1
|
Hueschen CL, Segev-Zarko LA, Chen JH, LeGros MA, Larabell CA, Boothroyd JC, Phillips R, Dunn AR. Emergent actin flows explain distinct modes of gliding motility. NATURE PHYSICS 2024; 20:1989-1996. [PMID: 39669527 PMCID: PMC11631758 DOI: 10.1038/s41567-024-02652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/26/2024] [Indexed: 12/14/2024]
Abstract
During host infection, Toxoplasma gondii and related unicellular parasites move using gliding, which differs fundamentally from other known mechanisms of eukaryotic cell motility. Gliding is thought to be powered by a thin layer of flowing filamentous (F)-actin sandwiched between the plasma membrane and a myosin-covered inner membrane complex. How this surface actin layer drives the various gliding modes observed in experiments-helical, circular, twirling and patch, pendulum or rolling-is unclear. Here we suggest that F-actin flows arise through self-organization and develop a continuum model of emergent F-actin flow within the confines provided by Toxoplasma geometry. In the presence of F-actin turnover, our model predicts the emergence of a steady-state mode in which actin transport is largely directed rearward. Removing F-actin turnover leads to actin patches that recirculate up and down the cell, which we observe experimentally for drug-stabilized actin bundles in live Toxoplasma gondii parasites. These distinct self-organized actin states can account for observed gliding modes, illustrating how different forms of gliding motility can emerge as an intrinsic consequence of the self-organizing properties of F-actin flow in a confined geometry.
Collapse
Affiliation(s)
- Christina L. Hueschen
- Dept. of Chemical Engineering, Stanford University, Palo Alto, CA USA
- Present Address: Dept. of Cell and Developmental Biology, University of California San Diego, La Jolla, CA USA
| | - Li-av Segev-Zarko
- Dept. of Microbiology and Immunology, Stanford University, Palo Alto, CA USA
| | - Jian-Hua Chen
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Mark A. LeGros
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Carolyn A. Larabell
- Dept. of Anatomy, University of California San Francisco, San Francisco, CA USA
- National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - John C. Boothroyd
- Dept. of Microbiology and Immunology, Stanford University, Palo Alto, CA USA
| | - Rob Phillips
- Dept. of Physics, California Institute of Technology, Pasadena, CA USA
- Div. of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA
| | - Alexander R. Dunn
- Dept. of Chemical Engineering, Stanford University, Palo Alto, CA USA
| |
Collapse
|
2
|
Gong Z, Qu Z, Yu Z, Li J, Liu B, Ma X, Cai J. Label-free quantitative detection and comparative analysis of lysine acetylation during the different life stages of Eimeria tenella. J Proteome Res 2023; 22:2785-2802. [PMID: 37562054 DOI: 10.1021/acs.jproteome.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Proteome-wide lysine acetylation has been documented in apicomplexan parasite Toxoplasma gondii and Plasmodium falciparum. Here, we conducted the first lysine acetylome in unsporulated oocysts (USO), sporulated 7 h oocysts (SO 7h), sporulated oocysts (SO), sporozoites (S), and the second generation merozoites (SMG) of Eimeria tenella through a 4D label-free quantitative technique. Altogether, 8532 lysine acetylation sites on 2325 proteins were identified in E. tenella, among which 5445 sites on 1493 proteins were quantified. In addition, 557, 339, 478, 248, 241, and 424 differentially expressed proteins were identified in the comparisons SO7h vs USO, SO vs SO7h, SO vs USO, S vs SO, SMG vs S, and USO vs SMG, respectively. The bioinformatics analysis of the acetylome showed that the lysine acetylation is widespread on proteins of diverse functions. Moreover, the dynamic changes of lysine acetylome among E. tenella different life stages revealed significant regulation during the whole process of E. tenella growth and stage conversion. This study provides a beginning for the investigation of the regulate role of lysine acetylation in E. tenella and may provide new strategies for anticoccidiosis drug and vaccine development. Raw data are publicly available at iProX with the data set identifier PXD040368.
Collapse
Affiliation(s)
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Zhengqing Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Jidong Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, People's Republic of China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Innovation of Research Program of Gastrointestinal Infection and Mucosal Immunity of Poultry and Pig; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009, People's Republic of China
| |
Collapse
|
3
|
Li J, Xiao Q, Tan Q, Chen J, Sun L, Chen X, Chu Z, Wu H, Zhang Z, Li H, Zhao X, Zhang X. TgMORN2, a MORN Family Protein Involved in the Regulation of Endoplasmic Reticulum Stress in Toxoplasma gondii. Int J Mol Sci 2023; 24:10228. [PMID: 37373373 DOI: 10.3390/ijms241210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
MORN proteins play a key role in the cytoskeletal structure of eukaryotes and are essential for the close arrangement of the endoplasmic reticulum and plasma membrane. A gene with nine MORN motifs (TGGT1_292120, named TgMORN2) was identified in the Toxoplasma gondii genome; it was presumed to belong to the MORN protein family and to have the function of forming the cytoskeleton, which affects the survival of T. gondii. However, the genetic deletion of MORN2 did not noticeably affect parasite growth and virulence. Using adjacent protein labeling techniques, we identified a network of TgMORN2 interactions, which mainly included endoplasmic reticulum stress (ER stress)-related proteins. In exploring these data, we found that the pathogenicity of the KO-TgMORN2 strain was significantly reduced in the case of tunicamycin-induced ER stress. Reticulon TgRTN (TGGT1_226430) and tubulin β-Tubulin were identified as interaction proteins of TgMORN2. Collectively, TgMORN2 plays a role in ER stress, which lays a foundation for further research on the function of the MORN protein in T. gondii.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
4
|
Kelsen A, Kent RS, Snyder AK, Wehri E, Bishop SJ, Stadler RV, Powell C, Martorelli di Genova B, Rompikuntal PK, Boulanger MJ, Warshaw DM, Westwood NJ, Schaletzky J, Ward GE. MyosinA is a druggable target in the widespread protozoan parasite Toxoplasma gondii. PLoS Biol 2023; 21:e3002110. [PMID: 37155705 PMCID: PMC10185354 DOI: 10.1371/journal.pbio.3002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.
Collapse
Affiliation(s)
- Anne Kelsen
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Anne K. Snyder
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Eddie Wehri
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Stephen J. Bishop
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Rachel V. Stadler
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Cameron Powell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Bruno Martorelli di Genova
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Pramod K. Rompikuntal
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St Andrews, Fife, Scotland, United Kingdom
| | - Julia Schaletzky
- Center for Emerging and Neglected Diseases, University of California Berkeley, California, United States of America
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, United States of America
| |
Collapse
|
5
|
Vigetti L, Labouré T, Roumégous C, Cannella D, Touquet B, Mayer C, Couté Y, Frénal K, Tardieux I, Renesto P. The BCC7 Protein Contributes to the Toxoplasma Basal Pole by Interfacing between the MyoC Motor and the IMC Membrane Network. Int J Mol Sci 2022; 23:5995. [PMID: 35682673 PMCID: PMC9181098 DOI: 10.3390/ijms23115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
T. gondii is a eukaryotic parasite that has evolved a stage called tachyzoite which multiplies in host cells by producing two daughter cells internally. These nascent tachyzoites bud off their mother and repeat the division process until the expanding progenies escape to settle and multiply in other host cells. Over these intra- and extra-cellular phases, the tachyzoite maintains an essential apicobasal polarity that emerges through a unique bidirectional budding process of the elongating cells. This process requires the assembly of several molecular complexes that, at the nascent pole, encompass structural and myosin motor elements. To characterize a recently identified basal pole marker named BCC7 with respect to the posterior myosin J and myosin C motors, we used conventional biochemistry as well as advanced proteomic and in silico analysis in conjunction with live and super resolution microscopy of transgenic fluorescent tachyzoites. We document that BCC7 forms a ribbed ring below which myosin C motor entities distribute regularly. In addition, we identified-among 13 BCC7 putative partners-two novel and five known members of the inner membrane complex (IMC) family which ends at the apical side of the ring. Therefore, BCC7 could assist the stabilization of the IMC plaques and contribute to the parasite biomechanical properties.
Collapse
Affiliation(s)
- Luis Vigetti
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Tatiana Labouré
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Chloé Roumégous
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Dominique Cannella
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France;
| | - Bastien Touquet
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Claudine Mayer
- Université Paris Cité, 75013 Paris, France;
- ICube-UMR7357, CSTB, Centre de Recherche en Biomédecine de Strasbourg, 67084 Strasbourg, France
| | - Yohann Couté
- INSERM, University of Grenoble Alpes, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France;
| | - Karine Frénal
- Université de Bordeaux, Team Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, 33000 Bordeaux, France; (C.R.); (K.F.)
| | - Isabelle Tardieux
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| | - Patricia Renesto
- IAB, Team Biomechanics of Host-Apicomplexa Parasite, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France; (L.V.); (T.L.); (B.T.)
| |
Collapse
|
6
|
A comprehensive ultrastructural analysis of the Toxoplasma gondii cytoskeleton. Parasitol Res 2022; 121:2065-2078. [PMID: 35524789 DOI: 10.1007/s00436-022-07534-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
The invasive nature of Toxoplasma gondii is closely related to the properties of its cytoskeleton, which is constituted by a group of diverse structural and dynamic components that play key roles during the infection. Even if there have been numerous reports about the composition and function of the Toxoplasma cytoskeleton, the ultrastructural organization of some of these components has not yet been fully characterized. This study used a detergent extraction process and several electron microscopy contrast methods that allowed the successful isolation of the cytoskeleton of Toxoplasma tachyzoites. This process allowed for the conservation of the structures known to date and several new structures that had not been characterized at the ultrastructural level. For the first time, characterization was achieved for a group of nanofibers that allow the association between the polar apical ring and the conoid as well as the ultrastructural characterization of the apical cap of the parasite. The ultrastructure and precise location of the peripheral rings were also found, and the annular components of the basal complex were characterized. Finally, through immunoelectron microscopy, the exact spatial location of the subpellicular network inside the internal membrane system that forms the pellicle was found. The findings regarding these new structures contribute to the knowledge concerning the biology of the Toxoplasma gondii cytoskeleton. They also provide new opportunities in the search for therapeutic strategies aimed at these components with the purpose of inhibiting invasion and thus parasitism.
Collapse
|
7
|
Khalifa MM, Martorelli Di Genova B, McAlpine SG, Gallego-Lopez GM, Stevenson DM, Rozema SD, Monaghan NP, Morris JC, Knoll LJ, Golden JE. Dual-Stage Picolinic Acid-Derived Inhibitors of Toxoplasma gondii. ACS Med Chem Lett 2020; 11:2382-2388. [PMID: 33335660 DOI: 10.1021/acsmedchemlett.0c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii causes a prevalent human infection for which only the acute stage has an FDA-approved therapy. To find inhibitors of both the acute stage parasites and the persistent cyst stage that causes a chronic infection, we repurposed a compound library containing known inhibitors of parasitic hexokinase, the first step in the glycolysis pathway, along with a larger collection of new structural derivatives. The focused screen of 22 compounds showed a 77% hit rate (>50% multistage inhibition) and revealed a series of aminobenzamide-linked picolinic acids with submicromolar potency against both T. gondii parasite forms. Picolinic acid 23, designed from an antiparasitic benzamidobenzoic acid class with challenging ADME properties, showed 60-fold-enhanced solubility, a moderate LogD7.4, and a 30% improvement in microsomal stability. Furthermore, isotopically labeled glucose tracing revealed that picolinic acid 23 does not function by hexokinase inhibition. Thus, we report a new probe scaffold to interrogate dual-stage inhibition of T. gondii.
Collapse
Affiliation(s)
- Muhammad M. Khalifa
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Sarah G. McAlpine
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Gina M. Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States of America
| | - Soren D. Rozema
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| | - Neil P. Monaghan
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - James C. Morris
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, 190 Collins Street, Clemson, South Carolina 29634, United States
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Jennifer E. Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53703, United States
| |
Collapse
|
8
|
Boothroyd JC. What a Difference 30 Years Makes! A Perspective on Changes in Research Methodologies Used to Study Toxoplasma gondii. Methods Mol Biol 2020; 2071:1-25. [PMID: 31758444 DOI: 10.1007/978-1-4939-9857-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is a remarkable species with a rich cell, developmental, and population biology. It is also sometimes responsible for serious disease in animals and humans and the stages responsible for such disease are relatively easy to study in vitro or in laboratory animal models. As a result of all this, Toxoplasma has become the subject of intense investigation over the last several decades, becoming a model organism for the study of the phylum of which it is a member, Apicomplexa. This has led to an ever-growing number of investigators applying an ever-expanding set of techniques to dissecting how Toxoplasma "ticks" and how it interacts with its many hosts. In this perspective piece I first wind back the clock 30 years and then trace the extraordinary pace of methodologies that have propelled the field forward to where we are today. In keeping with the theme of this collection, I focus almost exclusively on the parasite, rather than host side of the equation. I finish with a few thoughts about where the field might be headed-though if we have learned anything, the only sure prediction is that the pace of technological advance will surely continue to accelerate and the future will give us still undreamed of methods for taking apart (and then putting back together) this amazing organism with all its intricate biology. We have so far surely just scratched the surface.
Collapse
Affiliation(s)
- John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
10
|
Resistance towards monensin is proposed to be acquired in a Toxoplasma gondii model by reduced invasion and egress activities, in addition to increased intracellular replication. Parasitology 2017; 145:313-325. [PMID: 28870270 DOI: 10.1017/s0031182017001512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monensin (Mon) is an anticoccidial polyether ionophore widely used to control coccidiosis. The extensive use of polyether ionophores on poultry farms resulted in widespread resistance, but the underlying resistance mechanisms are unknown in detail. For analysing the mode of action by which resistance against polyether ionophores is obtained, we induced in vitro Mon resistance in Toxoplasma gondii-RH strain (MonR-RH) and compared it with the sensitive parental strain (Sen-RH). The proteome assessment of MonR-RH and Sen-RH strains was obtained after isotopic labelling using stable isotope labelling by amino acid in cell culture. Relative proteomic quantification between resistant and sensitive strains was performed using liquid chromatography-mass spectrometry/mass spectrometry. Overall, 1024 proteins were quantified and 52 proteins of them were regulated. The bioinformatic analysis revealed regulation of cytoskeletal and transmembrane proteins being involved in transport mechanisms, metal ion-binding and invasion. During invasion, actin and microneme protein 8 (MIC8) are seem to be important for conoid extrusion and forming moving junction with host cells, respectively. Actin was significantly upregulated, while MIC8 was downregulated, which indicate an invasion reduction in the resistant strain. Resistance against Mon is not a simple process but it involves reduced invasion and egress activity of T. gondii tachyzoites while intracellular replication is enhanced.
Collapse
|
11
|
|
12
|
Stadler RV, White LA, Hu K, Helmke BP, Guilford WH. Direct measurement of cortical force generation and polarization in a living parasite. Mol Biol Cell 2017; 28:1912-1923. [PMID: 28209732 PMCID: PMC5541842 DOI: 10.1091/mbc.e16-07-0518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/19/2017] [Accepted: 02/10/2017] [Indexed: 02/04/2023] Open
Abstract
Apicomplexa is a large phylum of intracellular parasites that are notable for the diseases they cause, including toxoplasmosis, malaria, and cryptosporidiosis. A conserved motile system is critical to their life cycles and drives directional gliding motility between cells, as well as invasion of and egress from host cells. However, our understanding of this system is limited by a lack of measurements of the forces driving parasite motion. We used a laser trap to measure the function of the motility apparatus of living Toxoplasma gondii by adhering a microsphere to the surface of an immobilized parasite. Motion of the microsphere reflected underlying forces exerted by the motile apparatus. We found that force generated at the parasite surface begins with no preferential directionality but becomes directed toward the rear of the cell after a period of time. The transition from nondirectional to directional force generation occurs on spatial intervals consistent with the lateral periodicity of structures associated with the membrane pellicle and is influenced by the kinetics of actin filament polymerization and cytoplasmic calcium. A lysine methyltransferase regulates both the magnitude and polarization of the force. Our work provides a novel means to dissect the motile mechanisms of these pathogens.
Collapse
Affiliation(s)
- Rachel V Stadler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Lauren A White
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Brian P Helmke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
13
|
Not a Simple Tether: Binding of Toxoplasma gondii AMA1 to RON2 during Invasion Protects AMA1 from Rhomboid-Mediated Cleavage and Leads to Dephosphorylation of Its Cytosolic Tail. mBio 2016; 7:mBio.00754-16. [PMID: 27624124 PMCID: PMC5021801 DOI: 10.1128/mbio.00754-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apical membrane antigen 1 (AMA1) is a receptor protein on the surface of Toxoplasma gondii that plays a critical role in host cell invasion. The ligand to which T. gondii AMA1 (TgAMA1) binds, TgRON2, is secreted into the host cell membrane by the parasite during the early stages of invasion. The TgAMA1-TgRON2 complex forms the core of the “moving junction,” a ring-shaped zone of tight contact between the parasite and host cell membranes, through which the parasite pushes itself during invasion. Paradoxically, the parasite also expresses rhomboid proteases that constitutively cleave the TgAMA1 transmembrane domain. How can TgAMA1 function effectively in host cell binding if its extracellular domain is constantly shed from the parasite surface? We show here that when TgAMA1 binds the domain 3 (D3) peptide of TgRON2, its susceptibility to cleavage by rhomboid protease(s) is greatly reduced. This likely serves to maintain parasite-host cell binding at the moving junction, a hypothesis supported by data showing that parasites expressing a hypercleavable version of TgAMA1 invade less efficiently than wild-type parasites do. Treatment of parasites with the D3 peptide was also found to reduce phosphorylation of S527 on the cytoplasmic tail of TgAMA1, and parasites expressing a phosphomimetic S527D allele of TgAMA1 showed an invasion defect. Taken together, these data suggest that TgAMA1-TgRON2 interaction at the moving junction protects TgAMA1 molecules that are actively engaged in host cell penetration from rhomboid-mediated cleavage and generates an outside-in signal that leads to dephosphorylation of the TgAMA1 cytosolic tail. Both of these effects are required for maximally efficient host cell invasion. Nearly one-third of the world’s population is infected with the protozoan parasite Toxoplasma gondii, which causes life-threatening disease in neonates and immunocompromised individuals. T. gondii is a member of the phylum Apicomplexa, which includes many other parasites of veterinary and medical importance, such as those that cause coccidiosis, babesiosis, and malaria. Apicomplexan parasites grow within their hosts through repeated cycles of host cell invasion, parasite replication, and host cell lysis. Parasites that cannot invade host cells cannot survive or cause disease. AMA1 is a highly conserved protein on the surface of apicomplexan parasites that is known to be important for invasion, and the work presented here reveals new and unexpected insights into AMA1 function. A more complete understanding of the role of AMA1 in invasion may ultimately contribute to the development of new chemotherapeutics designed to disrupt AMA1 function and invasion-related signaling in this important group of human pathogens.
Collapse
|
14
|
Abstract
The myosin holoenzyme is a multimeric protein complex consisting of heavy chains and light chains. Myosin light chains are calmodulin family members which are crucially involved in the mechanoenzymatic function of the myosin holoenzyme. This review examines the diversity of light chains within the myosin superfamily, discusses interactions between the light chain and the myosin heavy chain as well as regulatory and structural functions of the light chain as a subunit of the myosin holoenzyme. It covers aspects of the myosin light chain in the localization of the myosin holoenzyme, protein-protein interactions and light chain binding to non-myosin binding partners. Finally, this review challenges the dogma that myosin regulatory and essential light chain exclusively associate with conventional myosin heavy chains while unconventional myosin heavy chains usually associate with calmodulin.
Collapse
Affiliation(s)
- Sarah M Heissler
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| | - James R Sellers
- a Laboratory of Molecular Physiology; National Heart, Lung, and Blood Institute; National Institutes of Health ; Bethesda , MD USA
| |
Collapse
|
15
|
Kumpula EP, Kursula I. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies? Acta Crystallogr F Struct Biol Commun 2015; 71:500-13. [PMID: 25945702 PMCID: PMC4427158 DOI: 10.1107/s2053230x1500391x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/25/2015] [Indexed: 11/10/2022] Open
Abstract
Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world's population. These parasites share a common form of gliding motility which relies on an actin-myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin-myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.
Collapse
Affiliation(s)
- Esa-Pekka Kumpula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
16
|
Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. J Biol Chem 2014; 289:30832-30841. [PMID: 25231988 DOI: 10.1074/jbc.m114.572453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 μm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 μm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.
Collapse
Affiliation(s)
- Carol S Bookwalter
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405
| | - Anne Kelsen
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Jacqueline M Leung
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- Departments of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405.
| | - Kathleen M Trybus
- Departments of Molecular Physiology and Biophysics and University of Vermont, Burlington, Vermont 05405.
| |
Collapse
|
17
|
Tang Q, Andenmatten N, Hortua Triana MA, Deng B, Meissner M, Moreno SNJ, Ballif BA, Ward GE. Calcium-dependent phosphorylation alters class XIVa myosin function in the protozoan parasite Toxoplasma gondii. Mol Biol Cell 2014; 25:2579-91. [PMID: 24989796 PMCID: PMC4148248 DOI: 10.1091/mbc.e13-11-0648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Myosin A, an unconventional class XIV myosin of the protozoan parasite Toxoplasma gondii, undergoes calcium-dependent phosphorylation, providing a mechanism by which the parasite can regulate motility-based processes such as escape from the infected host cell at the end of the parasite's lytic cycle. Class XIVa myosins comprise a unique group of myosin motor proteins found in apicomplexan parasites, including those that cause malaria and toxoplasmosis. The founding member of the class XIVa family, Toxoplasma gondii myosin A (TgMyoA), is a monomeric unconventional myosin that functions at the parasite periphery to control gliding motility, host cell invasion, and host cell egress. How the motor activity of TgMyoA is regulated during these critical steps in the parasite's lytic cycle is unknown. We show here that a small-molecule enhancer of T. gondii motility and invasion (compound 130038) causes an increase in parasite intracellular calcium levels, leading to a calcium-dependent increase in TgMyoA phosphorylation. Mutation of the major sites of phosphorylation altered parasite motile behavior upon compound 130038 treatment, and parasites expressing a nonphosphorylatable mutant myosin egressed from host cells more slowly in response to treatment with calcium ionophore. These data demonstrate that TgMyoA undergoes calcium-dependent phosphorylation, which modulates myosin-driven processes in this important human pathogen.
Collapse
Affiliation(s)
- Qing Tang
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405
| | - Nicole Andenmatten
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Miryam A Hortua Triana
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Bin Deng
- Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT 05405 Department of Biology, University of Vermont, Burlington, VT 05405
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
18
|
Treeck M, Sanders JL, Gaji RY, LaFavers KA, Child MA, Arrizabalaga G, Elias JE, Boothroyd JC. The calcium-dependent protein kinase 3 of toxoplasma influences basal calcium levels and functions beyond egress as revealed by quantitative phosphoproteome analysis. PLoS Pathog 2014; 10:e1004197. [PMID: 24945436 PMCID: PMC4063958 DOI: 10.1371/journal.ppat.1004197] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/05/2014] [Indexed: 12/19/2022] Open
Abstract
Calcium-dependent protein kinases (CDPKs) are conserved in plants and apicomplexan parasites. In Toxoplasma gondii, TgCDPK3 regulates parasite egress from the host cell in the presence of a calcium-ionophore. The targets and the pathways that the kinase controls, however, are not known. To identify pathways regulated by TgCDPK3, we measured relative phosphorylation site usage in wild type and TgCDPK3 mutant and knock-out parasites by quantitative mass-spectrometry using stable isotope-labeling with amino acids in cell culture (SILAC). This revealed known and novel phosphorylation events on proteins predicted to play a role in host-cell egress, but also a novel function of TgCDPK3 as an upstream regulator of other calcium-dependent signaling pathways, as we also identified proteins that are differentially phosphorylated prior to egress, including proteins important for ion-homeostasis and metabolism. This observation is supported by the observation that basal calcium levels are increased in parasites where TgCDPK3 has been inactivated. Most of the differential phosphorylation observed in CDPK3 mutants is rescued by complementation of the mutants with a wild type copy of TgCDPK3. Lastly, the TgCDPK3 mutants showed hyperphosphorylation of two targets of a related calcium-dependent kinase (TgCDPK1), as well as TgCDPK1 itself, indicating that this latter kinase appears to play a role downstream of TgCDPK3 function. Overexpression of TgCDPK1 partially rescues the egress phenotype of the TgCDPK3 mutants, reinforcing this conclusion. These results show that TgCDPK3 plays a pivotal role in regulating tachyzoite functions including, but not limited to, egress.
Collapse
Affiliation(s)
- Moritz Treeck
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - John L. Sanders
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajshekhar Y. Gaji
- Department of Pharmacology and Toxicology, School of Medicine, University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Kacie A. LaFavers
- Department of Pharmacology and Toxicology, School of Medicine, University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Matthew A. Child
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, School of Medicine, University of Indianapolis, Indianapolis, Indiana, United States of America
| | - Joshua E. Elias
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Leung JM, Tran F, Pathak RB, Poupart S, Heaslip AT, Ballif BA, Westwood NJ, Ward GE. Identification of T. gondii myosin light chain-1 as a direct target of TachypleginA-2, a small-molecule inhibitor of parasite motility and invasion. PLoS One 2014; 9:e98056. [PMID: 24892871 PMCID: PMC4043638 DOI: 10.1371/journal.pone.0098056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 01/28/2023] Open
Abstract
Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite’s life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by “click” chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite’s myosin motor.
Collapse
Affiliation(s)
- Jacqueline M. Leung
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Program in Cellular and Molecular Biomedical Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Fanny Tran
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland, United Kingdom
| | - Ravindra B. Pathak
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland, United Kingdom
| | - Séverine Poupart
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland, United Kingdom
| | - Aoife T. Heaslip
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife, Scotland, United Kingdom
- * E-mail: (NJW); (GEW)
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail: (NJW); (GEW)
| |
Collapse
|
20
|
Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, Ferguson DJP, Tardieux I, Mogilner A, Meissner M. The toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One 2014; 9:e91819. [PMID: 24632839 PMCID: PMC3954763 DOI: 10.1371/journal.pone.0091819] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022] Open
Abstract
Apicomplexan parasites are thought to actively invade the host cell by gliding motility. This movement is powered by the parasite's own actomyosin system, and depends on the regulated polymerisation and depolymerisation of actin to generate the force for gliding and host cell penetration. Recent studies demonstrated that Toxoplasma gondii can invade the host cell in the absence of several core components of the invasion machinery, such as the motor protein myosin A (MyoA), the microneme proteins MIC2 and AMA1 and actin, indicating the presence of alternative invasion mechanisms. Here the roles of MyoA, MLC1, GAP45 and Act1, core components of the gliding machinery, are re-dissected in detail. Although important roles of these components for gliding motility and host cell invasion are verified, mutant parasites remain invasive and do not show a block of gliding motility, suggesting that other mechanisms must be in place to enable the parasite to move and invade the host cell. A novel, hypothetical model for parasite gliding motility and invasion is presented based on osmotic forces generated in the cytosol of the parasite that are converted into motility.
Collapse
Affiliation(s)
- Saskia Egarter
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nicole Andenmatten
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allison J. Jackson
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jamie A. Whitelaw
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gurman Pall
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Ann Black
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
| | - Isabelle Tardieux
- Institut Cochin, University of Paris Descartes, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Alex Mogilner
- Department of Neurobiology, Physiology, and Behavior and Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional live motility assay. PLoS One 2014; 9:e85763. [PMID: 24489670 PMCID: PMC3906025 DOI: 10.1371/journal.pone.0085763] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/30/2013] [Indexed: 01/15/2023] Open
Abstract
T. gondii uses substrate-dependent gliding motility to invade cells of its hosts, egress from these cells at the end of its lytic cycle and disseminate through the host organism during infection. The ability of the parasite to move is therefore critical for its virulence. T. gondii engages in three distinct types of gliding motility on coated two-dimensional surfaces: twirling, circular gliding and helical gliding. We show here that motility in a three-dimensional Matrigel-based environment is strikingly different, in that all parasites move in irregular corkscrew-like trajectories. Methods developed for quantitative analysis of motility parameters along the smoothed trajectories demonstrate a complex but periodic pattern of motility with mean and maximum velocities of 0.58±0.07 µm/s and 2.01±0.17 µm/s, respectively. To test how a change in the parasite's crescent shape might affect trajectory parameters, we compared the motility of Δphil1 parasites, which are shorter and wider than wild type, to the corresponding parental and complemented lines. Although comparable percentages of parasites were moving for all three lines, the Δphil1 mutant exhibited significantly decreased trajectory lengths and mean and maximum velocities compared to the parental parasite line. These effects were either partially or fully restored upon complementation of the Δphil1 mutant. These results show that alterations in morphology may have a significant impact on T. gondii motility in an extracellular matrix-like environment, provide a possible explanation for the decreased fitness of Δphil1 parasites in vivo, and demonstrate the utility of the quantitative three-dimensional assay for studying parasite motility.
Collapse
|
22
|
Rico E, Rojas F, Mony BM, Szoor B, Macgregor P, Matthews KR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol 2013; 3:78. [PMID: 24294594 PMCID: PMC3827541 DOI: 10.3389/fcimb.2013.00078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/24/2013] [Indexed: 12/04/2022] Open
Abstract
African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.
Collapse
Affiliation(s)
- Eva Rico
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
23
|
Liu J, Han LN, Zhang Q, Wang QL, Chang Q, Zhuang H, Liu J, Li M, Yu D, Kang ZS. Cloning and molecular characterization of a myosin light chain gene from Puccinia striiformis f. sp. tritici. World J Microbiol Biotechnol 2013; 30:631-7. [DOI: 10.1007/s11274-013-1485-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
|
24
|
Turley S, Khamrui S, Bergman LW, Hol WG. The compact conformation of the Plasmodium knowlesi myosin tail interacting protein MTIP in complex with the C-terminal helix of myosin A. Mol Biochem Parasitol 2013; 190:56-9. [PMID: 23831369 PMCID: PMC3910325 DOI: 10.1016/j.molbiopara.2013.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 11/15/2022]
Abstract
The myosin motor of the malaria parasite's invasion machinery moves over actin fibers while it is making critical contacts with the myosin-tail interacting protein (MTIP). Previously, in a "compact" Plasmodium falciparum MTIP•MyoA complex, MTIP domains 2 (D2) and 3 (D3) make contacts with the MyoA helix, and the central helix is kinked, but in an "extended" Plasmodium knowlesi MTIP•MyoA complex only D3 interacts with the MyoA helix, and the central helix is fully extended. Here we report the crystal structure of the compact P. knowlesi MTIP•MyoA complex. It appears that, depending on the pH, P. knowlesi MTIP can adopt either the compact or the extended conformation to interact with MyoA. Only at pH values above ~7.0, can key hydrogen bonds can be formed by the imidazole group of MyoA His810 with an aspartate carboxylate from the hinge of MTIP and a lysine amino group of MyoA simultaneously.
Collapse
Affiliation(s)
- Stewart Turley
- Department of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Susmita Khamrui
- Department of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wim G.J. Hol
- Department of Biochemistry, Biomolecular Structure Center, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Blackman MJ, Carruthers VB. Recent insights into apicomplexan parasite egress provide new views to a kill. Curr Opin Microbiol 2013; 16:459-64. [PMID: 23725669 PMCID: PMC3755044 DOI: 10.1016/j.mib.2013.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023]
Abstract
A hallmark of apicomplexan pathogens such as Plasmodium, Toxoplasma and Cryptosporidium is that they invade, replicate within, and then egress from their host cells. Egress usually results in lysis of the host cell, with deleterious consequences for the host. In the case of malaria, for example, much of the disease pathology is associated with cyclical waves of host erythrocyte destruction. This review highlights recent advances in mapping the signaling pathways that lead to egress and the parasite molecules involved in responding to and transmitting those signals. The review also discusses new findings for effector molecules that mediate disruption of the bounding membranes that enclose the intracellular parasite and the manner in which membrane rupture occurs to finally release invasive forms of the parasite.
Collapse
Affiliation(s)
- Michael J. Blackman
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Vern B. Carruthers
- Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| |
Collapse
|
26
|
Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii. EUKARYOTIC CELL 2013; 12:1588-99. [PMID: 23873863 DOI: 10.1128/ec.00082-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubules are versatile biopolymers that support numerous vital cellular functions in eukaryotes. The specific properties of microtubules are dependent on distinct microtubule-associated proteins, as the tubulin subunits and microtubule structure are exceptionally conserved. Highly specialized microtubule-containing assemblies are often found in protists, which are rich sources for novel microtubule-associated proteins. A protozoan parasite, Toxoplasma gondii, possesses several distinct tubulin-containing structures, including 22 microtubules closely associated with the cortical membrane. Early ultrastructural studies have shown that the cortical microtubules are heavily decorated with associating proteins. However, little is known about the identities of these proteins. Here, we report the discovery of a novel protein, TrxL1 (for Thioredoxin-Like protein 1), and an associating complex that coats the cortical microtubules. TrxL1 contains a thioredoxin-like fold. To visualize its localization in live parasites by fluorescence, we replaced the endogenous TrxL1 gene with an mEmeraldFP-TrxL1 fusion gene. Structured illumination-based superresolution imaging of this parasite line produced a detailed view of the microtubule cytoskeleton. Despite its stable association with the cortical microtubules in the parasite, TrxL1 does not seem to bind to microtubules directly. Coimmunoprecipitation experiments showed that TrxL1 associates with a protein complex containing SPM1, a previously reported microtubule-associated protein in T. gondii. We also found that SPM1 recruits TrxL1 to the cortical microtubules. Besides SPM1, several other novel proteins are found in the TrxL1-containing complex, including TrxL2, a close homolog of TrxL1. Thus, our results reveal for the first time a microtubule-associated complex in T. gondii.
Collapse
|
27
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
28
|
Regidor-Cerrillo J, Álvarez-García G, Pastor-Fernández I, Marugán-Hernández V, Gómez-Bautista M, Ortega-Mora LM. Proteome expression changes among virulent and attenuated Neospora caninum isolates. J Proteomics 2012; 75:2306-18. [PMID: 22343075 DOI: 10.1016/j.jprot.2012.01.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/25/2012] [Accepted: 01/30/2012] [Indexed: 11/30/2022]
Abstract
Neospora caninum is a cyst-forming parasite that has been recognised worldwide as a cause of cattle abortion and neuromuscular disease in dogs. Variations in genetic profiles, behaviour in vitro, and pathogenicity have been established among N. caninum isolates. However, it is unclear which parasite factors are implicated in this intra-specific diversity. Comparative analysis of protein expression patterns may define the determinants of biological diversity in N. caninum. Using DIGE and MALDI-TOF MS techniques, we quantified and identified differentially expressed proteins in the tachyzoite stage across three N. caninum isolates: the virulent Nc-Liv and Nc-Spain 7 isolates, and the attenuated Nc-Spain 1H isolate. Comparison between Nc-Spain 7 and Nc-Spain 1H extracts revealed 39 protein spots that were more abundant in Nc-Spain 7 and 21 in Nc-Spain 1H. Twenty-four spots were also increased in Nc-Spain 7 and 12 in Nc-Liv. Three protein spots were more abundant in the Nc-Liv extracts than in the Nc-Spain 1H extracts. MS analysis identified 11 proteins differentially expressed that are potentially involved in gliding motility and the lytic cycle of the parasite, and oxidative stress. These differences could help to explain variations in behaviour between isolates and provide a better knowledge of mechanisms associated with virulence.
Collapse
Affiliation(s)
- Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Montagna GN, Buscaglia CA, Münter S, Goosmann C, Frischknecht F, Brinkmann V, Matuschewski K. Critical role for heat shock protein 20 (HSP20) in migration of malarial sporozoites. J Biol Chem 2011; 287:2410-22. [PMID: 22139844 DOI: 10.1074/jbc.m111.302109] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Plasmodium sporozoites, single cell eukaryotic pathogens, use their own actin/myosin-based motor machinery for life cycle progression, which includes forward locomotion, penetration of cellular barriers, and invasion of target cells. To display fast gliding motility, the parasite uses a high turnover of actin polymerization and adhesion sites. Paradoxically, only a few classic actin regulatory proteins appear to be encoded in the Plasmodium genome. Small heat shock proteins have been associated with cytoskeleton modulation in various biological processes. In this study, we identify HSP20 as a novel player in Plasmodium motility and provide molecular genetics evidence for a critical role of a small heat shock protein in cell traction and motility. We demonstrate that HSP20 ablation profoundly affects sporozoite-substrate adhesion, which translates into aberrant speed and directionality in vitro. Loss of HSP20 function impairs migration in the host, an important sporozoite trait required to find a blood vessel and reach the liver after being deposited in the skin by the mosquito. Our study also shows that fast locomotion of sporozoites is crucial during natural malaria transmission.
Collapse
|
30
|
Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, Yates JR, Cowman AF, Tonkin CJ. Quantitative in vivo analyses reveal calcium-dependent phosphorylation sites and identifies a novel component of the Toxoplasma invasion motor complex. PLoS Pathog 2011; 7:e1002222. [PMID: 21980283 PMCID: PMC3182922 DOI: 10.1371/journal.ppat.1002222] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/05/2011] [Indexed: 01/29/2023] Open
Abstract
Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component. Apicomplexan parasites are a group of obligate intracellular pathogens of wide medical and agricultural significance. Included within this phylum is Plasmodium spp, the causative agents to malaria and the ubiquitous parasite Toxoplasma, which inflicts disease burden on AIDS patients, transplant recipients and the unborn fetus. No matter the host cell that they target, all apicomplexan parasites must activate invasion upon host cell contact. Calcium-mediated signal transduction pathways modulate this process, yet the molecular processes are largely unknown. Using a range of proteomics approaches we reveal proteins in Toxoplasma that are phosphorylated upon calcium signaling, and furthermore, identify phosphorylation sites on a range of proteins that may play crucial roles in regulating parasite motility and microneme secretion. By quantitatively monitoring phosphorylation deposition upon calcium signaling we define putative regulatory domains of GAP45 and MLC1 and further show evidence that the invasion motor potentially more strongly associates upon calcium signaling. We also identified that a new Calmodulin-like protein is part of the invasion motor and this suggests that direct Ca2+ binding may also modulate motor activity.
Collapse
Affiliation(s)
- Thomas Nebl
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Judith Helena Prieto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eugene Kapp
- Joint Proteomics Facility, The Ludwig Institute for Cancer Research and the Walter and Eliza Hall Institute, Victoria, Australia
| | - Brian J. Smith
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Melanie J. Williams
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Christopher J. Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- The Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
31
|
Heaslip AT, Nishi M, Stein B, Hu K. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLoS Pathog 2011; 7:e1002201. [PMID: 21909263 PMCID: PMC3164638 DOI: 10.1371/journal.ppat.1002201] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 06/23/2011] [Indexed: 11/29/2022] Open
Abstract
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes. Toxoplasma gondii is one of the most successful human parasites, infecting ∼20% of the total world population. It is the most common cause of congenital neurological defects in humans, and an agent for devastating opportunistic infections in immunocompromised patients. To cause diseases, Toxoplasma gondii and other related parasites, such as Plasmodium falciparum, must reiterate their lytic cycle, comprising host cell infection, intracellular replication and parasite egress. At each step of the lytic cycle, the parasite tightly regulates its motility, being completely immotile while intracellular, and becoming highly motile as it leaves the host cell. Changes in local ionic conditions are known to trigger this rapid transition from immotile to motile. In this study, we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a novel protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). The depletion of this protein greatly inhibits the parasite's ability to invade into and egress from the host cell due to impaired motility activation. Interestingly, the localization of AKMT in the parasite is sensitive to egress-stimulating signals, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.
Collapse
Affiliation(s)
- Aoife T. Heaslip
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Manami Nishi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Barry Stein
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc Natl Acad Sci U S A 2011; 108:10568-73. [PMID: 21670272 DOI: 10.1073/pnas.1105622108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is a member of the phylum Apicomplexa that includes several important human pathogens, such as Cryptosporidium and Plasmodium falciparum, the causative agent of human malaria. It is an obligate intracellular parasite that can cause severe disease in congenitally infected neonates and immunocompromised individuals. Despite the importance of attachment and invasion to the success of the parasite, little is known about the underlying mechanisms that drive these processes. Here we describe a screen to identify small molecules that block the process of host cell invasion by the T. gondii parasite. We identified a small molecule that specifically and irreversibly blocks parasite attachment and subsequent invasion of host cells. Using tandem orthogonal proteolysis-activity-based protein profiling, we determined that this compound covalently modifies a single cysteine residue in a poorly characterized protein homologous to the human protein DJ-1. Mutation of this key cysteine residue in the native gene sequence resulted in parasites that were resistant to inhibition of host cell attachment and invasion by the compound. Further analysis of the invasion phenotype confirmed that modification of Cys127 on TgDJ-1 resulted in a block of microneme secretion and motility, even in the presence of direct stimulators of calcium release. Together, our results suggest that TgDJ-1 plays an important role that is likely downstream of the calcium flux required for microneme secretion, parasite motility, and subsequent invasion of host cells.
Collapse
|
33
|
Fauquenoy S, Hovasse A, Sloves PJ, Morelle W, Dilezitoko Alayi T, Dilezitoko Ayali T, Slomianny C, Werkmeister E, Schaeffer C, Van Dorsselaer A, Tomavo S. Unusual N-glycan structures required for trafficking Toxoplasma gondii GAP50 to the inner membrane complex regulate host cell entry through parasite motility. Mol Cell Proteomics 2011; 10:M111.008953. [PMID: 21610105 DOI: 10.1074/mcp.m111.008953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii motility, which is essential for host cell entry, migration through host tissues, and invasion, is a unique form of actin-dependent gliding. It is powered by a motor complex mainly composed of myosin heavy chain A, myosin light chain 1, gliding associated proteins GAP45, and GAP50, the only integral membrane anchor so far described. In the present study, we have combined glycomic and proteomic approaches to demonstrate that all three potential N-glycosylated sites of GAP50 are occupied by unusual N-glycan structures that are rarely found on mature mammalian glycoproteins. Using site-directed mutagenesis, we show that N-glycosylation is a prerequisite for GAP50 transport from the endoplasmic reticulum to the Golgi apparatus and for its subsequent delivery into the inner complex membrane. Assembly of key partners into the gliding complex, and parasite motility are severely impaired in the unglycosylated GAP50 mutants. Furthermore, comparative affinity purification using N-glycosylated and unglycosylated GAP50 as bait identified three novel hypothetical proteins including the recently described gliding associated protein GAP40, and we demonstrate that N-glycans are required for efficient binding to gliding partners. Collectively, these results provide the first detailed analyses of T. gondii N-glycosylation functions that are vital for parasite motility and host cell entry.
Collapse
Affiliation(s)
- Sylvain Fauquenoy
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, 59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Limenitakis J, Soldati-Favre D. Functional genetics in Apicomplexa: potentials and limits. FEBS Lett 2011; 585:1579-88. [PMID: 21557944 DOI: 10.1016/j.febslet.2011.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/15/2023]
Abstract
The Apicomplexans are obligate intracellular protozoan parasites and the causative agents of severe diseases in humans and animals. Although complete genome sequences are available since many years and for several parasites, they are replete with putative genes of unassigned function. Forward and reverse genetic approaches are limited only to a few Apicomplexans that can either be propagated in vitro or in a convenient animal model. This review will compare and contrast the most recent strategies developed for the genetic manipulation of Plasmodium falciparum, Plasmodium berghei and Toxoplasma gondii that have taken advantage of the intrinsic features of their respective genomes. Efforts towards the improvement of the transfection efficiencies in malaria parasites, the development of approaches to study essential genes and the elaboration of high-throughput methods for the identification of gene function will be discussed.
Collapse
Affiliation(s)
- Julien Limenitakis
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.
| | | |
Collapse
|
35
|
Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. Functional dissection of the apicomplexan glideosome molecular architecture. Cell Host Microbe 2011; 8:343-57. [PMID: 20951968 DOI: 10.1016/j.chom.2010.09.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/26/2010] [Accepted: 09/03/2010] [Indexed: 11/24/2022]
Abstract
The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, Centre Medical Universitaire, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, Frénal K. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic 2011; 12:287-300. [PMID: 21143563 DOI: 10.1111/j.1600-0854.2010.01148.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)-like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation.
Collapse
Affiliation(s)
- Valérie Polonais
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Perez-Cervera Y, Harichaux G, Schmidt J, Debierre-Grockiego F, Dehennaut V, Bieker U, Meurice E, Lefebvre T, Schwarz RT. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study. Amino Acids 2010; 40:847-56. [PMID: 20661758 DOI: 10.1007/s00726-010-0702-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/13/2010] [Indexed: 02/05/2023]
Abstract
Toxoplasma gondii and Plasmodium falciparum are apicomplexan parasites responsible for serious diseases in humans. Many studies have focused on the post-translational modifications (PTMs) found in the two protists including phosphorylation, acetylation or SUMOylation but only a few of these are concerned with the nuclear and cytosolic-specific glycosylation O-GlcNAcylation. O-GlcNAcylation is a highly dynamic PTM-regulated by the ON and OFF enzymes: O-GlcNAc transferase and O-GlcNAcase-that can compete with phosphorylation but its function remains unclear. In this work, we directly prove the O-GlcNAcylation in T. gondii using antibodies specifically directed against the modification and we strongly suggest its occurrence in P. falciparum. We found that the inducible 70 kDa-Heat Shock Protein is O-GlcNAcylated, or associated with an O-GlcNAc-partner, in T. gondii. Using anti-OGT antibodies we were able to detect the expression of the glycosyltransferase in T. gondii cultured both in human foreskin fibroblast and in Vero cells and report its putative sequence. For the first time the presence of O-GlcNAcylation is unequivocally shown in T. gondii and suspected in P. falciparum. Since the O-GlcNAcylation is implicated in many biological fundamental processes this study opens a new research track in the knowledge of apicomplexans' life cycle and pathogenic potential.
Collapse
Affiliation(s)
- Yobana Perez-Cervera
- Unit of Structural and Functional Glycobiology, CNRS-UMR 8576, IFR 147, Université de Lille 1, Cité Scientifique, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sibley LD. How apicomplexan parasites move in and out of cells. Curr Opin Biotechnol 2010; 21:592-8. [PMID: 20580218 DOI: 10.1016/j.copbio.2010.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 05/28/2010] [Accepted: 05/31/2010] [Indexed: 11/29/2022]
Abstract
Apicomplexan parasites utilize a unique form of 'gliding motility' to traverse across substrates, migrate through tissues, and invade into and finally egress from their vertebrate host cells. Parasite gliding relies on the treadmilling of surface adhesins linked to short actin filaments that are translocated rearward by stationary small myosin motors. New details reveal mechanistic insight into the coordinated release and processing of adhesins, the complexity of adhesin-substrate interactions, the regulation of the actin-myosin motor complex, and the formation of a novel junction at the host-parasite interface. These activities are carefully orchestrated to provide an efficient process for motility that is essential for parasite survival. The parasite-specific nature of many of these steps reveals several essential points that may be targeted for intervention.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA.
| |
Collapse
|