. This review focuses on issues related to the quality control of translation, with special emphasis on the role of RNase R.
Collapse
Affiliation(s)
- Susana Domingues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo N Moreira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
28
|
Niederer HA, Bangham CRM. Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 2014; 6:4140-64. [PMID: 25365582 PMCID: PMC4246213 DOI: 10.3390/v6114140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
Collapse
Affiliation(s)
- Heather A Niederer
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| | - Charles R M Bangham
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
29
|
RNA sequencing provides evidence for functional variability between naturally co-existing Alteromonas macleodii lineages. BMC Genomics 2014; 15:938. [PMID: 25344729 PMCID: PMC4223743 DOI: 10.1186/1471-2164-15-938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 10/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alteromonas macleodii is a ubiquitous gammaproteobacterium shown to play a biogeochemical role in marine environments. Two A. macleodii strains (AltDE and AltDE1) isolated from the same sample (i.e., the same place at the same time) show considerable genomic differences. In this study, we investigate the transcriptional response of these two strains to varying growth conditions in order to investigate differences in their ability to adapt to varying environmental parameters. RESULTS RNA sequencing revealed transcriptional changes between all growth conditions examined (e.g., temperature and medium) as well as differences between the two A. macleodii strains within a given condition. The main inter-strain differences were more marked in the adaptation to grow on minimal medium with glucose and, even more so, under starvation. These differences suggested that AltDE1 may have an advantage over AltDE when glucose is the major carbon source, and co-culture experiments confirmed this advantage. Additional differences were observed between the two strains in the expression of ncRNAs and phage-related genes, as well as motility. CONCLUSIONS This study shows that the genomic diversity observed in closely related strains of A. macleodii from a single environment result in different transcriptional responses to changing environmental parameters. This data provides additional support for the idea that greater diversity at the strain level of a microbial community could enhance the community's ability to adapt to environmental shifts.
Collapse
|
30
|
Venkataraman K, Zafar H, Karzai AW. Distinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay. Nucleic Acids Res 2014; 42:11192-202. [PMID: 25200086 PMCID: PMC4176180 DOI: 10.1093/nar/gku802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
trans-Translation, orchestrated by SmpB and tmRNA, is the principal eubacterial pathway for resolving stalled translation complexes. RNase R, the leading nonstop mRNA surveillance factor, is recruited to stalled ribosomes in a trans-translation dependent process. To elucidate the contributions of SmpB and tmRNA to RNase R recruitment, we evaluated Escherichia coli–Francisella tularensis chimeric variants of tmRNA and SmpB. This evaluation showed that while the hybrid tmRNA supported nascent polypeptide tagging and ribosome rescue, it suffered defects in facilitating RNase R recruitment to stalled ribosomes. To gain further insights, we used established tmRNA and SmpB variants that impact distinct stages of the trans-translation process. Analysis of select tmRNA variants revealed that the sequence composition and positioning of the ultimate and penultimate codons of the tmRNA ORF play a crucial role in recruiting RNase R to rescued ribosomes. Evaluation of defined SmpB C-terminal tail variants highlighted the importance of establishing the tmRNA reading frame, and provided valuable clues into the timing of RNase R recruitment to rescued ribosomes. Taken together, these studies demonstrate that productive RNase R-ribosomes engagement requires active trans-translation, and suggest that RNase R captures the emerging nonstop mRNA at an early stage after establishment of the tmRNA ORF as the surrogate mRNA template.
Collapse
Affiliation(s)
- Krithika Venkataraman
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY 11794, USA
| | - Hina Zafar
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY 11794, USA
| | - A Wali Karzai
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, NY 11794, USA
| |
Collapse
|
31
|
Miller MR, Buskirk AR. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes. Front Microbiol 2014; 5:462. [PMID: 25228900 PMCID: PMC4151336 DOI: 10.3389/fmicb.2014.00462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
In bacteria, transfer-messenger RNA (tmRNA) and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.
Collapse
Affiliation(s)
- Mickey R Miller
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
32
|
Li Y, Hu Y, Francis MS, Chen S. RcsB positively regulates the Yersinia Ysc-Yop type III secretion system by activating expression of the master transcriptional regulator LcrF. Environ Microbiol 2014; 17:1219-33. [PMID: 25039908 DOI: 10.1111/1462-2920.12556] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022]
Abstract
The Rcs phosphorelay is a complex signaling pathway used by the family Enterobacteriaceae to sense, respond and adapt to environmental changes during free-living or host-associated lifestyles. In this study, we show that the Rcs phosphorelay pathway positively regulates the virulence plasmid encoded Ysc-Yop type III secretion system (T3SS) in the enteropathogen Yesinia pseudotuberculosis. Both the overexpression of the wild-type Rcs regulator RcsB or the constitutive active RscB(D56E) variant triggered more abundant Ysc-Yop synthesis and secretion, whereas the non-phosphorylatable mutant RcsB(D56Q) negated this. Congruently, enhanced Yops expression and secretion occurred in an in cis rscB(D56E) mutant but not in an isogenic rscB(D56Q) mutant. Screening for regulatory targets of RcsB identified the virG-lcrF operon that encodes for LcrF, the Ysc-Yop T3SS master regulator. Protein-DNA binding assays confirmed that RcsB directly bound to this operon promoter, which subsequently caused stimulated lcrF transcription. Moreover, active RcsB enhanced the ability of bacteria to deliver Yop effectors into immune cells during cell contact, and this promoted an increase in bacterial viability. Taken together, our study demonstrates the role of the Rcs system in regulating the Ysc-Yop T3SS in Yersinia and reports on RcsB being the first transcriptional activator known to directly control lcrF transcription.
Collapse
Affiliation(s)
- Yunlong Li
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | |
Collapse
|
33
|
Himeno H, Kurita D, Muto A. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front Genet 2014; 5:66. [PMID: 24778639 PMCID: PMC3985003 DOI: 10.3389/fgene.2014.00066] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Transfer messenger RNA (tmRNA; also known as 10Sa RNA or SsrA RNA) is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon–anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of non-functional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.
Collapse
Affiliation(s)
- Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University Hirosaki, Japan
| |
Collapse
|
34
|
Miller MR, Buskirk AR. An unusual mechanism for EF-Tu activation during tmRNA-mediated ribosome rescue. RNA (NEW YORK, N.Y.) 2014; 20:228-235. [PMID: 24345396 PMCID: PMC3895274 DOI: 10.1261/rna.042226.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/07/2013] [Indexed: 06/03/2023]
Abstract
In bacteria, ribosomes stalled on truncated mRNAs are rescued by transfer-messenger RNA (tmRNA) and its protein partner SmpB. Acting like tRNA, the aminoacyl-tmRNA/SmpB complex is delivered to the ribosomal A site by EF-Tu and accepts the transfer of the nascent polypeptide. Although SmpB binding within the decoding center is clearly critical for licensing tmRNA entry into the ribosome, it is not known how activation of EF-Tu occurs in the absence of a codon-anticodon interaction. A recent crystal structure revealed that SmpB residue His136 stacks on 16S rRNA nucleotide G530, a critical player in the canonical decoding mechanism. Here we use pre-steady-state kinetic methods to probe the role of this interaction in ribosome rescue. We find that although mutation of His136 does not reduce SmpB's affinity for the ribosomal A-site, it dramatically reduces the rate of GTP hydrolysis by EF-Tu. Surprisingly, the same mutation has little effect on the apparent rate of peptide-bond formation, suggesting that release of EF-Tu from the tmRNA/SmpB complex on the ribosome may occur prior to GTP hydrolysis. Consistent with this idea, we find that peptidyl transfer to tmRNA is relatively insensitive to the antibiotic kirromycin. Taken together, our studies provide a model for the initial stages of ribosomal rescue by tmRNA.
Collapse
|
35
|
Personne Y, Parish T. Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Tuberculosis (Edinb) 2013; 94:34-42. [PMID: 24145139 DOI: 10.1016/j.tube.2013.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/23/2013] [Accepted: 09/28/2013] [Indexed: 12/31/2022]
Abstract
Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system.
Collapse
Affiliation(s)
- Yoann Personne
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London E1 2AT, UK
| | - Tanya Parish
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, London E1 2AT, UK.
| |
Collapse
|
36
|
The transfer-messenger RNA-small protein B system plays a role in avian pathogenic Escherichia coli pathogenicity. J Bacteriol 2013; 195:5064-71. [PMID: 24013628 DOI: 10.1128/jb.00628-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is capable of colonizing outside of the intestinal tract and evolving into a systemic infection. Avian pathogenic E. coli (APEC) is a member of the ExPEC group and causes avian colibacillosis. Transfer-mRNA-small protein B (tmRNA-SmpB)-mediated trans-translation is a bacterial translational control system that directs the modification and degradation of proteins, the biosynthesis of which has stalled or has been interrupted, facilitating the rescue of ribosomes stalled at the 3' ends of defective mRNAs that lack a stop codon. We found that disruption of one, or both, of the smpB or ssrA genes significantly decreased the virulence of the APEC strain E058, as assessed by chicken infection assays. Furthermore, the mutants were obviously attenuated in colonization and persistence assays. The results of quantitative real-time reverse transcription-PCR analysis indicated that the transcription levels of the transcriptional regulation gene rfaH and the virulence genes kpsM, chuA, and iss were significantly decreased compared to those of the wild-type strain. Macrophage infection assays showed that the mutant strains reduced the replication and/or survival ability in the macrophage HD11 cell line compared to that of the parent strain, E058. However, no significant differences were observed in ingestion by macrophages and in chicken serum resistance between the mutant and the wild-type strains. These data indicate that the tmRNA-SmpB system is important in the pathogenesis of APEC O2 strain E058.
Collapse
|
37
|
Camenares D, Dulebohn DP, Svetlanov A, Karzai AW. Active and accurate trans-translation requires distinct determinants in the C-terminal tail of SmpB protein and the mRNA-like domain of transfer messenger RNA (tmRNA). J Biol Chem 2013; 288:30527-30542. [PMID: 23986442 DOI: 10.1074/jbc.m113.503896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants.
Collapse
Affiliation(s)
- Devin Camenares
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | | | - Anton Svetlanov
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - A Wali Karzai
- From the Department of Biochemistry and Cell Biology and; Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794.
| |
Collapse
|
38
|
Shrestha N, Boucher J, Bahnan W, Clark ES, Rosqvist R, Fields KA, Khan WN, Schesser K. The host-encoded Heme Regulated Inhibitor (HRI) facilitates virulence-associated activities of bacterial pathogens. PLoS One 2013; 8:e68754. [PMID: 23874749 PMCID: PMC3707855 DOI: 10.1371/journal.pone.0068754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Here we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S) system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria. For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase) are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.
Collapse
Affiliation(s)
- Niraj Shrestha
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin Boucher
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wael Bahnan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Emily S. Clark
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Roland Rosqvist
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Kenneth A. Fields
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Wasif N. Khan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
39
|
Schiano CA, Lathem WW. Post-transcriptional regulation of gene expression in Yersinia species. Front Cell Infect Microbiol 2012; 2:129. [PMID: 23162797 PMCID: PMC3493969 DOI: 10.3389/fcimb.2012.00129] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/03/2012] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.
Collapse
Affiliation(s)
- Chelsea A Schiano
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | | |
Collapse
|
40
|
Mann B, van Opijnen T, Wang J, Obert C, Wang YD, Carter R, McGoldrick DJ, Ridout G, Camilli A, Tuomanen EI, Rosch JW. Control of virulence by small RNAs in Streptococcus pneumoniae. PLoS Pathog 2012; 8:e1002788. [PMID: 22807675 PMCID: PMC3395615 DOI: 10.1371/journal.ppat.1002788] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/22/2012] [Indexed: 01/10/2023] Open
Abstract
Small noncoding RNAs (sRNAs) play important roles in gene regulation in both prokaryotes and eukaryotes. Thus far, no sRNA has been assigned a definitive role in virulence in the major human pathogen Streptococcus pneumoniae. Based on the potential coding capacity of intergenic regions, we hypothesized that the pneumococcus produces many sRNAs and that they would play an important role in pathogenesis. We describe the application of whole-genome transcriptional sequencing to systematically identify the sRNAs of Streptococcus pneumoniae. Using this approach, we have identified 89 putative sRNAs, 56 of which are newly identified. Furthermore, using targeted genetic approaches and Tn-seq transposon screening, we demonstrate that many of the identified sRNAs have important global and niche-specific roles in virulence. These data constitute the most comprehensive analysis of pneumococcal sRNAs and provide the first evidence of the extensive roles of sRNAs in pneumococcal pathogenesis.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Tim van Opijnen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jianmin Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Caroline Obert
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert Carter
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Daniel J. McGoldrick
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Granger Ridout
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andrew Camilli
- Howard Hughes Medical Institute and Tufts University School of Medicine, Department of Molecular Biology and Microbiology, Boston, Massachusetts, United States of America
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
41
|
Qu Y, Bi L, Ji X, Deng Z, Zhang H, Yan Y, Wang M, Li A, Huang X, Yang R, Han Y. Identification by cDNA cloning of abundant sRNAs in a human-avirulent Yersinia pestis strain grown under five different growth conditions. Future Microbiol 2012; 7:535-47. [PMID: 22439729 DOI: 10.2217/fmb.12.13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS sRNA regulation is supposedly involved in the stress response of a pathogen during infection. Yersinia pestis, the etiologic agent of plague, must encounter temperature and microenvironment changes, given its lifestyle. Here, we used the cDNA cloning approach to discover full-length sRNA candidates that are highly expressed in Y. pestis under five different growth conditions. MATERIALS & METHODS The cDNA cloning approach was improved by combining the traditional cDNA library construction with the prevalent rapid amplification of cDNA ends and RNA size selection techniques. RESULTS In total, 43 RNA species, including six previously annotated sRNAs, were identified. Of these, 25 sRNAs were encoded on the antisense strand of the annotated genes. Interestingly, two of these sRNAs were found on the complementary strand of noncoding RNAs. In addition, eight novel sRNAs encoded in the intergenic regions were also revealed. Ten sRNA candidates chosen for the northern blot analysis were successfully detected. Analysis of the expression patterns of 29 candidate sRNAs showed that 24 sRNAs are highly abundant in Y. pestis upon entry into the stationary growth phase. CONCLUSION Our preliminary attempt at screening the novel sRNA candidates will lay the foundation for understanding the roles of sRNAs in Y. pestis physiology and pathogenesis.
Collapse
Affiliation(s)
- Yi Qu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Svetlanov A, Puri N, Mena P, Koller A, Karzai AW. Francisella tularensis tmRNA system mutants are vulnerable to stress, avirulent in mice, and provide effective immune protection. Mol Microbiol 2012; 85:122-41. [PMID: 22571636 PMCID: PMC3395464 DOI: 10.1111/j.1365-2958.2012.08093.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Through targeted inactivation of the ssrA and smpB genes, we establish that the trans-translation process is necessary for normal growth, adaptation to cellular stress and virulence by the bacterial pathogen Francisella tularensis. The mutant bacteria grow slower, have reduced resistance to heat and cold shocks, and are more sensitive to oxidative stress and sublethal concentrations of antibiotics. Modifications of the tmRNA tag and use of higher-resolution mass spectrometry approaches enabled the identification of a large number of native tmRNA substrates. Of particular significance to understanding the mechanism of trans-translation, we report the discovery of an extended tmRNA tag and extensive ladder-like pattern of endogenous protein-tagging events in F. tularensis that are likely to be a universal feature of tmRNA activity in eubacteria. Furthermore, the structural integrity and the proteolytic function of the tmRNA tag are both crucial for normal growth and virulence of F. tularensis. Significantly, trans-translation mutants of F. tularensis are impaired in replication within macrophages and are avirulent in mouse models of tularemia. By exploiting these attenuated phenotypes, we find that the mutant strains provide effective immune protection in mice against lethal intradermal, intraperitoneal and intranasal challenges with the fully virulent parental strain.
Collapse
Affiliation(s)
- Anton Svetlanov
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Neha Puri
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Patricio Mena
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Antonius Koller
- The Proteomic Center, Stony Brook University, Stony Brook, New York, 11794
| | - A. Wali Karzai
- Center for Infectious Diseases and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
43
|
Koo JT, Lathem WW. Global discovery of small noncoding RNAs in pathogenic Yersinia species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:305-14. [PMID: 22782777 DOI: 10.1007/978-1-4614-3561-7_38] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jovanka T Koo
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
44
|
Janssen BD, Hayes CS. The tmRNA ribosome-rescue system. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:151-91. [PMID: 22243584 DOI: 10.1016/b978-0-12-386497-0.00005-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed "ribosome rescue." During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis, and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
45
|
Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003798. [PMID: 20980440 DOI: 10.1101/cshperspect.a003798] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small RNA regulators (sRNAs) have been identified in a wide range of bacteria and found to play critical regulatory roles in many processes. The major families of sRNAs include true antisense RNAs, synthesized from the strand complementary to the mRNA they regulate, sRNAs that also act by pairing but have limited complementarity with their targets, and sRNAs that regulate proteins by binding to and affecting protein activity. The sRNAs with limited complementarity are akin to eukaryotic microRNAs in their ability to modulate the activity and stability of multiple mRNAs. In many bacterial species, the RNA chaperone Hfq is required to promote pairing between these sRNAs and their target mRNAs. Understanding the evolution of regulatory sRNAs remains a challenge; sRNA genes show evidence of duplication and horizontal transfer but also could be evolved from tRNAs, mRNAs or random transcription.
Collapse
|
46
|
Liu Y, Dong J, Wu N, Gao Y, Zhang X, Mu C, Shao N, Fan M, Yang G. The production of extracellular proteins is regulated by ribonuclease III via two different pathways in Staphylococcus aureus. PLoS One 2011; 6:e20554. [PMID: 21655230 PMCID: PMC3105085 DOI: 10.1371/journal.pone.0020554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/05/2011] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus ribonuclease III belongs to the enzyme family known to degrade double-stranded RNAs. It has previously been reported that RNase III cannot influence cell growth but regulates virulence gene expression in S. aureus. Here we constructed an RNase III inactivation mutant (Δrnc) from S. aureus 8325-4. It was found that the extracellular proteins of Δrnc were decreased. Furthermore, we explored how RNase III regulated the production of the extracellular proteins in S. aureus. We found during the lag phase of the bacterial growth cycle RNase III could influence the extracellular protein secretion via regulating the expression of secY2, one component of accessory secretory (sec) pathway. After S. aureus cells grew to exponential phase, RNase III can regulate the expression of extracellular proteins by affecting the level of RNAIII. Further investigation showed that the mRNA stability of secY2 and RNAIII was affected by RNase III. Our results suggest that RNase III could regulate the pathogenicity of S. aureus by influencing the level of extracellular proteins via two different ways respectively at different growth phases.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Na Wu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Chunhua Mu
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Ming Fan
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
47
|
Papenfort K, Vogel J. Regulatory RNA in bacterial pathogens. Cell Host Microbe 2010; 8:116-27. [PMID: 20638647 DOI: 10.1016/j.chom.2010.06.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/18/2010] [Accepted: 06/22/2010] [Indexed: 01/26/2023]
Abstract
Bacteria constitute a large and diverse class of infectious agents, causing devastating diseases in humans, animals, and plants. Our understanding of gene expression control, which forms the basis for successful prevention and treatment strategies, has until recently neglected the many roles that regulatory RNAs might have in bacteria. In recent years, several such regulators have been found to facilitate host-microbe interactions and act as key switches between saprophytic and pathogenic lifestyles. This review covers the versatile regulatory RNA mechanisms employed by bacterial pathogens and highlights the dynamic interplay between riboregulation and virulence factor expression.
Collapse
Affiliation(s)
- Kai Papenfort
- RNA Biology Group, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | |
Collapse
|
48
|
Kuo HK, Krasich R, Bhagwat AS, Kreuzer KN. Importance of the tmRNA system for cell survival when transcription is blocked by DNA-protein cross-links. Mol Microbiol 2010; 78:686-700. [PMID: 20807197 DOI: 10.1111/j.1365-2958.2010.07355.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anticancer drug 5-azacytidine (aza-C) induces DNA-protein cross-links (DPCs) between cytosine methyltransferase and DNA as the drug inhibits methylation. We found that mutants defective in the tmRNA translational quality control system are hypersensitive to aza-C. Hypersensitivity requires expression of active methyltransferase, indicating the importance of DPC formation. Furthermore, the tmRNA pathway is activated upon aza-C treatment in cells expressing methyltransferase, resulting in increased levels of SsrA tagged proteins. These results argue that the tmRNA pathway clears stalled ribosome-mRNA complexes generated after transcriptional blockage by aza-C-induced DPCs. In support, an ssrA mutant is also hypersensitive to streptolydigin, which blocks RNA polymerase elongation by a different mechanism. The tmRNA pathway is thought to act only on ribosomes containing a 3' RNA end near the A site, and the known pathway for releasing RNA 3' ends from a blocked polymerase involves Mfd helicase. However, an mfd knockout mutant is not hypersensitive to either aza-C-induced DPC formation or streptolydigin, indicating that Mfd is not involved. Transcription termination factor Rho is also likely not involved, because the Rho-specific inhibitor bicyclomycin failed to show synergism with either aza-C or streptolydigin. Based on these findings, we discuss models for how E. coli processes transcription/translation complexes blocked at DPCs.
Collapse
Affiliation(s)
- H Kenny Kuo
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
49
|
Thibonnier M, Aubert S, Ecobichon C, De Reuse H. Study of the functionality of the Helicobacter pylori trans-translation components SmpB and SsrA in an heterologous system. BMC Microbiol 2010; 10:91. [PMID: 20346161 PMCID: PMC2862035 DOI: 10.1186/1471-2180-10-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trans-translation is a ubiquitous bacterial quality control-mechanism for both transcription and translation. With its two major partners, SsrA a small stable RNA and the SmpB protein, it promotes the release of ribosomes stalled on defective mRNAs and directs the corresponding truncated proteins to degradation pathways. We have recently shown that trans-translation is an essential function in the gastric pathogen Helicobacter pylori. Our results suggested that some properties of the H. pylori trans-translation machinery distinguishes it from the well known system in E. coli. Therefore, we decided to test the functionality of the SmpB and SsrA molecules of H. pylori in the E. coli heterologous system using two established phenotypic tests. RESULTS H. pylori SmpB protein was found to successfully restore the E. coli DeltasmpB mutant growth defect and its capacity to propagate lambdaimmP22 phage. We showed that in E. coli, H. pylori SsrA (Hp-SsrA) was stably expressed and maturated and that this molecule could restore wild type growth to the E. coli DeltassrA mutant. Hp-SsrA mutants affected in the ribosome rescue function were not able to restore normal growth to E. coli DeltassrA supporting a major role of ribosome rescue in this phenotype. Surprisingly, Hp-SsrA did not restore the phage lambdaimmP22 propagation capacity to the E. coli DeltassrA mutant. CONCLUSIONS These data suggest an additional role of the tag sequence that presents specific features in Hp-SsrA. Our interpretation is that a secondary role of protein tagging in phage propagation is revealed by heterologous complementation because ribosome rescue is less efficient. In conclusion, tmRNAs present in all eubacteria, have coevolved with the translational machinery of their host and possess specific determinants that can be revealed by heterologous complementation studies.
Collapse
Affiliation(s)
- Marie Thibonnier
- Institut Pasteur, Unité P. Pathogenèse de Helicobacter, 28 rue du Dr. Roux, 75724 Paris Cedex 15 France
| | | | | | | |
Collapse
|
50
|
The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infect Immun 2010; 78:1284-93. [PMID: 20065026 DOI: 10.1128/iai.00976-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial SmpB-SsrA system is a highly conserved translational quality control mechanism that helps maintain the translational machinery at full capacity. Here we present evidence to demonstrate that the smpB-ssrA genes are required for pathogenesis of Yersinia pestis, the causative agent of plague. We found that disruption of the smpB-ssrA genes leads to reduction in secretion of the type III secretion-related proteins YopB, YopD, and LcrV, which are essential for virulence. Consistent with these observations, the smpB-ssrA mutant of Y. pestis was severely attenuated in a mouse model of infection via both the intranasal and intravenous routes. Most significantly, intranasal vaccination of mice with the smpB-ssrA mutant strain of Y. pestis induced a strong antibody response. The vaccinated animals were well protected against subsequent lethal intranasal challenges with virulent Y. pestis. Taken together, our results indicate that the smpB-ssrA mutant of Y. pestis possesses the desired qualities for a live attenuated cell-based vaccine against pneumonic plague.
Collapse
|