1
|
Chong SY, Lew SQ, Alam T, Gaulke CA, Lau GW. Comparative analysis of the Streptococcus pneumoniae competence development in vitro versus in vivo during pneumonia-derived sepsis. Front Microbiol 2025; 16:1540511. [PMID: 39935640 PMCID: PMC11811101 DOI: 10.3389/fmicb.2025.1540511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction The Streptococcus pneumoniae (pneumococcus) competence regulon is well-known for regulating genetic transformation but is also important for virulence. Some pneumococcal strains can enter a transient competent state for genetic transformation in an optimized competence-inducing medium when the threshold level of the peptide pheromone competence stimulating peptide is attained; upregulating the expression of three distinct phases of "early", "late" and "delayed" competence genes. Recently, we discovered that pneumococcus can naturally enter a prolonged competent state during acute pneumonia in mice. However, mechanisms driving competence development during host infection are rarely examined, and a direct comparison between in vitro and in vivo competence induction has not been performed. Methods We conducted a comparative gene expression analysis of pneumococcal competence development in vitro versus in vivo during pneumonia-derived sepsis in mice. We examined existing RNA-Seq data and performed validation using RNA obtained from an independent replicate experiment. Results and discussion Our analysis revealed both similarities and differences in the expression of "early", "late", and "delayed" competence between in vitro versus during pneumonia-derived sepsis. Our results may reveal new aspects of pneumococcal competence biology.
Collapse
Affiliation(s)
- Sook Yin Chong
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shi Qian Lew
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tauqeer Alam
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Zhou X, Wu Y, Zhu Z, Lu C, Zhang C, Zeng L, Xie F, Zhang L, Zhou F. Mucosal immune response in biology, disease prevention and treatment. Signal Transduct Target Ther 2025; 10:7. [PMID: 39774607 PMCID: PMC11707400 DOI: 10.1038/s41392-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/05/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
The mucosal immune system, as the most extensive peripheral immune network, serves as the frontline defense against a myriad of microbial and dietary antigens. It is crucial in preventing pathogen invasion and establishing immune tolerance. A comprehensive understanding of mucosal immunity is essential for developing treatments that can effectively target diseases at their entry points, thereby minimizing the overall impact on the body. Despite its importance, our knowledge of mucosal immunity remains incomplete, necessitating further research. The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has underscored the critical role of mucosal immunity in disease prevention and treatment. This systematic review focuses on the dynamic interactions between mucosa-associated lymphoid structures and related diseases. We delve into the basic structures and functions of these lymphoid tissues during disease processes and explore the intricate regulatory networks and mechanisms involved. Additionally, we summarize novel therapies and clinical research advances in the prevention of mucosal immunity-related diseases. The review also addresses the challenges in developing mucosal vaccines, which aim to induce specific immune responses while maintaining tolerance to non-pathogenic microbes. Innovative therapies, such as nanoparticle vaccines and inhalable antibodies, show promise in enhancing mucosal immunity and offer potential for improved disease prevention and treatment.
Collapse
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuchen Wu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chu Lu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Chunwu Zhang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linghui Zeng
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Lee E, Saviola A, Bevers S, Redzic JS, Maroney SP, Shaw S, Tamkin E, Fulte S, Nemkov T, Meyer N, D'Alessandro A, Hansen KC, Clark SE, Eisenmesser E. Streptococcus pneumoniae GAPN is a key metabolic player necessary for host infection. Protein Sci 2025; 34:e5253. [PMID: 39660954 PMCID: PMC11633051 DOI: 10.1002/pro.5253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Streptococcus pneumoniae (S. pneumoniae) employs various metabolic pathways to generate nicotinamide adenine dinucleotide phosphate (NADPH), which is essential for redox balance, fatty acid synthesis, and energy production. GAPN, a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, plays a role in this process by directly reducing NADP+ to NADPH, effectively contributing to glucose metabolism. However, its relative importance for S. pneumoniae metabolism and infection has remained unknown. Here, we performed a comprehensive characterization of S. pneumoniae GAPN through kinetic assays, isothermal titration calorimetry (ITC), cryo-EM, mass spectrometry, and infection assays. Despite its structural similarities to its homologues in other species, S. pneumoniae GAPN exhibits negative cooperativity with respect to its substrate, glyceraldehyde-3-phosphate (G3P), suggesting a unique regulatory mechanism. Our results demonstrate that GAPN knockout leads to significant metabolic reprogramming, including increased glycogen storage that leads to enhanced fatty acid metabolism. This collectively reduces the ability of S. pneumoniae to manage oxidative stress and sustain infection. Our findings highlight GAPN as a critical enzyme for S. pneumoniae metabolic balance and suggest that its inhibition could serve as a potential strategy for therapeutic intervention in pneumococcal diseases.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Shaun Bevers
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sean P. Maroney
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven Shaw
- Department of Otolaryngology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Emily Tamkin
- Department of Otolaryngology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sam Fulte
- Department of Otolaryngology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Nancy Meyer
- Pacific Northwest Cryo‐EM CenterOregon Health and Science UniversityPortlandOregonUSA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Sarah E. Clark
- Department of Otolaryngology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
4
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
5
|
Boamah D, Gilmore M, Bourget S, Ghosh A, Hossain M, Vogel J, Cava F, O’Connor T. Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila. Proc Natl Acad Sci U S A 2023; 120:e2119658120. [PMID: 37252954 PMCID: PMC10266036 DOI: 10.1073/pnas.2119658120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
Collapse
Affiliation(s)
- David Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Michael C. Gilmore
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Sarah Bourget
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Anushka Ghosh
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
6
|
Newman KE, Tindall SN, Mader SL, Khalid S, Thomas GH, Van Der Woude MW. A novel fold for acyltransferase-3 (AT3) proteins provides a framework for transmembrane acyl-group transfer. eLife 2023; 12:e81547. [PMID: 36630168 PMCID: PMC9833829 DOI: 10.7554/elife.81547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/04/2022] [Indexed: 01/12/2023] Open
Abstract
Acylation of diverse carbohydrates occurs across all domains of life and can be catalysed by proteins with a membrane bound acyltransferase-3 (AT3) domain (PF01757). In bacteria, these proteins are essential in processes including symbiosis, resistance to viruses and antimicrobials, and biosynthesis of antibiotics, yet their structure and mechanism are largely unknown. In this study, evolutionary co-variance analysis was used to build a computational model of the structure of a bacterial O-antigen modifying acetyltransferase, OafB. The resulting structure exhibited a novel fold for the AT3 domain, which molecular dynamics simulations demonstrated is stable in the membrane. The AT3 domain contains 10 transmembrane helices arranged to form a large cytoplasmic cavity lined by residues known to be essential for function. Further molecular dynamics simulations support a model where the acyl-coA donor spans the membrane through accessing a pore created by movement of an important loop capping the inner cavity, enabling OafB to present the acetyl group close to the likely catalytic resides on the extracytoplasmic surface. Limited but important interactions with the fused SGNH domain in OafB are identified, and modelling suggests this domain is mobile and can both accept acyl-groups from the AT3 and then reach beyond the membrane to reach acceptor substrates. Together this new general model of AT3 function provides a framework for the development of inhibitors that could abrogate critical functions of bacterial pathogens.
Collapse
Affiliation(s)
- Kahlan E Newman
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Sarah N Tindall
- Department of Biology and the York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Sophie L Mader
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Syma Khalid
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Gavin H Thomas
- Department of Biology and the York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Marjan W Van Der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| |
Collapse
|
7
|
Jiang L, Li Y, Wang L, Guo J, Liu W, Meng G, Zhang L, Li M, Cong L, Sun M. Recent Insights Into the Prognostic and Therapeutic Applications of Lysozymes. Front Pharmacol 2021; 12:767642. [PMID: 34925025 PMCID: PMC8678502 DOI: 10.3389/fphar.2021.767642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lysozymes are naturally occurring enzymes present in a variety of biological organisms, such as bacteria, fungi, and animal bodily secretions and tissues. It is also the main ingredient of many ethnomedicines. It is well known that lysozymes and lysozyme-like enzymes can be used as anti-bacterial agents by degrading bacterial cell wall peptidoglycan that leads to cell death, and can also inhibit fungi, yeasts, and viruses. In addition to its direct antimicrobial activity, lysozyme is also an important component of the innate immune system in most mammals. Increasing evidence has shown the immune-modulatory effects of lysozymes against infection and inflammation. More recently, studies have revealed the anti-cancer activities of lysozyme in multiple types of tumors, potentially through its immune-modulatory activities. In this review, we summarized the major functions and underlying mechanisms of lysozymes derived from animal and plant sources. We highlighted the therapeutic applications and recent advances of lysozymes in cancers, hypertension, and viral diseases, aiming toseeking alternative therapies for standard medical treatment bypassing side effects. We also evaluated the role of lysozyme as a promising cancer marker for prognosis to indicate the outcomes recurrence for patients.
Collapse
Affiliation(s)
- Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yunhe Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Jian Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lei Zhang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lina Cong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
8
|
Zangari T, Zafar MA, Lees JA, Abruzzo AR, Bee GCW, Weiser JN. Pneumococcal capsule blocks protection by immunization with conserved surface proteins. NPJ Vaccines 2021; 6:155. [PMID: 34930916 PMCID: PMC8688510 DOI: 10.1038/s41541-021-00413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Vaccines targeting Streptococcus pneumoniae (Spn) are limited by dependence on capsular polysaccharide and its serotype diversity. More broadly-based approaches using common protein antigens have not resulted in a licensed vaccine. Herein, we used an unbiased, genome-wide approach to find novel vaccine antigens to disrupt carriage modeled in mice. A Tn-Seq screen identified 198 genes required for colonization of which 16 are known to express conserved, immunogenic surface proteins. After testing defined mutants for impaired colonization of infant and adult mice, 5 validated candidates (StkP, PenA/Pbp2a, PgdA, HtrA, and LytD/Pce/CbpE) were used as immunogens. Despite induction of antibody recognizing the Spn cell surface, there was no protection against Spn colonization. There was, however, protection against an unencapsulated Spn mutant. This result correlated with increased antibody binding to the bacterial surface in the absence of capsule. Our findings demonstrate how the pneumococcal capsule interferes with mucosal protection by antibody to common protein targets.
Collapse
Affiliation(s)
- Tonia Zangari
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - M. Ammar Zafar
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.241167.70000 0001 2185 3318Present Address: Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - John A. Lees
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.7445.20000 0001 2113 8111Present Address: Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Annie R. Abruzzo
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Gavyn Chern Wei Bee
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Jeffrey N. Weiser
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| |
Collapse
|
9
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
10
|
Lokken-Toyli KL, de Steenhuijsen Piters WAA, Zangari T, Martel R, Kuipers K, Shopsin B, Loomis C, Bogaert D, Weiser JN. Decreased production of epithelial-derived antimicrobial molecules at mucosal barriers during early life. Mucosal Immunol 2021; 14:1358-1368. [PMID: 34465896 PMCID: PMC8542637 DOI: 10.1038/s41385-021-00438-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 02/04/2023]
Abstract
Young age is a risk factor for respiratory and gastrointestinal infections. Here, we compared infant and adult mice to identify age-dependent mechanisms that drive susceptibility to mucosal infections during early life. Transcriptional profiling of the upper respiratory tract (URT) epithelium revealed significant dampening of early life innate mucosal defenses. Epithelial-mediated production of the most abundant antimicrobial molecules, lysozyme, and lactoferrin, and the polymeric immunoglobulin receptor (pIgR), responsible for IgA transcytosis, was expressed in an age-dependent manner. This was attributed to delayed functional development of serous cells. Absence of epithelial-derived lysozyme and the pIgR was also observed in the small intestine during early life. Infection of infant mice with lysozyme-susceptible strains of Streptococcus pneumoniae or Staphylococcus aureus in the URT or gastrointestinal tract, respectively, demonstrated an age-dependent regulation of lysozyme enzymatic activity. Lysozyme derived from maternal milk partially compensated for the reduction in URT lysozyme activity of infant mice. Similar to our observations in mice, expression of lysozyme and the pIgR in nasopharyngeal samples collected from healthy human infants during the first year of life followed an age-dependent regulation. Thus, a global pattern of reduced antimicrobial and IgA-mediated defenses may contribute to increased susceptibility of young children to mucosal infections.
Collapse
Affiliation(s)
- Kristen L. Lokken-Toyli
- Department of Microbiology, New York University School of Medicine, New York, New York USA.,for correspondence: Kristen L. Lokken-Toyli, PhD, New York University School of Medicine, Alexandria Center for Life Sciences - West Tower, 430 East 29th Street, Room 560, New York, NY 10016, Tel: (212) 263-1080, Fax: (646) 501-4645,
| | - Wouter A. A. de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Tonia Zangari
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Rachel Martel
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Kirsten Kuipers
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases, Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York USA
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital/University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands; National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York USA
| |
Collapse
|
11
|
Rangasamy T, Ghimire L, Jin L, Le J, Periasamy S, Paudel S, Cai S, Jeyaseelan S. Host Defense against Klebsiella pneumoniae Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1112-1127. [PMID: 34341173 DOI: 10.4049/jimmunol.2000688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae is a common cause of Gram-negative pneumonia. The spread of antibiotic-resistant and hypervirulent strains has made treatment more challenging. This study sought to determine the immunomodulatory, antibacterial, and therapeutic potential of purified murine stem cell Ag-1+ (Sca-1+) lung mesenchymal stem cells (LMSCs) using in vitro cell culture and an in vivo mouse model of pneumonia caused by K pneumoniae. Sca-1+ LMSCs are plastic adherent, possess colony-forming capacity, express mesenchymal stem cell markers, differentiate into osteogenic and adipogenic lineages in vitro, and exhibit a high proliferative capacity. Further, these Sca-1+ LMSCs are morphologically similar to fibroblasts but differ ultrastructurally. Moreover, Sca-1+ LMSCs have the capacity to inhibit LPS-induced secretion of inflammatory cytokines by bone marrow-derived macrophages and neutrophils in vitro. Sca-1+ LMSCs inhibit the growth of K pneumoniae more potently than do neutrophils. Sca-1+ LMSCs also possess the intrinsic ability to phagocytize and kill K. pneumoniae intracellularly. Whereas the induction of autophagy promotes bacterial replication, inhibition of autophagy enhances the intracellular clearance of K. pneumoniae in Sca-1+ LMSCs during the early time of infection. Adoptive transfer of Sca-1+ LMSCs in K. pneumoniae-infected mice improved survival, reduced inflammatory cells in bronchoalveolar lavage fluid, reduced inflammatory cytokine levels and pathological lesions in the lung, and enhanced bacterial clearance in the lung and in extrapulmonary organs. To our knowledge, these results together illustrate for the first time the protective role of LMSCs in bacterial pneumonia.
Collapse
Affiliation(s)
- Tirumalai Rangasamy
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Laxman Ghimire
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Liliang Jin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - John Le
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sivakumar Periasamy
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Sagar Paudel
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Shanshan Cai
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University, Baton Rouge, LA; .,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA; and.,Division of Pulmonary and Critical Care, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
12
|
Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol 2021; 11:639450. [PMID: 33996623 PMCID: PMC8113816 DOI: 10.3389/fcimb.2021.639450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae (also called pneumococcus) is not only a commensal that frequently colonizes the human upper respiratory tract but also a pathogen that causes pneumonia, sepsis, and meningitis. The mechanism of pneumococcal infection has been extensively studied, but the process of transmission has not been fully elucidated because of the lack of tractable animal models. Novel animal models of transmission have enabled further progress in investigating pneumococcal transmission mechanisms including the processes such as pneumococcal shedding, survival in the external environment, and adherence to the nasopharynx of a new host. Herein, we present a review on these animal models, recent research findings about pneumococcal transmission, and factors influencing the host-pneumococcus interaction.
Collapse
Affiliation(s)
- Ayumi Morimura
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
13
|
Sputum Proteome Signatures of Mechanically Ventilated Intensive Care Unit Patients Distinguish Samples with or without Anti-pneumococcal Activity. mSystems 2021; 6:6/2/e00702-20. [PMID: 33653939 PMCID: PMC8546979 DOI: 10.1128/msystems.00702-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanically ventilated patients are at risk of contracting pneumonia. Therefore, these patients often receive prophylactic systemic antimicrobial therapy. Intriguingly however, a previous study showed that antimicrobial activity in bronchoalveolar aspirates (here referred to as “sputa”) from ventilated patients was only partially explained by antibiotic therapy. Here we report that sputa from these patients presented distinct proteome signatures depending on the presence or absence of antimicrobial activity. Moreover, we show that the same distinction applied to antibodies against Streptococcus pneumoniae, which is a major causative agent of pneumonia. Specifically, the investigated sputa that inhibited growth of S. pneumoniae, while containing subinhibitory levels of the antibiotic cefotaxime, presented elevated levels of proteins implicated in innate immune defenses, including complement and apolipoprotein-associated proteins. In contrast, S. pneumoniae-inhibiting sputa with relatively high cefotaxime concentrations or noninhibiting sputa contained higher levels of proteins involved in inflammatory responses, such as neutrophil elastase-associated proteins. In an immunoproteomics analysis, 18 out of 55 S. pneumoniae antigens tested showed significantly increased levels of IgGs in inhibiting sputa. Hence, proteomics and immunoproteomics revealed elevated levels of antimicrobial host proteins or S. pneumoniae antigen-specific IgGs in pneumococcal growth-inhibiting sputa, thus explaining their anti-pneumococcal activity. IMPORTANCE Respiratory pathogens like Streptococcus pneumoniae can cause severe pneumonia. Nonetheless, mechanically ventilated intensive care patients, who have a high risk of contracting pneumonia, rarely develop pneumococcal pneumonia. This suggests the presence of potentially protective antimicrobial agents in their lung environment. Our present study shows for the first time that bronchoalveolar aspirates, “sputa,” of ventilated patients in a Dutch intensive care unit were characterized by three distinct groups of proteome abundance signatures that can explain their anti-pneumococcal activity. Importantly, this anti-pneumococcal sputum activity was related either to elevated levels of antimicrobial host proteins or to antibiotics and S. pneumoniae-specific antibodies. Further, the sputum composition of some patients changed over time. Therefore, we conclude that our study may provide a novel tool to measure changes that are indicative of infection-related conditions in the lungs of mechanically ventilated patients.
Collapse
|
14
|
Macrophage LC3-associated phagocytosis is an immune defense against Streptococcus pneumoniae that diminishes with host aging. Proc Natl Acad Sci U S A 2020; 117:33561-33569. [PMID: 33376222 PMCID: PMC7776987 DOI: 10.1073/pnas.2015368117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of pneumonia and invasive disease, particularly, in the elderly. S. pneumoniae lung infection of aged mice is associated with high bacterial burdens and detrimental inflammatory responses. Macrophages can clear microorganisms and modulate inflammation through two distinct lysosomal trafficking pathways that involve 1A/1B-light chain 3 (LC3)-marked organelles, canonical autophagy, and LC3-associated phagocytosis (LAP). The S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers an autophagic response in nonphagocytic cells, but the role of LAP in macrophage defense against S. pneumoniae or in age-related susceptibility to infection is unexplored. We found that infection of murine bone-marrow-derived macrophages (BMDMs) by PLY-producing S. pneumoniae triggered Atg5- and Atg7-dependent recruitment of LC3 to S. pneumoniae-containing vesicles. The association of LC3 with S. pneumoniae-containing phagosomes required components specific for LAP, such as Rubicon and the NADPH oxidase, but not factors, such as Ulk1, FIP200, or Atg14, required specifically for canonical autophagy. In addition, S. pneumoniae was sequestered within single-membrane compartments indicative of LAP. Importantly, compared to BMDMs from young (2-mo-old) mice, BMDMs from aged (20- to 22-mo-old) mice infected with S. pneumoniae were not only deficient in LAP and bacterial killing, but also produced higher levels of proinflammatory cytokines. Inhibition of LAP enhanced S. pneumoniae survival and cytokine responses in BMDMs from young but not aged mice. Thus, LAP is an important innate immune defense employed by BMDMs to control S. pneumoniae infection and concomitant inflammation, one that diminishes with age and may contribute to age-related susceptibility to this important pathogen.
Collapse
|
15
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
16
|
Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020; 46:703-726. [PMID: 32985279 DOI: 10.1080/1040841x.2020.1825333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The spread of bacterial strains resistant to commonly used antibiotics urges the development of novel antibacterial compounds. Ideally, these novel antimicrobials should be less prone to the development of resistance. Peptidoglycan-degrading enzymes are a promising class of compounds with a fundamentally different mode of action compared to traditionally used antibiotics. The difference in the mechanism of action implies differences both in the mechanisms of resistance and the chances of its emergence. To critically assess the potential of resistance development to peptidoglycan-degrading enzymes, we review the available evidence for the development of resistance to these enzymes in vitro, along with the known mechanisms of resistance to lysozyme, bacteriocins, autolysins, and phage endolysins. We conclude that genetic determinants of resistance to peptidoglycan-degrading enzymes are unlikely to readily emerge de novo. However, resistance to these enzymes would probably spread by the horizontal transfer between intrinsically resistant and susceptible species. Finally, we speculate that the higher cost of the therapeutics based on peptidoglycan degrading enzymes compared to classical antibiotics might result in less misuse, which in turn would lead to lower selective pressure, making these antibacterials less prone to resistance development.
Collapse
Affiliation(s)
- Alexander V Grishin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna S Karyagina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical and Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Daria V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V Vasina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Lunin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.,All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Brott AS, Clarke AJ. Peptidoglycan O-Acetylation as a Virulence Factor: Its Effect on Lysozyme in the Innate Immune System. Antibiotics (Basel) 2019; 8:E94. [PMID: 31323733 PMCID: PMC6783866 DOI: 10.3390/antibiotics8030094] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 11/16/2022] Open
Abstract
The peptidoglycan sacculus of both Gram-positive and Gram-negative bacteria acts as a protective mesh and provides structural support around the entirety of the cell. The integrity of this structure is of utmost importance for cell viability and so naturally is the first target for attack by the host immune system during bacterial infection. Lysozyme, a muramidase and the first line of defense of the innate immune system, targets the peptidoglycan sacculus hydrolyzing the β-(1→4) linkage between repeating glycan units, causing lysis and the death of the invading bacterium. The O-acetylation of N-acetylmuramoyl residues within peptidoglycan precludes the productive binding of lysozyme, and in doing so renders it inactive. This modification has been shown to be an important virulence factor in pathogens such as Staphylococcus aureus and Neisseria gonorrhoeae and is currently being investigated as a novel target for anti-virulence therapies. This article reviews interactions made between peptidoglycan and the host immune system, specifically with respect to lysozyme, and how the O-acetylation of the peptidoglycan interrupts these interactions, leading to increased pathogenicity.
Collapse
Affiliation(s)
- Ashley S Brott
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Anthony J Clarke
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
18
|
Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21:e13077. [PMID: 31251447 PMCID: PMC6899785 DOI: 10.1111/cmi.13077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a human respiratory tract pathogen and a major cause of morbidity and mortality globally. Although the pneumococcus is a commensal bacterium that colonizes the nasopharynx, it also causes lethal diseases such as meningitis, sepsis, and pneumonia, especially in immunocompromised patients, in the elderly, and in young children. Due to the acquisition of antibiotic resistance and the emergence of nonvaccine serotypes, the pneumococcus has been classified as one of the priority pathogens for which new antibacterials are urgently required by the World Health Organization, 2017. Understanding molecular mechanisms behind the pathogenesis of pneumococcal infections and bacterial interactions within the host is crucial to developing novel therapeutics. Previously considered to be an extracellular pathogen, it is becoming evident that pneumococci may also occasionally establish intracellular niches within the body to escape immune surveillance and spread within the host. Intracellular survival within host cells also enables pneumococci to resist many antibiotics. Within the host cell, the bacteria exist in unique vacuoles, thereby avoiding degradation by the acidic lysosomes, and modulate the expression of its virulence genes to adapt to the intracellular environment. To invade and survive intracellularly, the pneumococcus utilizes a combination of virulence factors such as pneumolysin (PLY), pneumococcal surface protein A (PspA), pneumococcal adhesion and virulence protein B (PavB), the pilus‐1 adhesin RrgA, pyruvate oxidase (SpxB), and metalloprotease (ZmpB). In this review, we discuss recent findings showing the intracellular persistence of Streptococcus pneumoniae and its underlying mechanisms.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019; 10:mBio.01032-19. [PMID: 31213554 PMCID: PMC6581856 DOI: 10.1128/mbio.01032-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common cause of respiratory tract and invasive infection. The overall effectiveness of immunization with the organism’s capsular polysaccharide depends on its ability to block colonization of the upper respiratory tract and thereby prevent host-to-host transmission. Because of the limited coverage of current pneumococcal vaccines, we carried out an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors other than its capsular polysaccharide that affect transmission. One such candidate was expressed by the dlt locus, previously shown to add d-alanine onto the pneumococcal lipoteichoic acid present on the bacterial cell surface. This modification protects against host antimicrobials and augments host inflammatory responses. The latter increases secretions and bacterial shedding from the upper respiratory tract to allow for transmission. Thus, this study provides insight into a mechanism employed by the pneumococcus to successfully transit from one host to another. Host-to-host transmission is a necessary but poorly understood aspect of microbial pathogenesis. Herein, we screened a genomic library of mutants of the leading respiratory pathogen Streptococcus pneumoniae generated by mariner transposon mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding from the upper respiratory tract (URT), the limiting step in the organism’s transmission in an infant mouse model. Our analysis focused on genes affecting the bacterial surface that directly impact interactions with the host. Among the multiple factors identified was the dlt locus, which adds d-alanine onto lipoteichoic acids (LTA) and thereby increases Toll-like receptor 2-mediated inflammation and resistance to antimicrobial peptides. The more robust proinflammatory response in the presence of d-alanylation promotes secretions that facilitate pneumococcal shedding and allows for transmission. Expression of the dlt locus is controlled by the CiaRH system, which senses cell wall stress in response to antimicrobial activity, including in response to lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a lysM−/− host, there was no longer an effect of the dlt locus on pneumococcal shedding. Thus, our findings demonstrate how a pathogen senses the URT milieu and then modifies its surface characteristics to take advantage of the host response for transit to another host.
Collapse
|
20
|
Sychantha D, Brott AS, Jones CS, Clarke AJ. Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Front Microbiol 2018; 9:2332. [PMID: 30327644 PMCID: PMC6174289 DOI: 10.3389/fmicb.2018.02332] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
The post-synthetic O-acetylation of the essential component of bacterial cell walls, peptidoglycan (PG), is performed by many pathogenic bacteria to help them evade the lytic action of innate immunity responses. Occurring at the C-6 hydroxyl of N-acetylmuramoyl residues, this modification to the glycan backbone of PG sterically blocks the activity of lysozymes. As such, the enzyme responsible for this modification in Gram-positive bacteria is recognized as a virulence factor. With Gram-negative bacteria, the O-acetylation of PG provides a means of control of their autolysins at the substrate level. In this review, we discuss the pathways for PG O-acetylation and de-O-acetylation and the structure and function relationship of the O-acetyltransferases and O-acetylesterases that catalyze these reactions. The current understanding of their mechanisms of action is presented and the prospects of targeting these systems for the development of novel therapeutics are explored.
Collapse
Affiliation(s)
| | | | | | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Morlot C, Straume D, Peters K, Hegnar OA, Simon N, Villard AM, Contreras-Martel C, Leisico F, Breukink E, Gravier-Pelletier C, Le Corre L, Vollmer W, Pietrancosta N, Håvarstein LS, Zapun A. Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat Commun 2018; 9:3180. [PMID: 30093673 PMCID: PMC6085368 DOI: 10.1038/s41467-018-05602-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
The universality of peptidoglycan in bacteria underlies the broad spectrum of many successful antibiotics. However, in our times of widespread resistance, the diversity of peptidoglycan modifications offers a variety of new antibacterials targets. In some Gram-positive species such as Streptococcus pneumoniae, Staphylococcus aureus, or Mycobacterium tuberculosis, the second residue of the peptidoglycan precursor, D-glutamate, is amidated into iso-D-glutamine by the essential amidotransferase MurT/GatD complex. Here, we present the structure of this complex at 3.0 Å resolution. MurT has central and C-terminal domains similar to Mur ligases with a cysteine-rich insertion, which probably binds zinc, contributing to the interface with GatD. The mechanism of amidation by MurT is likely similar to the condensation catalyzed by Mur ligases. GatD is a glutaminase providing ammonia that is likely channeled to the MurT active site through a cavity network. The structure and assay presented here constitute a knowledge base for future drug development studies.
Collapse
Affiliation(s)
- Cécile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Nolwenn Simon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Anne-Marie Villard
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | | | - Francisco Leisico
- Departamento de Química, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, 3584, The Netherlands
| | - Christine Gravier-Pelletier
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Laurent Le Corre
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Nicolas Pietrancosta
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France.
| |
Collapse
|
23
|
Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, Burgess JG. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes 2018; 4:14. [PMID: 30002868 PMCID: PMC6031612 DOI: 10.1038/s41522-018-0057-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/05/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Mucus layers often provide a unique and multi-functional hydrogel interface between the epithelial cells of organisms and their external environment. Mucus has exceptional properties including elasticity, changeable rheology and an ability to self-repair by re-annealing, and is therefore an ideal medium for trapping and immobilising pathogens and serving as a barrier to microbial infection. The ability to produce a functional surface mucosa was an important evolutionary step, which evolved first in the Cnidaria, which includes corals, and the Ctenophora. This allowed the exclusion of non-commensal microbes and the subsequent development of the mucus-lined digestive cavity seen in higher metazoans. The fundamental architecture of the constituent glycoprotein mucins is also evolutionarily conserved. Although an understanding of the biochemical interactions between bacteria and the mucus layer are important to the goal of developing new antimicrobial strategies, they remain relatively poorly understood. This review summarises the physicochemical properties and evolutionary importance of mucus, which make it so successful in the prevention of bacterial infection. In addition, the strategies developed by bacteria to counteract the mucus layer are also explored.
Collapse
Affiliation(s)
- Cassie R Bakshani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ana L Morales-Garcia
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mike Althaus
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Wilcox
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - J Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
24
|
Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018; 9:1366. [PMID: 29988379 PMCID: PMC6023974 DOI: 10.3389/fimmu.2018.01366] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen responsible for millions of deaths worldwide. Diseases caused by this bacterium are classified as pneumococcal diseases. This pathogen colonizes the nasopharynx of its host asymptomatically, but overtime can migrate to sterile tissues and organs and cause infections. Pneumonia is currently the most common pneumococcal disease. Pneumococcal pneumonia is a global health concern and vastly affects children under the age of five as well as the elderly and individuals with pre-existing health conditions. S. pneumoniae has a large selection of virulence factors that promote adherence, invasion of host tissues, and allows it to escape host immune defenses. A clear understanding of S. pneumoniae's virulence factors, host immune responses, and examining the current techniques available for diagnosis, treatment, and disease prevention will allow for better regulation of the pathogen and its diseases. In terms of disease prevention, other considerations must include the effects of age on responses to vaccines and vaccine efficacy. Ongoing work aims to improve on current vaccination paradigms by including the use of serotype-independent vaccines, such as protein and whole cell vaccines. Extending our knowledge of the biology of, and associated host immune response to S. pneumoniae is paramount for our improvement of pneumococcal disease diagnosis, treatment, and improvement of patient outlook.
Collapse
Affiliation(s)
- Lavida R. K. Brooks
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, United States
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 660] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|
26
|
Yadav MK, Go YY, Kim SH, Chae SW, Song JJ. Antimicrobial and Antibiofilm Effects of Human Amniotic/Chorionic Membrane Extract on Streptococcus pneumoniae. Front Microbiol 2017; 8:1948. [PMID: 29089928 PMCID: PMC5641382 DOI: 10.3389/fmicb.2017.01948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023] Open
Abstract
Background:Streptococcus pneumoniae colonize the human nasopharynx in the form of biofilms. The biofilms act as bacterial reservoirs and planktonic bacteria from these biofilms can migrate to other sterile anatomical sites to cause pneumonia, otitis media (OM), bacteremia and meningitis. Human amniotic membrane contains numerous growth factors and antimicrobial activity; however, these have not been studied in detail. In this study, we prepared amniotic membrane extract and chorionic membrane extract (AME/CME) and evaluated their antibacterial and antibiofilm activities against S. pneumoniae using an in vitro biofilm model and in vivo OM rat model. Materials and Methods: The AME/CME were prepared and protein was quantified using DCTM (detergent compatible) method. The minimum inhibitory concentrations were determined using broth dilution method, and the synergistic effect of AME/CME with Penicillin-streptomycin was detected checkerboard. The in vitro biofilm and in vivo colonization of S. pneumoniae were studied using microtiter plate assay and OM rat model, respectively. The AME/CME-treated biofilms were examined using scanning electron microscope and confocal microscopy. To examine the constituents of AME/CME, we determined the proteins and peptides of AME/CME using tandem mass tag-based quantitative mass spectrometry. Results: AME/CME treatment significantly (p < 0.05) inhibited S. pneumoniae growth in planktonic form and in biofilms. Combined application of AME/CME and Penicillin-streptomycin solution had a synergistic effect against S. pneumoniae. Biofilms grown with AME/CME were thin, scattered, and unorganized. AME/CME effectively eradicated pre-established pneumococci biofilms and has a bactericidal effect. AME treatment significantly (p < 0.05) reduced bacterial colonization in the rat middle ear. The proteomics analysis revealed that the AME/CME contains hydrolase, ribonuclease, protease, and other antimicrobial proteins and peptides. Conclusion: AME/CME inhibits S. pneumoniae growth in the planktonic and biofilm states via its antimicrobial proteins and peptides. AME/CME are non-cytotoxic, natural human product; therefore, they may be used alone or with antibiotics to treat S. pneumoniae infections.
Collapse
Affiliation(s)
- Mukesh K Yadav
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea.,Institute for Medical Device Clinical Trials, Korea University College of Medicine, Seoul, South Korea
| | - Yoon Y Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Shin Hye Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
28
|
The Pneumococcal Serotype 15C Capsule Is Partially O-Acetylated and Allows for Limited Evasion of 23-Valent Pneumococcal Polysaccharide Vaccine-Elicited Anti-Serotype 15B Antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637806 DOI: 10.1128/cvi.00099-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a species, Streptococcus pneumoniae (the pneumococcus) utilizes a diverse array of capsular polysaccharides to evade the host. In contrast to large variations in sugar composition and linkage formation, O-acetylation is a subtle capsular modification that nonetheless has a large impact on capsular shielding and recognition of the capsule by vaccine-elicited antibodies. Serotype 15B, which is included in the 23-valent pneumococcal polysaccharide vaccine (PPV23), carries the putative O-acetyltransferase gene wciZ The coding sequence of wciZ contains eight consecutive TA repeats [(TA)8]. Replication slippage is thought to result in the addition or loss of TA repeats, subsequently causing frameshift and truncation of WciZ to yield a nonacetylated serotype, 15C. Using sensitive serological tools, we show that serotype 15C isolates whose wciZ contains seven or nine TA repeats retain partial O-acetylation, while serotype 15C isolates whose wciZ contains six TA repeats have barely detectable O-acetylation. We confirmed by inhibition enzyme-linked immunosorbent assay that (TA)7 serotype 15C is ∼0.1% as acetylated as serotype 15B, while serotype 15X is nonacetylated. To eliminate the impact of genetic background, we created isogenic serotype 15B, (TA)7 serotype 15C, and 15BΔwciZ (15X) strains and found that reduction or absence of WciZ-mediated O-acetylation did not affect capsular shielding from phagocytes, biofilm formation, adhesion to nasopharyngeal cells, desiccation tolerance, or murine colonization. Sera from PPV23-immunized persons opsonized serotype 15B significantly but only slightly better than serotypes 15C and 15X; thus, PPV23 may not result in expansion of serotype 15C.
Collapse
|
29
|
Position of O-Acetylation within the Capsular Repeat Unit Impacts the Biological Properties of Pneumococcal Serotypes 33A and 33F. Infect Immun 2017; 85:IAI.00132-17. [PMID: 28438972 DOI: 10.1128/iai.00132-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) produces many capsule types that differ in their abilities to evade host immune recognition. To explain these serotype-dependent protective capacities, many studies have investigated capsular thickness or the interaction of the capsule with complement proteins, but the effects of small chemical modifications of the capsule on its function have not been studied. One small chemical modification found frequently among pneumococcal capsules is O-acetylation. Pneumococcal serotype 33A has two membrane-bound O-acetyltransferase genes, wciG and wcjE A 33A wcjE-deficient variant, 33F, occurs naturally and is increasing in prevalence in the wake of widespread conjugate vaccine use, but no wciG-deficient variants have been reported. To study the biological consequence of the loss of O-acetylation, we created wciG-deficient variants in both serotypes 33A and 33F, which we named 33X1 (ΔwciG) and 33X2 (ΔwciG ΔwcjE). Serotypes 33X1 and 33X2 express novel capsule types based on serological and biochemical analyses. We found that loss of WcjE-mediated O-acetylation appears not to affect cell wall shielding, since serotypes 33A and 33F exhibit comparable nonspecific opsonophagocytic killing, biofilm production, and adhesion to nasopharyngeal cells, though serotype 33F survived short-term drying better than serotype 33A. Loss of WciG-mediated O-acetylation in serotypes 33X1 and 33X2, however, resulted in a phenotype resembling that of nonencapsulated strains: increased cell wall accessibility, increased nonspecific opsonophagocytic killing, enhanced biofilm formation, and increased adhesion to nasopharyngeal cells. We conclude that WciG-mediated, but not WcjE-mediated, O-acetylation is important for producing protective capsules in 33A and that small chemical changes to the capsule can drastically affect its biological properties.
Collapse
|
30
|
Na-Phatthalung P, Chusri S, Suanyuk N, Voravuthikunchai SP. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). J Med Microbiol 2017; 66:430-439. [PMID: 28425874 DOI: 10.1099/jmm.0.000453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Rhodomyrtustomentosa is a Thai medicinal plant that has been attracting attention for its remarkable antibacterial properties against Gram-positive pathogenic bacteria. The purpose of this study was to evaluate the antibacterial properties of R. tomentosa leaf extract against Streptococcus agalactiae and Streptococcus iniae isolated from infected tilapia. METHODOLOGY The anti-streptococcal activity of R. tomentosa was determined using broth microdilution assays. RESULTS The extract demonstrated strong antibacterial activity against the fish pathogens, with minimum inhibitory concentrations (MICs) ranging from 7.8‒62.5 µg ml-1. It was found to possess a dose-dependent bacteriostatic effect on this organism. Scanning electron microscopy revealed irregular and long chains of swollen cells, as well as corkscrew shapes andincomplete separation of cell division of S. agalactiae cells following the treatment at sub-MIC. Moreover, S. agalactiae cells pre-treated with the extract became more sensitive to oxidative stress induced by H2O2 than the untreated cells. Based on the mortality of Nile tilapia after intraperitoneal infection of S. agalactiae at median lethal dose (LD50), the pre-treated cells caused a significant (P<0.01) reduction in mortality of S. agalactiae-infected Nile tilapia. CONCLUSION The results suggested that R. tomentosa could be further developed as a simple and effective agent for the treatment of streptococcosis in Nile tilapia.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Naraid Suanyuk
- Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
31
|
Prager O, Friedman A, Nebenzahl YM. Role of neural barriers in the pathogenesis and outcome of Streptococcus pneumoniae meningitis. Exp Ther Med 2017; 13:799-809. [PMID: 28450902 PMCID: PMC5403536 DOI: 10.3892/etm.2017.4082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial meningitis is an inflammatory disease of the meninges of the central nervous system (CNS). Streptococcus pneumoniae (S. pneumoniae), Neisseria meningitidis, and Haemophilus influenzae are the major bacterial pathogens causing meningitis with S. pneumoniae being responsible for two thirds of meningitis cases in the developed world. To reach the CNS following nasopharyngeal colonization and bacteraemia, the bacteria traverse from the circulation across the blood brain barrier (BBB) and choroid plexus. While the BBB has a protective role in healthy individuals by shielding the CNS from neurotoxic substances circulating in the blood and maintaining the homeostasis within the brain environment, dysfunction of the BBB is associated with the pathophysiology of numerous neurologic disorders, including bacterial meningitis. Inflammatory processes, including release of a broad range of cytokines and free radicals, further increase vascular permeability and contribute to the excessive neural damage observed. Injury to the cerebral microvasculature and loss of blood flow auto-regulation promote increased intracranial pressure and may lead to vascular occlusion. Other common complications commonly associated with meningitis include abnormal neuronal hyper-excitability (e.g., seizures) and loss of hearing. Despite the existence of antibiotic treatment and adjuvant therapy, the relatively high mortality rate and the severe outcomes among survivors of pneumococcal meningitis in developing and developed countries increase the urgency in the requirement of discovering novel biomarkers for the early diagnosis as well as novel treatment approaches. The present review aimed to explore the changes in the brain vascular barriers, which allow S. pneumoniae to invade the CNS, and describe the resultant brain injuries following bacterial meningitis.
Collapse
Affiliation(s)
- Ofer Prager
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva 84101, Israel.,Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva 84101, Israel.,Cognitive & Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of The Negev, Beer-Sheva 84105, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
32
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
33
|
Bacterial peptidoglycan with amidated meso-diaminopimelic acid evades NOD1 recognition: an insight into NOD1 structure–recognition. Biochem J 2016; 473:4573-4592. [DOI: 10.1042/bcj20160817] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022]
Abstract
Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP. The biomolecular structure–recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1–LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu–mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu–mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1–LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1–LRR receptor recognition.
Collapse
|
34
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
35
|
Pinheiro SL, Azenha GR, DE Milito F, Democh YM. Antimicrobial Capacity of Casein Phosphopeptide/Amorphous Calcium Phosphate and Enzymes in Glass Ionomer Cement in Dentin Carious Lesions. Acta Stomatol Croat 2016; 49:104-11. [PMID: 27688392 DOI: 10.15644/asc49/2/3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To evaluate the ability of casein phosphopeptide/amorphous calcium phosphate (CPP/ACP) and lysozyme, lactoferrin, and lactoperoxidase (LLL) added to glass ionomer cement (GIC) to inhibit the growth of S. mutans in a caries model. MATERIAL AND METHODS Eighty permanent third molars were selected. The dentin of these teeth was exposed and flattened. Except for the coronal dentin, the specimens were waterproofed, autoclaved, and submitted to cariogenic challenge with standard strain of S. mutans. The carious lesions were sealed as follows: group 1 (n=20): GIC without additives; group 2 (n=20): GIC + CPP/ACP; group 3 (n=20): GIC + LLL; group 4 (n=20): GIC + CPP/ACP + LLL. S. mutans counts were performed before the caries were sealed (n=5), after 24 hours (n=5), at 1 month (n=5), and at 6 months (n=5). The results were analyzed using descriptive statistical analysis and the Kruskal-Wallis test (Student-Newman-Keuls test). RESULTS GIC + LLL caused a significant reduction of S. mutans 1 month after sealing (p<0.01); however, there was a significant growth of S. mutans 6 months after sealing. GIC, GIC + CPP/ACP, and GIC + CPP/ACP + LLL showed similar behavior with significant reduction of S. mutans after 24 hours (p<0.05) and increase after 1 and 6 months. CONCLUSION The addition of LLL to GIC increases the antimicrobial action of GIC on S. mutans. This leads to control of bacterial biofilm for 1 month, thus stopping the progression of carious lesions.
Collapse
Affiliation(s)
- Sérgio Luiz Pinheiro
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Giuliana Rodrigues Azenha
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Flávia DE Milito
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Yasmin Marialva Democh
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| |
Collapse
|
36
|
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett 2016; 590:3772-3799. [PMID: 27539145 DOI: 10.1002/1873-3468.12364] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Interactions between a bacterial pathogen and its potentially susceptible host are initiated with the colonization step. During respiratory/oral infection, the pathogens must compete with the normal microflora, resist defense mechanisms of the local mucosal immunity, and finally reach, adhere, and breach the mucosal epithelial cell barrier in order to induce invasive disease. This is the case during infection by the swine and zoonotic pathogen Streptococcus suis, which is able to counteract mucosal barriers to induce severe meningitis and sepsis in swine and in humans. The initial steps of the pathogenesis of S. suis infection has been a neglected area of research, overshadowed by studies on the systemic and central nervous phases of the disease. In this Review article, we provide for the first time, an exclusive focus on S. suis colonization and the potential mechanisms involved in S. suis establishment at the mucosa, as well as the mechanisms regulating mucosal barrier breakdown. The role of mucosal immunity is also addressed. Finally, we demystify the extensive list of putative adhesins and virulence factors reported to be involved in the initial steps of pathogenesis by S. suis.
Collapse
Affiliation(s)
- Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada.,Laboratory of Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
37
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
38
|
Abstract
Streptococcus pneumoniae is an opportunistic pathogen globally associated with significant morbidity and mortality. It is capable of causing a wide range of diseases including sinusitis, conjunctivitis, otitis media, pneumonia, bacteraemia, sepsis, and meningitis. While its capsular polysaccharide is indispensible for invasive disease, and opsonising antibodies against the capsule are the basis for the current vaccines, a long history of biomedical research indicates that other components of this Gram-positive bacterium are also critical for virulence. Herein we review the contribution of pneumococcal virulence determinants to survival and persistence in the context of distinct anatomical sites. We discuss how these determinants allow the pneumococcus to evade mucociliary clearance during colonisation, establish lower respiratory tract infection, resist complement deposition and opsonophagocytosis in the bloodstream, and invade secondary tissues such as the central nervous system leading to meningitis. We do so in a manner that highlights both the critical role of the capsular polysaccharide and the accompanying and necessary protein determinants. Understanding the complex interplay between host and pathogen is necessary to find new ways to prevent pneumococcal infection. This review is an attempt to do so with consideration for the latest research findings.
Collapse
|
39
|
Kuipers K, Gallay C, Martínek V, Rohde M, Martínková M, van der Beek SL, Jong WSP, Venselaar H, Zomer A, Bootsma H, Veening JW, de Jonge MI. Highly conserved nucleotide phosphatase essential for membrane lipid homeostasis in Streptococcus pneumoniae. Mol Microbiol 2016; 101:12-26. [PMID: 26691161 DOI: 10.1111/mmi.13312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 01/24/2023]
Abstract
Proteins belonging to the DHH family, a member of the phosphoesterase superfamily, are produced by most bacterial species. While some of these proteins are well studied in Bacillus subtilis and Escherichia coli, their functions in Streptococcus pneumoniae remain unclear. Recently, the highly conserved DHH subfamily 1 protein PapP (SP1298) has been reported to play an important role in virulence. Here, we provide a plausible explanation for the attenuated virulence of the papP mutant. Recombinant PapP specifically hydrolyzed nucleotides 3'-phosphoadenosine-5'-phosphate (pAp) and 5'-phosphoadenylyl-(3'->5')-adenosine (pApA). Deletion of papP, potentially leading to pAp/pApA accumulation, resulted in morphological defects and mis-localization of several cell division proteins. Incubation with both polar solvent and detergent led to robust killing of the papP mutant, indicating that membrane integrity is strongly affected. This is in line with previous studies showing that pAp inhibits the ACP synthase, an essential enzyme involved in lipid precursor production. Remarkably, partial inactivation of the lipid biosynthesis pathway, by inhibition of FabF or depletion of FabH, phenocopied the papP mutant. We conclude that pAp and pApA phosphatase activity of PapP is required for maintenance of membrane lipid homeostasis providing an explanation how inactivation of this protein may attenuate pneumococcal virulence.
Collapse
Affiliation(s)
- Kirsten Kuipers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Clement Gallay
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Samantha L van der Beek
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Wouter S P Jong
- Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hester Bootsma
- Laboratory for Infectious Diseases and Screening, Centre for Infectious Disease Control, RIVM, Bilthoven, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Sethi D, Mahajan S, Singh C, Lama A, Hade MD, Gupta P, Dikshit KL. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor. J Biol Chem 2016; 291:2938-2953. [PMID: 26589796 PMCID: PMC4742756 DOI: 10.1074/jbc.m115.662593] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Deepti Sethi
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Chaahat Singh
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Amrita Lama
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mangesh Dattu Hade
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Kanak L Dikshit
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
41
|
Combined effects of lactoferrin and lysozyme on Streptococcus pneumoniae killing. Microb Pathog 2015; 89:7-17. [PMID: 26298002 DOI: 10.1016/j.micpath.2015.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae is a common colonizer of the human nasopharynx, which can occasionally spread to sterile sites, causing diseases such as otitis media, sinusitis, pneumonia, meningitis and bacteremia. Human apolactoferrin (ALF) and lysozyme (LZ) are two important components of the mucosal innate immune system, exhibiting lytic effects against a wide range of microorganisms. Since they are found in similar niches of the host, it has been proposed that ALF and LZ could act synergistically in controlling bacterial spread throughout the mucosa. The combination of ALF and LZ has been shown to enhance killing of different pathogens in vitro, with ALF facilitating the latter action of LZ. The aim of the present work was to investigate the combined effects of ALF and LZ on S pneumoniae. Concomitant addition of ALF and LZ had a synergistic killing effect on one of the pneumococci tested. Furthermore, the combination of ALF and ALZ was more bactericidal than lysozyme alone in all pneumococcal strains. Pneumococcal surface protein A (PspA), an important vaccine candidate, partially protects pneumococci from ALF mediated killing, while antibodies against one PspA enhance killing of the homologous strain by ALF. However, the serological variability of this molecule could limit the effect of anti-PspA antibodies on different pneumococci. Therefore, we investigated the ability of anti-PspA antibodies to increase ALF-mediated killing of strains that express different PspAs, and found that antisera to the N-terminal region of PspA were able to increase pneumococcal lysis by ALF, independently of the sequence similarities between the molecule expressed on the bacterial surface and that used to produce the antibodies. LF binding to the pneumococcal surface was confirmed by flow cytometry, and found to be inhibited in presence of anti-PspA antibodies. On a whole, the results suggest a contribution of ALF and LZ to pneumococcal clearance, and confirm PspA's ability to interact with ALF.
Collapse
|
42
|
Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology. PLoS One 2015; 10:e0123702. [PMID: 25901369 PMCID: PMC4406557 DOI: 10.1371/journal.pone.0123702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.
Collapse
|
43
|
Pushkaran AC, Nataraj N, Nair N, Götz F, Biswas R, Mohan CG. Understanding the Structure-Function Relationship of Lysozyme Resistance in Staphylococcus aureus by Peptidoglycan O-Acetylation Using Molecular Docking, Dynamics, and Lysis Assay. J Chem Inf Model 2015; 55:760-70. [PMID: 25774564 DOI: 10.1021/ci500734k] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysozyme is an important component of the host innate defense system. It cleaves the β-1,4 glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine of bacterial peptidoglycan and induce bacterial lysis. Staphylococcus aureus (S. aureus), an opportunistic commensal pathogen, is highly resistant to lysozyme, because of the O-acetylation of peptidoglycan by O-acetyl transferase (oatA). To understand the structure-function relationship of lysozyme resistance in S. aureus by peptidoglycan O-acetylation, we adapted an integrated approach to (i) understand the effect of lysozyme on the growth of S. aureus parental and the oatA mutant strain, (ii) study the lysozyme induced lysis of exponentially grown and stationary phase of both the S. aureus parental and oatA mutant strain, (iii) investigate the dynamic interaction mechanism between normal (de-O-acetylated) and O-acetylated peptidoglycan substrate in complex with lysozyme using molecular docking and molecular dynamics simulations, and (iv) quantify lysozyme resistance of S. aureus parental and the oatA mutant in different human biological fluids. The results indicated for the first time that the active site cleft of lysozyme binding with O-acetylated peptidoglycan in S. aureus was sterically hindered and the structural stability was higher for the lysozyme in complex with normal peptidoglycan. This could have conferred reduced survival of the S. aureus oatA mutant in different human biological fluids. Consistent with this computational analysis, the experimental data confirmed decrease in the growth, lysozyme induced lysis, and lysozyme resistance, due to peptidoglycan O-acetylation in S. aureus.
Collapse
Affiliation(s)
| | | | | | - Friedrich Götz
- ‡Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72074 Tübingen, Germany
| | | | | |
Collapse
|
44
|
Degradation products of the extracellular pathogen Streptococcus pneumoniae access the cytosol via its pore-forming toxin. mBio 2015; 6:mBio.02110-14. [PMID: 25604786 PMCID: PMC4313911 DOI: 10.1128/mbio.02110-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is a leading pathogen with an extracellular lifestyle; however, it is detected by cytosolic surveillance systems of macrophages. The innate immune response that follows cytosolic sensing of cell wall components results in recruitment of additional macrophages, which subsequently clear colonizing organisms from host airways. In this study, we monitored cytosolic access by following the transit of the abundant bacterial surface component capsular polysaccharide, which is linked to the cell wall. Confocal and electron microscopy visually characterized the location of cell wall components in murine macrophages outside membrane-bound organelles. Quantification of capsular polysaccharide through cellular fractionation demonstrated that cytosolic access of bacterial cell wall components is dependent on phagocytosis, bacterial sensitivity to the host’s degradative enzyme lysozyme, and release of the pore-forming toxin pneumolysin. Activation of p38 mitogen-activated protein kinase (MAPK) signaling is important for limiting access to the cytosol; however, ultimately, these are catastrophic events for both the bacteria and the macrophage, which undergoes cell death. Our results show how expression of a pore-forming toxin ensures the death of phagocytes that take up the organism, although cytosolic sensing results in innate immune detection that eventually allows for successful host defense. These findings provide an example of how cytosolic access applies to an extracellular microbe and contributes to its pathogenesis. Importance Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen that is a leading cause of pneumonia. Pneumococcal disease is preceded by colonization of the nasopharynx, which lasts several weeks before being cleared by the host’s immune system. Although S. pneumoniae is an extracellular microbe, intracellular detection of pneumococcal components is critical for bacterial clearance. In this study, we show that following bacterial uptake and degradation by phagocytes, pneumococcal products access the host cell cytosol via its pore-forming toxin. This phenomenon of cytosolic access results in phagocyte death and may serve to combat the host cells responsible for clearing the organism. Our results provide an example of how intracellular access and subsequent immune detection occurs during infection with an extracellular pathogen. Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen that is a leading cause of pneumonia. Pneumococcal disease is preceded by colonization of the nasopharynx, which lasts several weeks before being cleared by the host’s immune system. Although S. pneumoniae is an extracellular microbe, intracellular detection of pneumococcal components is critical for bacterial clearance. In this study, we show that following bacterial uptake and degradation by phagocytes, pneumococcal products access the host cell cytosol via its pore-forming toxin. This phenomenon of cytosolic access results in phagocyte death and may serve to combat the host cells responsible for clearing the organism. Our results provide an example of how intracellular access and subsequent immune detection occurs during infection with an extracellular pathogen.
Collapse
|
45
|
A Moraxella catarrhalis two-component signal transduction system necessary for growth in liquid media affects production of two lysozyme inhibitors. Infect Immun 2014; 83:146-60. [PMID: 25312959 DOI: 10.1128/iai.02486-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis.
Collapse
|
46
|
Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics (Basel) 2014; 3:461-92. [PMID: 25419466 PMCID: PMC4239024 DOI: 10.3390/antibiotics3040461] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Kathryn L Nawrocki
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Emily K Crispell
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| |
Collapse
|
47
|
Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014; 10:e1004364. [PMID: 25210925 PMCID: PMC4161441 DOI: 10.1371/journal.ppat.1004364] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell-surface proteins play integral roles in host-pathogen interactions. These proteins are often architecturally and functionally sophisticated and yet few studies of such proteins involved in host-pathogen interactions have defined the domains or modules required for specific functions. Streptococcus pneumoniae (pneumococcus), an opportunistic pathogen that is a leading cause of community acquired pneumonia, otitis media and bacteremia, is decorated with many complex surface proteins. These include β-galactosidase BgaA, which is specific for terminal galactose residues β-1-4 linked to glucose or N-acetylglucosamine and known to play a role in pneumococcal growth, resistance to opsonophagocytic killing, and adherence. This study defines the domains and modules of BgaA that are required for these distinct contributions to pneumococcal pathogenesis. Inhibitors of β-galactosidase activity reduced pneumococcal growth and increased opsonophagocytic killing in a BgaA dependent manner, indicating these functions require BgaA enzymatic activity. In contrast, inhibitors increased pneumococcal adherence suggesting that BgaA bound a substrate of the enzyme through a distinct module or domain. Extensive biochemical, structural and cell based studies revealed two newly identified non-enzymatic carbohydrate-binding modules (CBMs) mediate adherence to the host cell surface displayed lactose or N-acetyllactosamine. This finding is important to pneumococcal biology as it is the first adhesin-carbohydrate receptor pair identified, supporting the widely held belief that initial pneumococcal attachment is to a glycoconjugate. Perhaps more importantly, this is the first demonstration that a CBM within a carbohydrate-active enzyme can mediate adherence to host cells and thus this study identifies a new class of carbohydrate-binding adhesins and extends the paradigm of CBM function. As other bacterial species express surface-associated carbohydrate-active enzymes containing CBMs these findings have broad implications for bacterial adherence. Together, these data illustrate that comprehending the architectural sophistication of surface-attached proteins can increase our understanding of the different mechanisms by which these proteins can contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Anirudh K. Singh
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Benjamin Pluvinage
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Melanie A. Higgins
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Ankur B. Dalia
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Matthew Flynn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Audrey R. Lloyd
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keith A. Stubbs
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alisdair B. Boraston
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (ABB); (SJK)
| | - Samantha J. King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (ABB); (SJK)
| |
Collapse
|
48
|
Within-host selection is limited by an effective population of Streptococcus pneumoniae during nasopharyngeal colonization. Infect Immun 2013; 81:4534-43. [PMID: 24082074 DOI: 10.1128/iai.00527-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant pathogen that frequently colonizes the human nasopharynx. Environmental factors, including antimicrobial use and host immunity, exert selection on members of the nasopharyngeal population, and the dynamics of selection are influenced by the effective population size of the selected population, about which little is known. We measured here the variance effective population size (N(e)) of pneumococcus in a mouse colonization model by monitoring the frequency change of two cocolonizing, competitively neutral pneumococcal strains over time. The point estimate of N(e) during nasal carriage in 16 BALB/c mice was 133 (95% confidence interval [CI] = 11 to 203). In contrast, the lower-bound census population exhibited a mean of 5768 (95% CI = 2,515 to 9,021). Therefore, pneumococcal N(e) during nasal carriage is substantially smaller than the census population. The N(e) during day 1 to day 4 of colonization was comparable to the Ne during day 4 to day 8. Similarly, a low Ne was also evident for the colonization of pneumococcus in BALB/c mice exposed to cholera toxin 4 weeks prior to challenge and in another mouse strain (DO11.10 RAG(-/-)). We developed a mathematical model of pneumococcal colonization composed of two subpopulations with differential contribution to future generations. By stochastic simulation, this model can reproduce the pattern of observed pneumococcal N(e) and predicts that the selection coefficients may be difficult to measure in vivo. We hypothesized that such a small N(e) may reduce the effectiveness of within host selection for pneumococcus.
Collapse
|
49
|
Sukhithasri V, Nisha N, Biswas L, Anil Kumar V, Biswas R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol Res 2013; 168:396-406. [DOI: 10.1016/j.micres.2013.02.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/08/2013] [Accepted: 02/09/2013] [Indexed: 01/19/2023]
|
50
|
Burghout P, Quintero B, Bos L, Beilharz K, Veening JW, de Jonge MI, van der Linden M, van der Ende A, Hermans PWM. A single amino acid substitution in the MurF UDP-MurNAc-pentapeptide synthetase renders Streptococcus pneumoniae dependent on CO2 and temperature. Mol Microbiol 2013; 89:494-506. [PMID: 23750975 DOI: 10.1111/mmi.12292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 11/30/2022]
Abstract
The respiratory tract pathogen Streptococcus pneumoniae encounters different levels of environmental CO2 during transmission, host colonization and disease. About 8% of all pneumococcal isolates are capnophiles that require CO2 -enriched growth conditions. The underlying molecular mechanism for caphnophilic behaviour, as well as its biological function is unknown. Here, we found that capnophilic S. pneumoniae isolates from clonal complex (CC) 156 (i.e. Spain(9V) -3 ancestry) and CC344 (i.e. Norway(NT) -42 ancestry) have a valine at position 179 in the MurF UDP-MurNAc-pentapeptide synthetase. At ≤ 30°C, the growth characteristics of capnophilic and non-capnophilic CC156 strains were equal, but at > 30°C growth and survival of MurF(V) (179) strains was dependent on > 0.1% CO2 -enriched conditions. Expression of MurF(V) (179) in S. pneumoniae R6 and G54 rendered these, otherwise non-capnophilic strains, capnophilic. Time-lapse microscopy revealed that a capnophilic CC156 strain undergoes rapid autolysis upon exposure to CO2 -poor conditions at 37°C, and staining with fluorescently labelled vancomycin showed a defect in de novo cell wall synthesis. In summary, in capnophilic S. pneumoniae strains from CC156 and CC344 cell wall synthesis is placed under control of environmental CO2 levels and temperature. This mechanism might represent a novel strategy of the pneumococcus to rapidly adapt and colonize its host under changing environmental conditions.
Collapse
Affiliation(s)
- Peter Burghout
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|