1
|
Zhu M, Liu Y, Yang X, Zhu L, Shen Y, Duan S, Yang J. p21-activated kinase is involved in the sporulation, pathogenicity, and stress response of Arthrobotrys oligospora under the indirect regulation of Rho GTPase-activating protein. Front Microbiol 2023; 14:1235283. [PMID: 37779704 PMCID: PMC10537225 DOI: 10.3389/fmicb.2023.1235283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.
Collapse
Affiliation(s)
- Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yankun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Youngchim S. Extracellular vesicles derived from Talaromyces marneffei contain immunogenic compounds and modulate THP-1 macrophage responses. Front Immunol 2023; 14:1192326. [PMID: 37457708 PMCID: PMC10339390 DOI: 10.3389/fimmu.2023.1192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1β, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
5
|
Zheng F, Gao W, Wang Y, Chen Q, Zhang Q, Jiang X, Hou B, Zhang Z. Map of dimorphic switching‑related signaling pathways in Sporothrix schenckii based on its transcriptome. Mol Med Rep 2021; 24:646. [PMID: 34278493 PMCID: PMC8299191 DOI: 10.3892/mmr.2021.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Sporothrix schenckii (S. schenckii) induces sporotrichosis, which has gained attention in recent years due to its worldwide prevalence. The dimorphic switching process is essential for the pathogenesis of S. schenckii. Previously, overexpression of several signal transduction genes, including SsDRK1 and SsSte20, was observed during the mycelium‑to‑yeast transition; these were necessary for asexual development, yeast‑phase cell formation, cell wall integrity and melanin synthesis. However, the mechanisms of the signaling pathways during dimorphic switching of S. schenckii remain unclear. In the present study, transcriptome sequencing of the 48‑h induced yeast forms and mycelium of S. schenckii was performed. In total, 24,904,510 high‑quality clean reads were obtained from mycelium samples and 22,814,406 from 48‑h induced yeast form samples. Following assembly, 31,779 unigene sequences were obtained with 52.98% GC content (The proportion of guanine G and cytosine C to all bases in nucleic acid). The results demonstrated that 12,217 genes, including genes involved in signal transduction and chitin synthesis, were expressed differentially between the two stages. According to these results, a map of the signaling pathways, including two‑component and heterotrimeric G‑protein signaling systems, Ras and MAPK cascades associated with the dimorphic switch, was drawn. Taken together, the transcriptome data and analysis performed in the present study lay the foundation for further research into the molecular mechanisms controlling the dimorphic switch of S. schenckii and support the development of anti‑S. schenckii strategies targeting genes associated with signaling pathways.
Collapse
Affiliation(s)
- Fangliang Zheng
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Wei Gao
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ying Wang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qingyan Chen
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qiuling Zhang
- Department of Dermatology, Shenzhen Shekou People's Hospital, Shenzhen, Guangdong 518067, P.R. China
| | - Xiuyan Jiang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Binbin Hou
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Zhenying Zhang
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
6
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Abstract
Talaromyces marneffei is an important opportunistic human pathogen endemic to Southeast Asia. It is one of a number of pathogenic fungi that exhibits thermally controlled dimorphism. At 25°C, T. marneffei grows in a multicellular, filamentous hyphal form that can differentiate to produce dormant spores called conidia. These conidia are the likely infectious agent. At 37°C, T. marneffei grows as a uninucleate yeast that divides by fission. The yeast cells are the pathogenic form of this fungus. The protocols described here explain how to grow T. marneffei in the two vegetative growth forms in vitro, grow yeast cells inside mammalian macrophages, produce conidial stocks, and store strains both short and long term. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Growth of the vegetative hyphal form on solid medium Alternate Protocol 1: Growth of the vegetative hyphal form in liquid suspension Basic Protocol 2: Growth of the vegetative yeast form on solid medium Alternate Protocol 2: Growth of the vegetative yeast form in liquid suspension Basic Protocol 3: Growth for production of dormant conidia Support Protocol: Preparation of Miracloth filter tubes Basic Protocol 4: Growth of Talaromyces marneffei in mammalian macrophages Basic Protocol 5: Storage of Talaromyces marneffei strains Alternate Protocol 3: Lyophilization of Talaromyces marneffei strains.
Collapse
Affiliation(s)
- Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Kitade Y, Sumita T, Izumitsu K, Tanaka C. Cla4 PAK-like kinase is required for pathogenesis, asexual/sexual development and polarized growth in Bipolaris maydis. Curr Genet 2019; 65:1229-1242. [DOI: 10.1007/s00294-019-00977-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022]
|
10
|
Ellett F, Pazhakh V, Pase L, Benard EL, Weerasinghe H, Azabdaftari D, Alasmari S, Andrianopoulos A, Lieschke GJ. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLoS Pathog 2018; 14:e1007063. [PMID: 29883484 PMCID: PMC6010348 DOI: 10.1371/journal.ppat.1007063] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei's opportunity for macrophage parasitism and thereby enhancing this pathogen's exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.
Collapse
Affiliation(s)
- Felix Ellett
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Luke Pase
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Erica L. Benard
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Denis Azabdaftari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Sultan Alasmari
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, Australia
| | - Graham J. Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues AM, de Camargo ZP, de Hoog S. Sporotrichosis between 1898 and 2017: The evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol 2018. [DOI: 10.1093/mmy/myx103] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Department of Cell Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Hector M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Yu Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Gustavo Nino-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Anderson Messias Rodrigues
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, and Center of Expertise in Mycology of Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Abstract
Morphological changes are a very common and effective strategy for pathogens to survive in the mammalian host. During interactions with their host, human pathogenic fungi undergo an array of morphological changes that are tightly associated with virulence. Candida albicans switches between yeast cells and hyphae during infection. Thermally dimorphic pathogens, such as Histoplasma capsulatum and Blastomyces species transform from hyphal growth to yeast cells in response to host stimuli. Coccidioides and Pneumocystis species produce spherules and cysts, respectively, which allow for the production of offspring in a protected environment. Finally, Cryptococcus species suppress hyphal growth and instead produce an array of yeast cells—from large polyploid titan cells to micro cells. While the morphology changes produced by human fungal pathogens are diverse, they all allow for the pathogens to evade, manipulate, and overcome host immune defenses to cause disease. In this review, we summarize the morphology changes in human fungal pathogens—focusing on morphological features, stimuli, and mechanisms of formation in the host.
Collapse
Affiliation(s)
| | - Kirsten Nielsen
- Correspondence: ; Tel.: +1-612-625-4979; Fax: +1-612-626-0623
| |
Collapse
|
13
|
Adaptation to macrophage killing by Talaromyces marneffei. Future Sci OA 2017; 3:FSO215. [PMID: 28884011 PMCID: PMC5583664 DOI: 10.4155/fsoa-2017-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an important opportunistic fungal pathogen. It causes disseminated infection in immunocompromised patients especially in Southeast Asian countries. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the macrophage. Major stresses inside the phagosome of macrophages are heat, oxidative substances and nutrient deprivation. The coping strategies of this pathogen with these stresses are under investigation. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. These include molecules in the MAP signal transduction cascade, heat shock proteins, antioxidant enzymes and enzymes responsible in nutrient retrieval. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity. Talaromyces marneffei is an important dimorphic fungus that causes disease in immunocompromised patients. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the host macrophage cells. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity.
Collapse
|
14
|
Minz-Dub A, Sharon A. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Mol Microbiol 2017; 104:487-498. [PMID: 28164413 DOI: 10.1111/mmi.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac.
Collapse
Affiliation(s)
- Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
15
|
Sapmak A, Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Andrianopoulos A, Pruksaphon K, Youngchim S. Talaromyces marneffei laccase modifies THP-1 macrophage responses. Virulence 2016; 7:702-17. [PMID: 27224737 DOI: 10.1080/21505594.2016.1193275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an emerging opportunistic pathogen associated with HIV infection, particularly in Southeast Asia and southern China. The rapid uptake and killing of T. marneffei conidia by phagocytic cells along with the effective induction of an inflammatory response by the host is essential for disease control. T. marneffei produces a number of different laccases linked to fungal virulence. To understand the role of the various laccases in T. marneffei, laccase-encoding genes were investigated. Targeted single, double and triple gene deletions of laccases encoding lacA, lacB, and lacC showed no significant phenotypic effects suggesting redundancy of function. When a fourth laccase-encoding gene, pbrB, was deleted in the ΔlacA ΔlacB ΔlacC background, the quadruple mutant displayed delayed conidiation and the conidia were more sensitive to H2O2, sodium dodecyl sulfate (SDS), and antifungal agents than wild-type and other transformants. Conidia of the quadruple mutant showed marked differences in their interaction with the human monocyte cell line, THP-1 such that phagocytosis was significantly higher when compared with the wild-type at one and 2 hours of incubation while the phagocytic index was significantly different from 15 to 120 minutes. In addition, killing of the quadruple mutant by THP-1 cells was more efficient at 2 and 4 hours of incubation. The levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 from THP-1 cells infected with the quadruple mutant were also significantly increased in comparison with wild-type. The results demonstrate that production of laccases by T. marneffei actually promotes the pathogen's resistance to innate host defenses.
Collapse
Affiliation(s)
- Ariya Sapmak
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Faculty of Medical Technology, Nakhon Ratchasima College , Nakhon Ratchasima , Thailand
| | - Jutikul Kaewmalakul
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Joshua D Nosanchuk
- c Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology , Albert Einstein College of Medicine , Bronx , NY , USA
| | - Nongnuch Vanittanakom
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Alex Andrianopoulos
- d Genetics, Genomics and Development, School of BioSciences, The University of Melbourne , Victoria , Australia
| | - Kritsada Pruksaphon
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sirida Youngchim
- a Department of Microbiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
16
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Dankai W, Pongpom M, Vanittanakom N. Validation of reference genes for real-time quantitative RT-PCR studies in Talaromyces marneffei. J Microbiol Methods 2015; 118:42-50. [DOI: 10.1016/j.mimet.2015.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/22/2015] [Accepted: 08/23/2015] [Indexed: 01/03/2023]
|
18
|
Boyce KJ, Andrianopoulos A. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 2015; 39:797-811. [DOI: 10.1093/femsre/fuv035] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/19/2023] Open
|
19
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Bugeja HE, Andrianopoulos A. Morphogenesis and pathogenesis: control of cell identity in a dimorphic pathogen. MICROBIOLOGY AUSTRALIA 2015. [DOI: 10.1071/ma15031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Suwunnakorn S, Cooper CR, Kummasook A, Pongpom M, Vanittanakom P, Vanittanakom N. Role of the rttA gene in morphogenesis, stress response, and virulence in the human pathogenic fungus Penicillium marneffei. Med Mycol 2014; 53:119-31. [DOI: 10.1093/mmy/myu063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Tian H, Zhou L, Guo W, Wang X. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae. Fungal Genet Biol 2014; 74:21-31. [PMID: 25475370 DOI: 10.1016/j.fgb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
Rac1 is a small GTPase coordinating diverse cellular functions such as cell polarity, vesicular trafficking, the cell cycle and transcriptional dynamics in many organisms. In this study, we investigate the biological functions of VdRac1, a Rac1 homolog in the soil-borne, wilt-causing fungus Verticillium dahliae. The VdRac1 gene was deleted in a V. dahliae virulence strain Vd8 isolated from a local cotton cultivar. ΔVdrac1 mutants display drastic reduction in colony expansion and form compact, convoluted colonies, show hyper-branching, loss of polarity and ability to penetrate, leading to severely reduced virulence. The p21-activated kinase Cla4 (named as VdCla4 in V. dahliae) null mutants ΔVdcla4 share identical phenotypes with ΔVdrac1. Yeast two-hybrid studies prove that VdCla4 is an effector of VdRac1. Localizations of actin and reactive oxygen species (ROS) in ΔVdrac1 and ΔVdcla4 compared with the corresponding wild-type strain reveal that VdRac1 and VdCla4 play a primary role in polarized hyphal growth via organization of ROS and play only a minor role in the organization of actin. The Vdrac1 and Vdcla4 null mutants are defective in conidiation and trace elements can partially compensate for the defect. Our data demonstrate that VdRac1 regulates polarized growth and pathogenicity by interacting with its effector VdCla4 in V. dahliae.
Collapse
Affiliation(s)
- Hui Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Zhou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wangzhen Guo
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Nimmanee P, Woo PCY, Kummasook A, Vanittanakom N. Characterization of sakA gene from pathogenic dimorphic fungus Penicillium marneffei. Int J Med Microbiol 2014; 305:65-74. [PMID: 25466206 DOI: 10.1016/j.ijmm.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Eukaryotes utilize stress activated protein kinase (SAPK) pathways to adapt to environmental stress, including heat, osmotic, oxidative or nutrient stresses. Penicillium marneffei (Talaromyces marneffei), the dimorphic pathogenic fungus that can cause disseminated mycosis in HIV-infected patients, has to encounter various types of stresses both outside and inside host cells. However, the strategies used by this fungus in response to these stresses are still unclear. In this report, the stress-activated kinase (sakA) gene of P. marneffei was characterized and the roles of this gene on various stress conditions were studied. The sakA gene deletion mutant was constructed using the split marker method. The phenotypes and sensitivities to varieties of stresses, including osmotic, oxidative, heat and cell wall stresses of the deletion mutant were compared with the wild type and the sakA complemented strains. Results demonstrated that the P. marneffei sakA gene encoded a putative protein containing TXY phosphorylation lip found in the stress high osmolarity glycerol 1 (Hog1)/Spc1/p38 MAPK family, and that this gene was involved not only in tolerance against oxidative and heat stresses, but also played a role in asexual development, chitin deposition, yeast cell generation in vitro and survival inside mouse and human macrophages.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C Y Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
24
|
Nimmanee P, Woo PCY, Vanittanakom P, Youngchim S, Vanittanakom N. Functional analysis of atfA gene to stress response in pathogenic thermal dimorphic fungus Penicillium marneffei. PLoS One 2014; 9:e111200. [PMID: 25365258 PMCID: PMC4218842 DOI: 10.1371/journal.pone.0111200] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/20/2014] [Indexed: 12/15/2022] Open
Abstract
Penicillium marneffei, the pathogenic thermal dimorphic fungus is a causative agent of a fatal systemic disease, penicilliosis marneffei, in immunocompromised patients especially HIV patients. For growth and survival, this fungus has to adapt to environmental stresses outside and inside host cells and this adaptation requires stress signaling pathways and regulation of gene expression under various kinds of stresses. In this report, P. marneffei activating transcription factor (atfA) gene encoding bZip-type transcription factor was characterized. To determine functions of this gene, atfA isogenic mutant strain was constructed using the modified split marker recombination method. The phenotypes and susceptibility to varieties of stresses including osmotic, oxidative, heat, UV, cell wall and cell membrane stresses of the mutant strain were compared with the wild type and the atfA complemented strains. Results demonstrated that the mRNA expression level of P. marneffei atfA gene increased under heat stress at 42°C. The atfA mutant was more sensitive to sodium dodecyl sulphate, amphotericin B and tert-butyl hydroperoxide than the wild type and complemented strains but not hydrogen peroxide, menadione, NaCl, sorbitol, calcofluor white, itraconazole, UV stresses and heat stress at 39°C. In addition, recovery of atfA mutant conidia after mouse and human macrophage infections was significantly decreased compared to those of wild type and complemented strains. These results indicated that the atfA gene was required by P. marneffei under specific stress conditions and might be necessary for fighting against host immune cells during the initiation of infection.
Collapse
Affiliation(s)
- Panjaphorn Nimmanee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrick C. Y. Woo
- State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology and Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | | | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Suwunnakorn S, Cooper CR, Kummasook A, Vanittanakom N. Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei. Microbiology (Reading) 2014; 160:1929-1939. [DOI: 10.1099/mic.0.080689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Penicillium marneffei is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, P. marneffei grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, P. marneffei grows as a yeast that divides by binary fission. Previously, an Agrobacterium-mediated transformation system was used to randomly mutagenize P. marneffei, resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as yakA. In the current study, we demonstrate that the yakA mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the yakA gene resulted in early conidial germination and perturbation of cell wall integrity. The yakA mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the yakA mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, chsB and chsG. Moreover, the expression of yakA was induced during post-exponential-phase growth as well as by heat shock. Thus, yakA is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate chs expression and heat stress response in P. marneffei.
Collapse
Affiliation(s)
- Sumanun Suwunnakorn
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chester R. Cooper
- Center for Applied Chemical Biology and Department of Biological Sciences, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
| | - Aksarakorn Kummasook
- Division of Clinical Microbiology, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Nongnuch Vanittanakom
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Remarkable reductions of PAKs in the brain tissues of scrapie-infected rodent possibly linked closely with neuron loss. Med Microbiol Immunol 2014; 203:291-302. [PMID: 24870058 DOI: 10.1007/s00430-014-0342-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/12/2014] [Indexed: 02/02/2023]
Abstract
Prion diseases are irreversible progressive neurodegenerative diseases characterized in the brain by PrP(Sc) deposits, neuronal degeneration, gliosis and by cognitive, behavioral and physical impairments, leading to severe incapacity and inevitable death. Proteins of the p21-activated kinase (PAK) family are noted for roles in gene transcription, cytoskeletal dynamics, cell cycle progression and survival signaling. In the present study, we aimed to identify the potential roles of PAKs during prion infection, utilizing the brains of scrapie agent-infected hamsters. Western blots and immunohistochemical assays showed that brain levels of PAK3 and PAK1, as well as their upstream activator Rac/cdc42 and downstream substrate Raf1, were remarkably reduced at terminal stage. Double-stained immunofluorescent assay demonstrated that PAK3 was expressed mainly in neurons. Dynamic analyses of the brain samples collected at the different time points during the incubation period illustrated successive decreases of PAK3, PAK1 and Raf1, especially phosphor Raf1, which correlated well with neuron loss. Rac/cdc42 in the brain tissues increased at early stage and reached to the top at mid-late stage, but diminished at final stage. Unlike the alteration of PAKs in vivo, PAK3 and PAK1, as well as Rac/cdc42 and Raf1 in the prion-infected cell line SMB-S15 remained unchanged compared with those of its normal cell line SMB-PS. Our data here indicate that the functions of PAKs and their associated signaling pathways are seriously affected in the brains of prion disease, which appear to associate closely with the extensive neuron loss.
Collapse
|
27
|
Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. EUKARYOTIC CELL 2013; 12:1214-24. [PMID: 23851338 DOI: 10.1128/ec.00159-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. P. marneffei grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of P. marneffei, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of P. marneffei PM1 grown at 25 and 37°C. Among ∼11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in P. marneffei through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that P. marneffei may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to P. marneffei. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of P. marneffei genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of P. marneffei. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in P. marneffei.
Collapse
|
28
|
Bugeja HE, Hynes MJ, Andrianopoulos A. HgrA is necessary and sufficient to drive hyphal growth in the dimorphic pathogen Penicillium marneffei. Mol Microbiol 2013; 88:998-1014. [PMID: 23656348 DOI: 10.1111/mmi.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2013] [Indexed: 12/17/2022]
Abstract
Fungi produce multiple morphological forms as part of developmental programs or in response to changing, often stressful, environmental conditions. An opportunistic pathogen of humans, Penicillium marneffei displays multicellular hyphal growth and asexual development (conidiation) in the environment at 25°C and unicellular yeast growth in macrophages at 37°C. We characterized the transcription factor, hgrA, which contains a C(2)H(2) DNA binding domain closely related to that of the stress-response regulators Msn2/4 of Saccharomyces cerevisiae. Northern hybridization analysis demonstrated that hgrA expression is specific to hyphal growth, and its constitutive overexpression prevents conidiation and yeast growth, even in the presence of inductive cues, and causes apical hyperbranching during hyphal growth. Consistent with its expression pattern, deletion of hgrA causes defects in hyphal morphogenesis and the dimorphic transition from yeast cells to hyphae. Specifically, loss of HgrA causes cell wall defects, reduced expression of cell wall biosynthetic enzymes and increased sensitvity to cell wall, oxidative, but not osmotic stress agents. These data suggest that HgrA does not have a direct role in the response to stress but is an inducer of the hyphal growth program and its activity must be downregulated to allow alternative developmental programs, including the morphogenesis of yeast cells in macrophages.
Collapse
Affiliation(s)
- Hayley E Bugeja
- Department of Genetics, University of Melbourne, Melbourne, Vic., 3010, Australia
| | | | | |
Collapse
|
29
|
Zhang Z, Hou B, Zheng F, Yu X, Liu X. Molecular cloning, characterization and differential expression of a Sporothrix schenckii STE20-like protein kinase SsSte20. Int J Mol Med 2013; 31:1343-8. [PMID: 23588744 DOI: 10.3892/ijmm.2013.1352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/22/2013] [Indexed: 11/05/2022] Open
Abstract
Dimorphic switching requires fungal cells to undergo changes in polarized growth in response to environmental stimuli. The Ste20-related kinases are involved in signaling through mitogen-activated protein kinase pathways and in morphogenesis through the regulation of cytokinesis and actin-dependent polarized growth. In this report, we isolated and characterized an Ste20 homologue gene, designated SsSte20, from yeast-form Sporothrix schenckii (S. schenckii). The full length SsSte20 cDNA sequence is 2846 bp in size, and contains an open reading frame of 2505 bp encoding 835 amino acids. The predicted molecular mass of SsSte20 is 91.31 kDa with an estimated theoretical isoelectric point of 5.76. SsSte20 kinase domain shows 63% identity with that of Don3, a germinal centre kinase (GCK) from Ustilago maydis. Two exons and one intron are identified within the 2578 bp SsSte20 genomic DNA sequence of S. schenckii. Differential expression of the SsSte20 was demonstrated by real-time RT-PCR. The expression of SsSte20 was much higher in the yeast stage compared with that in the mycelial stage, which indicated that the SsSte20 may be involved in the pathogenesis of the yeast phase of S. schenckii.
Collapse
Affiliation(s)
- Zhenying Zhang
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | | | | | | | | |
Collapse
|
30
|
Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. EUKARYOTIC CELL 2012. [PMID: 23204189 DOI: 10.1128/ec.00234-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.
Collapse
|
31
|
Boyce KJ, Andrianopoulos A. Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol 2011; 19:400-10. [PMID: 21640592 DOI: 10.1016/j.tim.2011.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/17/2022]
Abstract
The family of Ste20-related kinases is conserved from yeast to mammals and includes the p21 activated kinases (PAKs) and germinal centre kinases (GCKs). These kinases have been shown to be involved in signaling through mitogen activated protein kinase (MAPK) pathways and in morphogenesis through the regulation of cytokinesis and actin-dependent polarized growth. This review concentrates on the role of Ste20-related kinases in fungi where recent research has revealed roles for both PAKs and GCKs in the regulation of cytokinesis and in previously unidentified roles in promoting hyphal growth and differentiation of asexual development structures. In particular, the importance of PAKs during pathogenesis will be examined.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
32
|
The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. EUKARYOTIC CELL 2010; 10:302-12. [PMID: 21131434 DOI: 10.1128/ec.00201-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.
Collapse
|
33
|
Penicillium marneffei actin expression during phase transition, oxidative stress, and macrophage infection. Mol Biol Rep 2010; 38:2813-9. [PMID: 21088905 DOI: 10.1007/s11033-010-0427-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen that exhibits thermally regulated dimorphism. At 25°C, this fungus grows vegetatively as mycelia, but at 37°C or upon invasion of a host, a fission yeast form is established. Yet, despite increased numbers of molecular studies involving this fungus, the role of P. marneffei stress response-related proteins is not well characterized. Actin is one of the proteins that have been proposed to play a role not only in cell transition, but also in thermo-adaptation. Here, we report the isolation and characterization of the actin encoding gene, actA, from P. marneffei. Examination of the deduced amino acid sequence of the ActA protein revealed that it is closely related to Aspergillus nidulans and Aspergillus clavatus. Northern blot analysis of actin expression during the mycelium to yeast phase transition of P. marneffei showed that the actA transcripts were initially upregulated soon after shifting the incubation temperature from 25°C to 37°C, but subsequently decreased slightly and did not change during further growth or under stress conditions. When cultures were started with conidia, upregulation of actA gene was found to correlate with germ tube production at either 25°C or 37°C. However, the relative expression level of actA transcripts again showed no significant differences in different cell types (conidia, mycelium, and yeast cells) or during macrophage infection. These results suggest that actin may play an important role in the early stages of cellular development, but not in environmental stress responses.
Collapse
|