1
|
Li Q, Ou Z, Lin J, Tang D, He B, Wu Y, Huang X, Huang X, Ru B, Wang Q, Yao W, Situ B, Zheng L. Specific labeling of outer membrane vesicles with antibiotic-conjugated probe reveals early bacterial infections in blood. Nat Commun 2025; 16:3535. [PMID: 40229269 PMCID: PMC11997070 DOI: 10.1038/s41467-025-58676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are nano-sized structures derived from the outer membrane of Gram-negative bacteria, which have emerged as key players in host-pathogen interactions, yet their potential as biomarkers remains largely unexplored due to the difficulty of identification in complex biological samples. Here we show an approach for detecting and quantifying bacterial OMVs in blood using a Polymyxin B-fluorescein probe (PmBF), which targets bacterial lipopolysaccharides (LPS). The probe selectively labels OMVs, enabling their differentiation from host extracellular vesicles and quantitative analysis using nano-flow cytometry. In male mouse models of pneumonia, we observe elevated serum PmBF+ EVs as early as 6 h post-infection, preceding positive blood cultures. In clinical samples, PmBF+ EVs show superior performance for diagnosing bacterial infections and differentiate them from virus or mycoplasma infections. Our findings highlight circulating PmBF+ EVs as promising biomarkers of bacterial infections.
Collapse
Affiliation(s)
- Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jinduan Lin
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511500, China
| | - Die Tang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, 518003, China
| | - Bairong He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinyue Huang
- Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bingbing Ru
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qianwen Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Weirong Yao
- The Second Hospital of Zhangzhou, Zhangzhou, 363000, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- State Key Laboratory of Multi-organ Injury Prevention and Treatment, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Kim HY, Rothenberger CM, Davey ME, Yu M. Antibodies with specificity to glycan motifs that decorate OMV cargo proteins. mSphere 2025; 10:e0090724. [PMID: 40008882 PMCID: PMC11934327 DOI: 10.1128/msphere.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Porphyromonas gingivalis is a major etiological agent of periodontal disease, and infections with this bacterium are associated with systemic pathologies, including atherosclerosis, rheumatoid arthritis, and Alzheimer's disease. P. gingivalis has a variety of immune evasion mechanisms and exhibits highly variable cell surface characteristics that are strain dependent, complicating the development of effective vaccines and therapeutics. Here, we show that a subset of immunoglobulin M (IgM) antibodies in antiserum raised against P. gingivalis strain W83 selectively recognize the outer membrane vesicles (OMVs). Pre-adsorption with a mutant strain lacking an OMV-specific lipoprotein (PG1881) that has been shown to be glycosylated significantly enhanced IgM specificity toward PG1881 and the OMVs. In addition, the IgM reactivity against the OMVs derived from a mutant lacking enzymes required for O-glycosylation was markedly reduced, indicating that the IgM targets the glycan motifs on proteins carried on OMVs. Importantly, the IgM exhibited specific recognition of OMVs from both P. gingivalis and Porphyromonas endodontalis, while showing low reactivity toward other genera belonging to the phylum Bacteroidetes. This study revealed a potential host evasion strategy and highlights the potential for utilizing O-glycans in vaccine development and OMV-targeted antibodies in therapeutic interventions to combat P. gingivalis infections. IMPORTANCE O-glycosylation of cell surface proteins by bacteria is known to play a role in various functions including colonization and immune evasion. This study highlights the identification of IgM antibodies that specifically recognize O-glycosylated proteins that are selectively carried on outer membrane vesicles (OMVs). The findings suggest a potential host evasion mechanism and open new avenues for using OMVs in vaccine development and targeting O-glycans with antibodies as a therapeutic strategy against the subgingival pathobiont P. gingivalis.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Immunology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Christina M. Rothenberger
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology, University of Florida College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Mary E. Davey
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Manda Yu
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Wang J, Wang X, Luo H, Xie Y, Cao H, Mao L, Liu T, Yue Y, Qian H. Extracellular vesicles in Helicobacter pylori-mediated diseases: mechanisms and therapeutic potential. Cell Commun Signal 2025; 23:79. [PMID: 39934861 PMCID: PMC11816533 DOI: 10.1186/s12964-025-02074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs) are relevant elements for cell-to-cell communication and are considered crucial in host-pathogen interactions by transferring molecules between the pathogen and the host during infections. These structures participate in various physiological and pathological processes and are considered promising candidates as disease markers, therapeutic reagents, and drug carriers. Both H. pylori and the host epithelial cells infected by H. pylori secrete EVs, which contribute to inflammation and the development of disease phenotypes. However, many aspects of the cellular and molecular biology of EV functions remain incompletely understood due to methodological challenges in studying these small structures. This review also highlights the roles of EVs derived from H. pylori-infected cells in the pathogenesis of gastric and extragastric diseases. Understanding the specific functions of these EVs during H. pylori infections, whether are advantageous to the host or the pathogen, may help the development new therapeutic approaches to prevent disease.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Xiuping Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Lingxiang Mao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Tingting Liu
- Science and Technology Talent Department, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Yushan Yue
- Department of Rehabilitative Medicine, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhengjiang, Jiangsu, 212013, China.
| |
Collapse
|
4
|
Velimirov B, Velimirov BA. Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development. Life (Basel) 2024; 14:1584. [PMID: 39768292 PMCID: PMC11678573 DOI: 10.3390/life14121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens. However, under specific conditions, some of the inner membrane proteins can be exported into the outer membrane layer and perform as antigens. A key information was that the used purification procedures for OMVs, the induction methods to increase the production of OMVs as well as the specific mutant strains obtained via genetic engineering affect the composition of potential antigens on the surface and in the lumen of the OMVs. The available literature allowed us to list the major antigens that could be defined on OMVs. The functions of the antigens within the source bacterium are discussed for a better understanding of the various available hypotheses on the biogenesis of vesicle formation. Also, the impacts of OMV antigens on the immune system using animal models are assessed. Furthermore, information on the pathways of OMVs entering the host cell is presented. An example of a bacterial infection that causes epidemic diseases, namely via Neisseria meningitidis, is used to demonstrate that OMVs derived from this pathogen elicit protective immune responses when administered as a vaccine. Furthermore, information on OMV vaccines under development is presented. The assembled knowledge allowed us to formulate a number of reasons why OMVs are attractive as vaccine platforms, as their undesirable side effects remain small, and to provide an outlook on the potential use of OMVs as a vaccine platform.
Collapse
Affiliation(s)
- Branko Velimirov
- Division of Microbiology and Molecular Biology, Medical Faculty, Private Sigmund Freud University, Freudplatz 3, 1020 Wien, Austria;
| | | |
Collapse
|
5
|
Lusta KA, Churov AV, Beloyartsev DF, Golovyuk AL, Lee AA, Sukhorukov VN, Orekhov AN. The two coin sides of bacterial extracellular membrane nanovesicles: atherosclerosis trigger or remedy. DISCOVER NANO 2024; 19:179. [PMID: 39532781 PMCID: PMC11557815 DOI: 10.1186/s11671-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Among the numerous driving forces that cause the atherosclerotic cardiovascular disease (ASCVD), pathogenic bacterial extracellular membrane nanovesicles (BEMNs) containing toxins and virulence factors appear to be the key trigger of inflammation and atherogenesis, the major processes involved in the pathogenesis of ASCVD. Since BEMNs are the carriers of nanosized biomolecules to distant sites, they are now being considered as a novel drug delivery system. Nowadays, many therapeutic strategies are used to treat ASCVD. However, the conventional anti-atherosclerotic therapies are not effective enough. This primarily due to the inefficiency of non-targeted drug delivery systems to tissue affected areas, which, in turn, leads to numerous side effects, as well as faulty pharmacokinetics. In this regard, nanomedicine methods using nanoparticles (NPs) as targeted drug delivery vehicles proved to be extremely useful. Bioengineered BEMNs equipped with disease-specific ligand moieties and loaded with corresponding drugs represent a promising tool in nanomedicine, which can be used as a novel drug delivery system for a successful therapy of ASCVD. In this review, we outline the involvement of pathogenic BEMNs in the triggering of ASCVD, the conventional therapeutic strategies for the treatment of ASCVD, and the recent trends in nanomedicine using BEMNs and NPs as a vehicle for targeted drug delivery.
Collapse
Affiliation(s)
- Konstantin A Lusta
- Institute for Atherosclerosis Research, Ltd, Osennyaya Street 4-1-207, Moscow, Russia, 121609.
| | - Alexey V Churov
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, Moscow, Russia, 129226
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Dmitry F Beloyartsev
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Alexander L Golovyuk
- Vascular Surgery Department, A.V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, Moscow, Russia, 117997
| | - Arthur A Lee
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
| | - Vasily N Sukhorukov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| | - Alexander N Orekhov
- Insitute of Human Morphology, Petrovsky Russian National Center of Surgery, 2 Abrikosovsky Lane, Moscow, Russia, 119991
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315
| |
Collapse
|
6
|
Buck AH, Nolte-'t Hoen ENM. The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Annu Rev Genet 2024; 58:409-432. [PMID: 39231450 DOI: 10.1146/annurev-genet-111523-102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
Collapse
Affiliation(s)
- Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom;
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;
| |
Collapse
|
7
|
Meidaninikjeh S, Mohammadi P, Elikaei A. Bacteriophages and bacterial extracellular vesicles, threat or opportunity? Life Sci 2024; 350:122749. [PMID: 38821215 DOI: 10.1016/j.lfs.2024.122749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Emergence of antimicrobial-resistant bacteria (AMR) is one of the health major problems worldwide. The scientists are looking for a novel method to treat infectious diseases. Phage therapy is considered a suitable approach for treating infectious diseases. However, there are different challenges in this way. Some biological aspects can probably influence on therapeutic results and further investigations are necessary to reach a successful phage therapy. Bacteriophage activity can influence by bacterial defense system. Bacterial extracellular vesicles (BEVs) are one of the bacterial defense mechanisms which can modify the results of bacteriophage activity. BEVs have the significant roles in the gene transferring, invasion, escape, and spreading of bacteriophages. In this review, the defense mechanisms of bacteria against bacteriophages, especially BEVs secretion, the hidden linkage of BEVs and bacteriophages, and its possible consequences on the bacteriophage activity as well phage therapy will be discussed.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| |
Collapse
|
8
|
Amabebe E, Kumar A, Tatiparthy M, Kammala AK, Taylor BD, Menon R. Cargo exchange between human and bacterial extracellular vesicles in gestational tissues: a new paradigm in communication and immune development. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:297-328. [PMID: 39698538 PMCID: PMC11648491 DOI: 10.20517/evcna.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 12/20/2024]
Abstract
Host-bacteria and bacteria-bacteria interactions can be facilitated by extracellular vesicles (EVs) secreted by both human and bacterial cells. Human and bacterial EVs (BEVs) propagate and transfer immunogenic cargos that may elicit immune responses in nearby or distant recipient cells/tissues. Hence, direct colonization of tissues by bacterial cells is not required for immunogenic stimulation. This phenomenon is important in the feto-maternal interface, where optimum tolerance between the mother and fetus is required for a successful pregnancy. Though the intrauterine cavity is widely considered sterile, BEVs from diverse sources have been identified in the placenta and amniotic cavity. These BEVs can be internalized by human cells, which may help them evade host immune surveillance. Though it appears logical, whether bacterial cells internalize human EVs or human EV cargo is yet to be determined. However, the presence of BEVs in placental tissues or amniotic cavity is believed to trigger a low-grade immune response that primes the fetal immune system for ex-utero survival, but is insufficient to disrupt the progression of pregnancy or cause immune intolerance required for adverse pregnancy events. Nevertheless, the exchange of bioactive cargos between human and BEVs, and the mechanical underpinnings and health implications of such interactions, especially during pregnancy, are still understudied. Therefore, while focusing on the feto-maternal interface, we discussed how human cells take up BEVs and whether bacterial cells take up human EVs or their cargo, the exchange of cargos between human and BEVs, host cell (feto-maternal) inflammatory responses to BEV immunogenic stimulation, and associations of these interactions with fetal immune priming and adverse reproductive outcomes such as preeclampsia and preterm birth.
Collapse
Affiliation(s)
| | | | | | | | | | - Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Vicente-Gil S, Nuñez-Ortiz N, Morel E, Serra CR, Docando F, Díaz-Rosales P, Tafalla C. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Front Immunol 2024; 15:1394501. [PMID: 38774883 PMCID: PMC11106384 DOI: 10.3389/fimmu.2024.1394501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.
Collapse
Affiliation(s)
- Samuel Vicente-Gil
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Cláudia R. Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Sundaram K, Teng Y, Mu J, Xu Q, Xu F, Sriwastva MK, Zhang L, Park JW, Zhang X, Yan J, Zhang SQ, Merchant ML, Chen SY, McClain CJ, Dryden GW, Zhang HG. Outer Membrane Vesicles Released from Garlic Exosome-like Nanoparticles (GaELNs) Train Gut Bacteria that Reverses Type 2 Diabetes via the Gut-Brain Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308680. [PMID: 38225709 PMCID: PMC11102339 DOI: 10.1002/smll.202308680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Indexed: 01/17/2024]
Abstract
Gut microbiota function has numerous effects on humans and the diet humans consume has emerged as a pivotal determinant of gut microbiota function. Here, a new concept that gut microbiota can be trained by diet-derived exosome-like nanoparticles (ELNs) to release healthy outer membrane vesicles (OMVs) is introduced. Specifically, OMVs released from garlic ELN (GaELNs) trained human gut Akkermansia muciniphila (A. muciniphila) can reverse high-fat diet-induced type 2 diabetes (T2DM) in mice. Oral administration of OMVs released from GaELNs trained A. muciniphila can traffick to the brain where they are taken up by microglial cells, resulting in inhibition of high-fat diet-induced brain inflammation. GaELNs treatment increases the levels of OMV Amuc-1100, P9, and phosphatidylcholines. Increasing the levels of Amuc-1100 and P9 leads to increasing the GLP-1 plasma level. Increasing the levels of phosphatidylcholines is required for inhibition of cGas and STING-mediated inflammation and GLP-1R crosstalk with the insulin pathway that leads to increasing expression of Insulin Receptor Substrate (IRS1 and IRS2) on OMV targeted cells. These findings reveal a molecular mechanism whereby OMVs from plant nanoparticle-trained gut bacteria regulate genes expressed in the brain, and have implications for the treatment of brain dysfunction caused by a metabolic syndrome.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Yun Teng
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Qingbo Xu
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY40202, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | | | - Lifeng Zhang
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY40202, USA
- Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Shuang Qin Zhang
- Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637
| | - Michael L. Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Shao-yu Chen
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Gerald W Dryden
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
- Brown Cancer Center, University of Louisville, Louisville, KY40202, USA
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY40202, USA
| |
Collapse
|
11
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Koukoulis TF, Beauchamp LC, Kaparakis-Liaskos M, McQuade RM, Purnianto A, Finkelstein DI, Barnham KJ, Vella LJ. Do Bacterial Outer Membrane Vesicles Contribute to Chronic Inflammation in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2024; 14:227-244. [PMID: 38427502 PMCID: PMC10977405 DOI: 10.3233/jpd-230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Tiana F. Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Ann Romney Center for Neurologic Diseases, Brighamand Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Rachel M. McQuade
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, Gut-Axis Injury and Repair Laboratory, Western Centre for Health Research and Education (WCHRE), The University of Melbourne, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Musculoskeletal Science (AIMSS), Western Centre for Health Research and Education (WCHRE), Sunshine Hospital, St Albans, VIC, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
13
|
Magaña G, Harvey C, Taggart CC, Rodgers AM. Bacterial Outer Membrane Vesicles: Role in Pathogenesis and Host-Cell Interactions. Antibiotics (Basel) 2023; 13:32. [PMID: 38247591 PMCID: PMC10812699 DOI: 10.3390/antibiotics13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Outer membrane vesicles (OMVs) are small, spherical structures released from the outer membranes of Gram-negative bacteria into the surrounding environment. Investigations into OMVs range from their biogenesis and cargo composition to their ability to transfer virulence factors and modulate host immune responses. This emerging understanding of OMVs has unveiled their pivotal role in the pathogenicity of infectious diseases, shedding light on their interactions with host cells, their contributions to inflammation, their potential involvement in antimicrobial resistance, and their promising use for the development of novel treatments and therapies. Numerous studies have associated the OMVs of pathogenic bacteria with the exacerbation of inflammatory diseases, underlining the significance of understanding the mechanisms associated with these vesicles to find alternatives for combating these conditions. Additionally, OMVs possess the ability to act as decoys, absorbing and neutralizing antibiotics, which significantly diminishes the efficacy of a broad spectrum of antimicrobial agents. Another subtopic of interest is OMVs produced by commensal microbiota. These vesicles are increasingly acknowledged for their mutualistic functions, significantly influencing their host's physiology and immune responses. Consequently, OMVs play a crucial role in maintaining a balanced gut microbiota by fostering symbiotic relationships that significantly contribute to the overall health and well-being of the host. This comprehensive review aims to provide an up-to-date review of OMVs derived from Gram-negative bacteria, summarizing current research findings, and elucidating the multifaceted role of these vesicles in diverse biological contexts.
Collapse
Affiliation(s)
| | | | | | - Aoife M. Rodgers
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (G.M.); (C.H.); (C.C.T.)
| |
Collapse
|
14
|
Guo P, Wang S, Yue H, Zhang X, Ma G, Li X, Wei W. Advancement of Engineered Bacteria for Orally Delivered Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302702. [PMID: 37537714 DOI: 10.1002/smll.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Indexed: 08/05/2023]
Abstract
The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection-administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state-of-the-art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next-generation orally delivered bacteriotherapy.
Collapse
Affiliation(s)
- Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Pennetzdorfer N, Popescu MC, Haddock NL, Dupuy F, Kaber G, Hargil A, Johansson PK, Enejder A, Bollyky PL. Bacterial outer membrane vesicles bound to bacteriophages modulate neutrophil responses to bacterial infection. Front Cell Infect Microbiol 2023; 13:1250339. [PMID: 37965262 PMCID: PMC10641230 DOI: 10.3389/fcimb.2023.1250339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.
Collapse
Affiliation(s)
- Nina Pennetzdorfer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Medeea C. Popescu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Naomi L. Haddock
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Fannie Dupuy
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Ecole Normale Supérieure, Paris Sciences et Lettres (PSL) University, Paris, France
| | - Gernot Kaber
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Aviv Hargil
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Patrik K. Johansson
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Annika Enejder
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
16
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
18
|
Xiao M, Li G, Yang H. Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles. Front Microbiol 2023; 14:1225513. [PMID: 37720140 PMCID: PMC10500606 DOI: 10.3389/fmicb.2023.1225513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Bacteria-host interaction is a common, relevant, and intriguing biological phenomena. The host reacts actively or passively to the bacteria themselves, their products, debris, and so on, through various defense systems containing the immune system, the bacteria communicate with the local or distal tissues of the host via their own surface antigens, secreted products, nucleic acids, etc., resulting in relationships of attack and defense, adaptation, symbiosis, and even collaboration. The significance of bacterial membrane vesicles (MVs) as a powerful vehicle for the crosstalk mechanism between the two is growing. In the recent decade, the emergence of MVs in microbial interactions and a variety of bacterial infections, with multiple adhesions to host tissues, cell invasion and evasion of host defense mechanisms, have brought MVs to the forefront of bacterial pathogenesis research. Whereas MVs are a complex combination of molecules not yet fully understood, research into its effects, targeting and pathogenic components will advance its understanding and utilization. This review will summarize structural, extraction and penetration information on several classes of MVs and emphasize the role of MVs in transport and immune response activation. Finally, the potential of MVs as a therapeutic method will be highlighted, as will future research prospects.
Collapse
Affiliation(s)
- Min Xiao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
19
|
Park J, Woo SJ, Hong Y, Lee JJ, Hong JY. Association between the Respiratory Microbiome and Plasma Microbial Extracellular Vesicles in Intubated Patients. Microorganisms 2023; 11:2128. [PMID: 37763972 PMCID: PMC10537887 DOI: 10.3390/microorganisms11092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) regulate various cellular and immunological functions in human diseases. There is growing interest in the clinical role of microbial EVs in pneumonia. However, there is a lack of research on the correlation between lung microbiome with microbial EVs and the microbiome of other body sites in pneumonia. We investigated the co-occurrence of lung microbiome and plasma microbe-derived EVs (mEVs) in 111 samples obtained from 60 mechanically ventilated patients (41 pneumonia and 19 non-pneumonia cases). The microbial correlation between the two samples was compared between the pneumonia and non-pneumonia cases. Bacterial composition of the plasma mEVs was distinct from that of the lung microbiome. There was a significantly higher correlation between lung microbiome and plasma mEVs in non-pneumonia individuals compared to pneumonia patients. In particular, Acinetobacter and Lactobacillus genera had high correlation coefficients in non-pneumonia patients. This indicates a beneficial effect of mEVs in modulating host lung immune response through EV component transfer.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Seong Ji Woo
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Yoonki Hong
- Department of Internal Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon 24289, Republic of Korea;
| | - Jae Jun Lee
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
| | - Ji Young Hong
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (S.J.W.); (J.J.L.)
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24253, Republic of Korea
| |
Collapse
|
20
|
Modasia AA, Jones EJ, Martel LM, Louvel H, Couraud P, Blackshaw LA, Carding SR. The use of a multicellular in vitro model to investigate uptake and migration of bacterial extracellular vesicles derived from the human gut commensal Bacteroides thetaiotaomicron. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e93. [PMID: 38939073 PMCID: PMC11080816 DOI: 10.1002/jex2.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2024]
Abstract
Bacterial extracellular vesicles (BEVs) are increasingly seen as key signalling mediators between the gut microbiota and the host. Recent studies have provided evidence of BEVs ability to transmigrate across cellular barriers to elicit responses in other tissues, such as the central nervous system (CNS). Here we use a combination of single-, two- and three-cell culture systems to demonstrate the transmigration of Bacteroides thetaiotaomicron derived BEVs (Bt-BEVs) across gut epithelium and blood brain barrier (BBB) endothelium, and their subsequent acquisition and downstream effects in neuronal cells. Bt-BEVs were shown to traffic to the CNS in vivo after intravenous administration to mice, and in multi-cell in vitro culture systems to transmigrate across gut epithelial and BBB endothelial cell barriers, where they were acquired by both microglia and immature neuronal cells. No significant activation/inflammatory effects were induced in non-differentiated neurons, in contrast to that observed in microglia cells, although this was notably less than that induced by lipopolysaccharide (LPS). Overall, our findings provide evidence for transmigration of Bt-BEVs across gut-epithelial and BBB endothelial cell barriers in vivo and in vitro, and their downstream responses in neural cells. This study sheds light onto how commensal bacteria-derived BEV transport across the gut-brain axis and can be exploited for the development of targeted drug delivery.
Collapse
Affiliation(s)
- Amisha A. Modasia
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | - Emily J. Jones
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | | | - Hélène Louvel
- National Institute of Health and Medical Research (INSERM)6 PlaceTristan BernardParisFrance
| | - Pierre‐Olivier Couraud
- National Institute of Health and Medical Research (INSERM)6 PlaceTristan BernardParisFrance
| | - L. Ashley Blackshaw
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
| | - Simon R. Carding
- Quadram Institute BioscienceRosalind Franklin RoadNorwich Research ParkNorwichUK
- Norwich Medical SchoolNorwich Research ParkUniversity of East AngliaNorwichUK
| |
Collapse
|
21
|
Chen S, Lei Q, Zou X, Ma D. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813. [PMID: 37398647 PMCID: PMC10313905 DOI: 10.3389/fimmu.2023.1157813] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, bilayered, and nanosized membrane vesicles that are secreted from gram-negative bacteria. OMVs play a pivotal role in delivering lipopolysaccharide, proteins and other virulence factors to target cells. Multiple studies have found that OMVs participate in various inflammatory diseases, including periodontal disease, gastrointestinal inflammation, pulmonary inflammation and sepsis, by triggering pattern recognition receptors, activating inflammasomes and inducing mitochondrial dysfunction. OMVs also affect inflammation in distant organs or tissues via long-distance cargo transport in various diseases, including atherosclerosis and Alzheimer's disease. In this review, we primarily summarize the role of OMVs in inflammatory diseases, describe the mechanism through which OMVs participate in inflammatory signal cascades, and discuss the effects of OMVs on pathogenic processes in distant organs or tissues with the aim of providing novel insights into the role and mechanism of OMVs in inflammatory diseases and the prevention and treatment of OMV-mediated inflammatory diseases.
Collapse
|
22
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
23
|
Abstract
Mammalian-cell-derived extracellular vesicles, such as exosomes, have been a key focal point for investigating host-pathogen interactions and are major facilitators in modulating both bacterial and viral infection. However, in recent years, increasing attention has been given to extracellular vesicles produced by bacteria and the role they play in regulating infection and disease. Extracellular vesicles produced by pathogenic bacteria employ a myriad of strategies to assist in bacterial virulence or divert antibacterial responses away from the parental bacterium to promote infection by and survival of the parental bacterium. Commensal bacteria also produce extracellular vesicles. These vesicles can play a variety of roles during infection, depending on the bacterium, but have been primarily shown to aid the host by stimulating innate immune responses to control infection by both bacteria and viruses. This article will review the activities of bacterial extracellular vesicles known to modulate infection by bacterial and viral pathogens.
Collapse
Affiliation(s)
- Guanqi Zhao
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Melissa K. Jones
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Luo R, Chang Y, Liang H, Zhang W, Song Y, Li G, Yang C. Interactions between extracellular vesicles and microbiome in human diseases: New therapeutic opportunities. IMETA 2023; 2:e86. [PMID: 38868436 PMCID: PMC10989913 DOI: 10.1002/imt2.86] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 06/14/2024]
Abstract
In recent decades, accumulating research on the interactions between microbiome homeostasis and host health has broadened new frontiers in delineating the molecular mechanisms of disease pathogenesis and developing novel therapeutic strategies. By transporting proteins, nucleic acids, lipids, and metabolites in their versatile bioactive molecules, extracellular vesicles (EVs), natural bioactive cell-secreted nanoparticles, may be key mediators of microbiota-host communications. In addition to their positive and negative roles in diverse physiological and pathological processes, there is considerable evidence to implicate EVs secreted by bacteria (bacterial EVs [BEVs]) in the onset and progression of various diseases, including gastrointestinal, respiratory, dermatological, neurological, and musculoskeletal diseases, as well as in cancer. Moreover, an increasing number of studies have explored BEV-based platforms to design novel biomedical diagnostic and therapeutic strategies. Hence, in this review, we highlight the recent advances in BEV biogenesis, composition, biofunctions, and their potential involvement in disease pathologies. Furthermore, we introduce the current and emerging clinical applications of BEVs in diagnostic analytics, vaccine design, and novel therapeutic development.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Spine Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
25
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:5790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
26
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
27
|
A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. Nat Commun 2023; 14:464. [PMID: 36709333 PMCID: PMC9883832 DOI: 10.1038/s41467-023-36101-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/15/2023] [Indexed: 01/29/2023] Open
Abstract
Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising technology for the creation of non-infectious, nanoparticle vaccines against diverse pathogens. However, antigen display on OMVs can be difficult to control and highly variable due to bottlenecks in protein expression and localization to the outer membrane of the host cell, especially for bulky and/or complex antigens. Here, we describe a universal approach for avidin-based vaccine antigen crosslinking (AvidVax) whereby biotinylated antigens are linked to the exterior of OMVs whose surfaces are remodeled with multiple copies of a synthetic antigen-binding protein (SNAP) comprised of an outer membrane scaffold protein fused to a biotin-binding protein. We show that SNAP-OMVs can be readily decorated with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, and short peptides. When the resulting OMV formulations are injected in mice, strong antigen-specific antibody responses are observed that depend on the physical coupling between the antigen and SNAP-OMV delivery vehicle. Overall, these results demonstrate AvidVax as a modular platform that enables rapid and simplified assembly of antigen-studded OMVs for application as vaccines against pathogenic threats.
Collapse
|
28
|
Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12:1018692. [PMID: 36579343 PMCID: PMC9791067 DOI: 10.3389/fcimb.2022.1018692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Sepsis is one of the leading causes of mortality worldwide and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The early diagnosis and effective treatment of sepsis still face challenges due to its rapid progression, dynamic changes, and strong heterogeneity among different individuals. To develop novel strategies to control sepsis, a better understanding of the complex mechanisms of sepsis is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells through different mechanisms. In the disease state, the number of EVs produced by activated or apoptotic cells and the cargoes they carry were altered. They regulated the function of local or distant host cells in autocrine or paracrine ways. Current studies have found that EVs are involved in the occurrence and development of sepsis through multiple pathways. In this review, we focus on changes in the cargoes of EVs in sepsis, the regulatory roles of EVs derived from host cells and bacteria, and how EVs are involved in multiple pathological processes and organ dysfunction in sepsis. Overall, EVs have great application prospects in sepsis, such as early diagnosis of sepsis, dynamic monitoring of disease, precise therapeutic targets, and prevention of sepsis as a vaccine platform.
Collapse
Affiliation(s)
- Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Ranwei Li,
| |
Collapse
|
29
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
30
|
Xerri NL, Payne SM. Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. mBio 2022; 13:e0236022. [PMID: 36102517 PMCID: PMC9600379 DOI: 10.1128/mbio.02360-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The role of the gut microbiota in the pathogenesis of Shigella flexneri remains largely unknown. To understand the impact of the gut microbiota on S. flexneri virulence, we examined the effect of interspecies interactions with Bacteroides thetaiotaomicron, a prominent member of the gut microbiota, on S. flexneri invasion. When grown in B. thetaiotaomicron-conditioned medium, S. flexneri showed reduced invasion of human epithelial cells. This decrease in invasiveness of S. flexneri resulted from a reduction in the level of the S. flexneri master virulence regulator VirF. Reduction of VirF corresponded with a decrease in expression of a secondary virulence regulator, virB, as well as expression of S. flexneri virulence genes required for invasion, intracellular motility, and spread. Repression of S. flexneri virulence factors by B. thetaiotaomicron-conditioned medium was not caused by either a secreted metabolite or secreted protein but rather was due to the presence of B. thetaiotaomicron outer membrane vesicles (OMVs) in the conditioned medium. The addition of purified B. thetaiotaomicron OMVs to S. flexneri growth medium recapitulated the inhibitory effects of B. thetaiotaomicron-conditioned medium on invasion, virulence gene expression, and virulence protein levels. Total lipids extracted from either B. thetaiotaomicron cells or B. thetaiotaomicron OMVs also recapitulated the effects of B. thetaiotaomicron-conditioned medium on expression of the S. flexneri virulence factor IpaC, indicating that B. thetaiotaomicron OMV lipids, rather than a cargo contained in the vesicles, are the active factor responsible for the inhibition of S. flexneri virulence. IMPORTANCE Shigella flexneri is the causative agent of bacillary dysentery in humans. Shigella spp. are one of the leading causes of diarrheal morbidity and mortality, especially among children in low- and middle-income countries. The rise of antimicrobial resistance combined with the lack of an effective vaccine for Shigella heightens the importance of studies aimed at better understanding previously uncharacterized aspects of Shigella pathogenesis. Here, we show that conditioned growth medium from the commensal bacterium Bacteroides thetaiotaomicron represses the invasion of S. flexneri. This repression is due to the presence of B. thetaiotaomicron outer membrane vesicles. These findings establish a role for interspecies interactions with a prominent member of the gut microbiota in modulating the virulence of S. flexneri and identify a novel function of outer membrane vesicles in interbacterial signaling between members of the gut microbiota and an enteric pathogen.
Collapse
Affiliation(s)
- Nicholas L. Xerri
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
31
|
Kashyap D, Panda M, Baral B, Varshney N, R S, Bhandari V, Parmar HS, Prasad A, Jha HC. Outer Membrane Vesicles: An Emerging Vaccine Platform. Vaccines (Basel) 2022; 10:1578. [PMID: 36298443 PMCID: PMC9610665 DOI: 10.3390/vaccines10101578] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2023] Open
Abstract
Vaccine adjuvants are substances that improve the immune capacity of a recombinant vaccine to a great extent and have been in use since the early 1900s; they are primarily short-lived and initiate antigen activity, mainly an inflammatory response. With the developing technologies and innovation, early options such as alum were modified, yet the inorganic nature of major vaccine adjuvants caused several side effects. Outer membrane vesicles, which respond to the stressed environment, are small nano-sized particles secreted by gram-negative bacteria. The secretory nature of OMV gives us many benefits in terms of infection bioengineering. This article aims to provide a detailed overview of bacteria's outer membrane vesicles (OMV) and their potential usage as adjuvants in making OMV-based vaccines. The OMV adjuvant-based vaccines can be a great benefactor, and there are ongoing trials for formulating OMV adjuvant-based vaccines for SARS-CoV-2. This study emphasizes engineering the OMVs to develop better versions for safety purposes. This article will also provide a gist about the advantages and disadvantages of such vaccines, along with other aspects.
Collapse
Affiliation(s)
- Dharmendra Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Mrutyunjaya Panda
- Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Sajitha R
- Amity Institute of Biotechnology, Amity University Noida, Amity 201313, India
| | - Vasundhra Bhandari
- Department of Biological Science, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | | | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
32
|
Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P. A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 2022; 18:e1010827. [PMID: 36108089 PMCID: PMC9514646 DOI: 10.1371/journal.ppat.1010827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells. We previously outlined by RNA-Sequencing (RNA-seq) the existence of abundant very small (<16 nt) bacterial and eukaryote RNA (vsRNA) population with potential regulatory functions. However, it is not exceptional to see vsRNA species removed from the RNA-seq libraries or datasets because being considered as random degradation products. As a proof of concept, we present in this study a 13 nt in length isoleucine tRNA-derived fragment (Ile-tRF-5X) which is selectively modulated by nutritional and thermal stress while remaining unaffected by transcription and translation inhibitions. We also showed that OMVs and their Ile-tRF-5X vsRNAs are delivered into human HCT116 cells and both can promote host cell gene expression and proliferation. Ile-tRF-5X appears to regulate gene silencing properties of miRNAs by competition. Our findings provide a novel perspective and paradigm on the existing symbiosis between hosts and bacteria but also brings a new insight of host-pathogen interactions mediated by tRFs which remain so far poorly characterized in bacteria.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jeffrey Ho
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marine Lambert
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Abderrahim Benmoussa
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Zeinab Husseini
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Provost
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
33
|
Mat Rani NNI, Alzubaidi ZM, Butt AM, Mohammad Faizal NDF, Sekar M, Azhari H, Mohd Amin MCI. Outer membrane vesicles as biomimetic vaccine carriers against infections and cancers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1784. [PMID: 35194964 DOI: 10.1002/wnan.1784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In the last decade, nanoparticle-based therapeutic modalities have emerged as promising treatment options for cancer and infectious diseases. To improve prognosis, chemotherapeutic and antimicrobial drugs must be delivered selectively to the target sites. Researchers have increasingly focused their efforts on improving drug delivery, with a particular emphasis on cancer and infectious diseases. When drugs are administered systemically, they become diluted and can diffuse to all tissues but only until the immune system intervenes and quickly removes them from circulation. To enhance and prolong the systemic circulation of drugs, nanocarriers have been explored and used; however, nanocarriers have a major drawback in that they can trigger immune responses. Numerous nanocarriers for optimal drug delivery have been developed using innovative and effective biointerface technologies. Autologous cell-derived drug carriers, such as outer membrane vesicles (OMVs), have demonstrated improved bioavailability and reduced toxicity. Thus, this study investigates the use of biomimetic OMVs as biomimetic vaccine carriers against infections and cancers to improve our understanding in the field of nanotechnology. In addition, discussion on the advantages, disadvantages, and future prospects of OMVs will also be explored. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Zahraa M Alzubaidi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nur Dini Fatini Mohammad Faizal
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Qin Y, Guo Z, Huang H, Zhu L, Dong S, Zhu YG, Cui L, Huang Q. Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5653-5663. [PMID: 35438977 DOI: 10.1021/acs.est.1c08654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are newly recognized as important vectors for carrying and spreading antibiotic resistance genes (ARGs). However, the ARGs harbored by EVs in ambient environments and the transfer potential are still unclear. In this study, the prevalence of ARGs and mobile genetic elements (MGEs) in EVs and their microbial origins were studied in indoor dust from restaurants, kindergarten, dormitories, and vehicles. The amount of EVs ranged from 3.40 × 107 to 1.09 × 1011 particles/g dust. The length of EV-associated DNA fragments was between 21 bp and 9.7 kb. Metagenomic sequencing showed that a total of 241 antibiotic ARG subtypes encoding resistance to 16 common classes were detected in the EVs from all four fields. Multidrug, quinolone, and macrolide resistance genes were the dominant types. 15 ARG subtypes were exclusively carried and even enriched in EVs compared to the indoor microbiome. Moreover, several ARGs showed co-occurrence with MGEs. The EVs showed distinct taxonomic composition with their original dust microbiota. 30.23% of EV-associated DNA was predicted to originate from potential pathogens. Our results indicated the widespread of EVs carrying ARGs and virulence genes in daily life indoor dust, provided new insights into the status of extracellular DNA, and raised risk concerns on their gene transfer potential.
Collapse
Affiliation(s)
- Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Guo
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Haining Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Dong
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yong-Guan Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- National Basic Science Data Center, Beijing 100190, China
| |
Collapse
|
35
|
Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, Wang H. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [PMID: 35283837 PMCID: PMC8905621 DOI: 10.3389/fmicb.2022.835058] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 01/22/2023] Open
Abstract
Both Gram-positive and Gram-negative bacteria can secrete extracellular vesicles (EVs), which contain numerous active substances. EVs mediate bacterial interactions with their hosts or other microbes. Bacterial EVs play a double-edged role in infections through various mechanisms, including the delivery of virulence factors, modulating immune responses, mediating antibiotic resistance, and inhibiting competitive microbes. The spread of antibiotic resistance continues to represent a difficult clinical challenge. Therefore, the investigation of novel therapeutics is a valuable research endeavor for targeting antibiotic-resistant bacterial infections. As a pathogenic substance of bacteria, bacterial EVs have gained increased attention. Thus, EV inhibitors are expected to function as novel antimicrobial agents. The inhibition of EV production, EV activity, and EV-stimulated inflammation are considered potential pathways. This review primarily introduces compounds that effectively inhibit bacterial EVs and evaluates the prospects of their application.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongfang Zhang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Siqi Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yujie Du
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
36
|
Parveen S, Subramanian K. Emerging Roles of Extracellular Vesicles in Pneumococcal Infections: Immunomodulators to Potential Novel Vaccine Candidates. Front Cell Infect Microbiol 2022; 12:836070. [PMID: 35237534 PMCID: PMC8882830 DOI: 10.3389/fcimb.2022.836070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The Gram-positive bacterial pathogen, Streptococcus pneumoniae is a major global health threat that kills over one million people worldwide. The pneumococcus commonly colonizes the nasopharynx asymptomatically as a commensal, but is also capable of causing a wide range of life-threatening diseases such as pneumonia, meningitis and septicemia upon migration into the lower respiratory tract and spread to internal organs. Emergence of antibiotic resistant strains and non-vaccine serotypes has led to the classification of pneumococcal bacteria as a priority pathogen by the World Health Organization that needs urgent research into bacterial pathogenesis and development of novel vaccine strategies. Extracellular vesicles are spherical membrane bound structures that are released by both pathogen and host cells, and influence bacterial pathogenesis as well as the immune response. Recent studies have found that while bacterial vesicles shuttle virulence factors and toxins into host cells and regulate inflammatory responses, vesicles released from the infected host cells contain both bacterial and host proteins that are antigenic and immunomodulatory. Bacterial membrane vesicles have great potential to be developed as cell-free vaccine candidates in the future due to their immunogenicity and biostability. Host-derived vesicles isolated from patient biofluids such as blood and bronchoalveolar lavage could be used to identify potential diagnostic biomarkers as well as engineered to deliver desired payloads to specific target cells for immunotherapy. In this review, we summarize the recent developments on the role of bacterial and host vesicles in pneumococcal infections and future prospects in developing novel therapeutics and diagnostics for control of invasive pneumococcal diseases.
Collapse
|
37
|
T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. THE ISME JOURNAL 2022; 16:500-510. [PMID: 34433898 PMCID: PMC8776902 DOI: 10.1038/s41396-021-01093-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Outer membrane vesicles (OMVs) can function as nanoscale vectors that mediate bacterial interactions in microbial communities. How bacteria recognize and recruit OMVs inter-specifically remains largely unknown, thus limiting our understanding of the complex physiological and ecological roles of OMVs. Here, we report a ligand-receptor interaction-based OMV recruitment mechanism, consisting of a type VI secretion system (T6SS)-secreted lipopolysaccharide (LPS)-binding effector TeoL and the outer membrane receptors CubA and CstR. We demonstrated that Cupriavidus necator T6SS1 secretes TeoL to preferentially associate with OMVs in the extracellular milieu through interactions with LPS, one of the most abundant components of OMVs. TeoL associated with OMVs can further bind outer membrane receptors CubA and CstR, which tethers OMVs to the recipient cells and allows cargo to be delivered. The LPS-mediated mechanism enables bacterial cells to recruit OMVs derived from different species, and confers advantages to bacterial cells in iron acquisition, interbacterial competition, and horizontal gene transfer (HGT). Moreover, our findings provide multiple new perspectives on T6SS functionality in the context of bacterial competition and HGT, through the recruitment of OMVs.
Collapse
|
38
|
Karvonen K, Tammisto H, Nykky J, Gilbert L. Borrelia burgdorferi Outer Membrane Vesicles Contain Antigenic Proteins, but Do Not Induce Cell Death in Human Cells. Microorganisms 2022; 10:microorganisms10020212. [PMID: 35208666 PMCID: PMC8878412 DOI: 10.3390/microorganisms10020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Like many bacterial species, Borrelia burgdorferi, the pleomorphic bacterium that causes Lyme borreliosis, produces outer membrane vesicles (OMVs). Borrelial OMVs (BbOMVs) have been identified as containing virulence factors, such as outer surface proteins (Osps) A, B, and C, as well as DNA. However, the pathogenicity of BbOMVs in disease development is still unclear. In this study, we characterized purified BbOMVs by analyzing their size and immunolabeling for known antigenic markers: OspA, OspC, p39, and peptidoglycan. In addition, BbOMVs were cocultured with human non-immune cells for cytotoxicity analysis. The results demonstrated that, on average, the vesicles were small, ranging between 11 and 108 nm in diameter. In addition, both OspA and OspC, as well as Lyme arthritis markers p39 and peptidoglycan, were detected from BbOMVs. Furthermore, BbOMVs were cocultured with non-immune cells, which did not result in cell death. Combined, these results suggested that BbOMVs could participate in the induction of infection by functioning as a decoy for the host immune system. Furthermore, BbOMVs might serve as a means for persistent antigens to remain in the host for prolonged periods of time.
Collapse
Affiliation(s)
- Kati Karvonen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (H.T.); (J.N.)
- Correspondence: (K.K.); (L.G.)
| | - Hanna Tammisto
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (H.T.); (J.N.)
| | - Jonna Nykky
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland; (H.T.); (J.N.)
| | - Leona Gilbert
- Te?ted Oy, Mattilanniemi 6-8, FI-40100 Jyvaskyla, Finland
- Correspondence: (K.K.); (L.G.)
| |
Collapse
|
39
|
Outer Membrane Vesicles (OMVs) of Pseudomonas aeruginosa Provide Passive Resistance but Not Sensitization to LPS-Specific Phages. Viruses 2022; 14:v14010121. [PMID: 35062325 PMCID: PMC8778925 DOI: 10.3390/v14010121] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Outer membrane vesicles (OMVs) released from gram-negative bacteria are key elements in bacterial physiology, pathogenesis, and defence. In this study, we investigated the role of Pseudomonas aeruginosa OMVs in the anti-phage defence as well as in the potential sensitization to LPS-specific phages. Using transmission electron microscopy, virion infectivity, and neutralization assays, we have shown that both phages efficiently absorb on free vesicles and are unable to infect P. aeruginosa host. Nevertheless, the accompanying decrease in PFU titre (neutralization) was only observed for myovirus KT28 but not podovirus LUZ7. Next, we verified whether OMVs derived from wild-type PAO1 strain can sensitize the LPS-deficient mutant (Δwbpl PAO1) resistant to tested phages. The flow cytometry experiments proved a quite effective and comparable association of OMVs to Δwbpl PAO1 and wild-type PAO1; however, the growth kinetic curves and one-step growth assay revealed no sensitization event of the OMV-associated phage-resistant P. aeruginosa deletant to LPS-specific phages. Our findings for the first time identify naturally formed OMVs as important players in passive resistance (protection) of P. aeruginosa population to phages, but we disproved the hypothesis of transferring phage receptors to make resistant strains susceptible to LPS-dependent phages.
Collapse
|
40
|
Haiyan C, Mengyuan Z, Yuteng Z, Ziyan L, Pan W, Han L. Recent advances on biomedical applications of bacterial outer membrane vesicles. J Mater Chem B 2022; 10:7384-7396. [DOI: 10.1039/d2tb00683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoscale and non-self-replicating outer membrane vesicles (OMVs) are naturally secreted by some bacteria with their structures and compositions similar to that of the outer membrane of parental bacteria. With some...
Collapse
|
41
|
Xue K, Wang L, Liu J. Bacterial outer membrane vesicles and their functionalization as vehicles for bioimaging, diagnosis and therapy. MATERIALS ADVANCES 2022; 3:7185-7197. [DOI: 10.1039/d2ma00420h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In this review, we summarize the bioactivities of bacterial outer membrane vesicles, including biogenesis, immunogenicity, and interactions, followed by a discussion on their functionalization as nanocarriers for bioimaging, diagnosis, and therapy.
Collapse
Affiliation(s)
- Kaikai Xue
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
42
|
Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, Edinur HA, Pati S, Kari ZA, Ray RR. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExosomes being non-ionized micro-vesicles with a size range of 30–100 nm possess the ability to bring about intracellular communication and intercellular transport of various types of cellular components like miRNA, mRNA, DNA, and proteins. This is achieved through the targeted transmission of various inclusions to nearby or distant tissues. This is associated with the effective communication of information to bring about changes in physiological properties and functional attributes. The extracellular vesicles (EVs), produced by fungi, parasites, and bacteria, are responsible to bring about modulation/alteration of the immune responses exerted by the host body. The lipids, nucleic acids, proteins, and glycans of EVs derived from the pathogens act as the ligands of different families of pattern recognition receptors of the host body. The bacterial membrane vesicles (BMVs) are responsible for the transfer of small RNA species, along with other types of noncoding RNA thereby playing a key role in the regulation of the host immune system. Apart from immunomodulation, the BMVs are also responsible for bacterial colonization in the host tissue, biofilm formation, and survival therein showing antibiotic resistance, leading to pathogenesis and virulence. This mini-review would focus on the role of exosomes in the development of biofilm and consequent immunological responses within the host body along with an analysis of the mechanism associated with the development of resistance.
Collapse
|
43
|
McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174. [PMID: 34636061 PMCID: PMC8561641 DOI: 10.15252/embj.2021108174] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
All bacteria produce secreted vesicles that carry out a variety of important biological functions. These extracellular vesicles can improve adaptation and survival by relieving bacterial stress and eliminating toxic compounds, as well as by facilitating membrane remodeling and ameliorating inhospitable environments. However, vesicle production comes with a price. It is energetically costly and, in the case of colonizing pathogens, it elicits host immune responses, which reduce bacterial viability. This raises an interesting paradox regarding why bacteria produce vesicles and begs the question as to whether the benefits of producing vesicles outweigh their costs. In this review, we discuss the various advantages and disadvantages associated with Gram-negative and Gram-positive bacterial vesicle production and offer perspective on the ultimate score. We also highlight questions needed to advance the field in determining the role for vesicles in bacterial survival, interkingdom communication, and virulence.
Collapse
Affiliation(s)
- Hannah M McMillan
- Department of Molecular Genetics and MicrobiologyDuke UniversityDurhamNCUSA
| | - Meta J Kuehn
- Department of BiochemistryDuke UniversityDurhamNCUSA
| |
Collapse
|
44
|
Tiku V, Tan MW. Host immunity and cellular responses to bacterial outer membrane vesicles. Trends Immunol 2021; 42:1024-1036. [PMID: 34635395 DOI: 10.1016/j.it.2021.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023]
Abstract
All Gram-negative bacteria produce outer membrane vesicles (OMVs) which are minute spherical structures emanating from the bacterial outer membrane. OMVs are primarily enriched in lipopolysaccharide (LPS) and phospholipids, as well as outer membrane and periplasmic proteins. Recent research has provided convincing evidence for their role in multiple aspects of bacterial physiology and their interaction with vertebrate host cells. OMVs play vital roles in bacterial colonization, delivery of virulence factors, and disease pathogenesis. Here, we discuss the interactions of OMVs with mammalian host cells with a focus on how bacteria use OMVs to modulate host immune responses that eventually enable bacteria to evade host immunity.
Collapse
Affiliation(s)
- Varnesh Tiku
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
45
|
Bittel M, Reichert P, Sarfati I, Dressel A, Leikam S, Uderhardt S, Stolzer I, Phu TA, Ng M, Vu NK, Tenzer S, Distler U, Wirtz S, Rothhammer V, Neurath MF, Raffai RL, Günther C, Momma S. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles 2021; 10:e12159. [PMID: 34664784 PMCID: PMC8524437 DOI: 10.1002/jev2.12159] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
The intestinal microbiota influences mammalian host physiology in health and disease locally in the gut but also in organs devoid of direct contact with bacteria such as the liver and brain. Extracellular vesicles (EVs) or outer membrane vesicles (OMVs) released by microbes are increasingly recognized for their potential role as biological shuttle systems for inter-kingdom communication. However, physiologically relevant evidence for the transfer of functional biomolecules from the intestinal microbiota to individual host cells by OMVs in vivo is scarce. By introducing Escherichia coli engineered to express Cre-recombinase (E. coliCre ) into mice with a Rosa26.tdTomato-reporter background, we leveraged the Cre-LoxP system to report the transfer of bacterial OMVs to recipient cells in vivo. Colonizing the intestine of these mice with E. coliCre , resulted in Cre-recombinase induced fluorescent reporter gene-expression in cells along the intestinal epithelium, including intestinal stem cells as well as mucosal immune cells such as macrophages. Furthermore, even far beyond the gut, bacterial-derived Cre induced extended marker gene expression in a wide range of host tissues, including the heart, liver, kidney, spleen, and brain. Together, our findings provide a method and proof of principle that OMVs can serve as a biological shuttle system for the horizontal transfer of functional biomolecules between bacteria and mammalian host cells.
Collapse
Affiliation(s)
- Miriam Bittel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Patrick Reichert
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Ilann Sarfati
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Anja Dressel
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefanie Leikam
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Stefan Uderhardt
- Department of Internal Medicine 3University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
- Exploratory Research UnitOptical Imaging Centre ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Iris Stolzer
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Tuan Anh Phu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Martin Ng
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Ngan K. Vu
- Northern California Institute for Research and EducationSan FranciscoCaliforniaUSA
| | - Stefan Tenzer
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Ute Distler
- Institute of ImmunologyUniversity Medical Centre of the Johannes‐Gutenberg University MainzMainzGermany
- Research Centre for Immunotherapy (FZI)University Medical Center of the Johannes‐Gutenberg University MainzMainzGermany
| | - Stefan Wirtz
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Veit Rothhammer
- Neurology Department (Experimental Glia Biology)University Hospital Erlangen and Friedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Robert L. Raffai
- Department of SurgeryDivision of Vascular and Endovascular SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Veterans AffairsSurgical Service (112G)San Francisco VA Medical CentreSan FranciscoCaliforniaUSA
| | - Claudia Günther
- Department of Medicine 1Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
- Deutsches Zentrum ImmuntherapieFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute)Goethe UniversityFrankfurt am MainGermany
| |
Collapse
|
46
|
Bacterial Outer Membrane Vesicles as a Versatile Tool in Vaccine Research and the Fight against Antimicrobial Resistance. mBio 2021; 12:e0170721. [PMID: 34372691 PMCID: PMC8406158 DOI: 10.1128/mbio.01707-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria include a number of pathogens that cause disease in humans and animals. Although antibiotics are still effective in treating a considerable range of infections caused by Gram-negative bacteria, the alarming increase of antimicrobial resistance (AMR) induced by excessive use of antibiotics has raised global concerns. Therefore, alternative strategies must be developed to prevent and treat bacterial infections and prevent the advent of a postantibiotic era. Vaccines, one of the greatest achievements in the history of medical science, hold extraordinary potential to prevent bacterial infections and thereby reduce the need for antibiotics. Novel bacterial vaccines are urgently needed, however, and outer membrane vesicles (OMVs), naturally produced by Gram-negative bacteria, represent a promising and versatile tool that can be employed as adjuvants, antigens, and delivery platforms in the development of vaccines against Gram-negative bacteria. Here, we provide an overview of the many roles OMVs can play in vaccine development and the mechanisms behind these applications. Methods to improve OMV yields and a comparison of different strategies for OMV isolation aiming at cost-effective production of OMV-based vaccines are also reviewed.
Collapse
|
47
|
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile tools for therapeutic approaches. MICROLIFE 2021; 2:uqab006. [PMID: 37223254 PMCID: PMC10117751 DOI: 10.1093/femsml/uqab006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/05/2021] [Indexed: 05/25/2023]
Abstract
Budding of the bacterial surface results in the formation and secretion of outer membrane vesicles, which is a conserved phenomenon observed in Gram-negative bacteria. Recent studies highlight that these sphere-shaped facsimiles of the donor bacterium's surface with enclosed periplasmic content may serve multiple purposes for their host bacterium. These include inter- and intraspecies cell-cell communication, effector delivery to target cells and bacterial adaptation strategies. This review provides a concise overview of potential medical applications to exploit outer membrane vesicles for therapeutic approaches. Due to the fact that outer membrane vesicles resemble the surface of their donor cells, they represent interesting nonliving candidates for vaccine development. Furthermore, bacterial donor species can be genetically engineered to display various proteins and glycans of interest on the outer membrane vesicle surface or in their lumen. Outer membrane vesicles also possess valuable bioreactor features as they have the natural capacity to protect, stabilize and enhance the activity of luminal enzymes. Along these features, outer membrane vesicles not only might be suitable for biotechnological applications but may also enable cell-specific delivery of designed therapeutics as they are efficiently internalized by nonprofessional phagocytes. Finally, outer membrane vesicles are potent modulators of our immune system with pro- and anti-inflammatory properties. A deeper understanding of immunoregulatory effects provoked by different outer membrane vesicles is the basis for their possible future applications ranging from inflammation and immune response modulation to anticancer therapy.
Collapse
Affiliation(s)
- Franz G Zingl
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Deborah R Leitner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Himadri B Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed-Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
48
|
González MF, Díaz P, Sandoval-Bórquez A, Herrera D, Quest AFG. Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development. Int J Mol Sci 2021; 22:ijms22094823. [PMID: 34062919 PMCID: PMC8124820 DOI: 10.3390/ijms22094823] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived vesicles important in intercellular communication that play an essential role in host-pathogen interactions, spreading pathogen-derived as well as host-derived molecules during infection. Pathogens can induce changes in the composition of EVs derived from the infected cells and use them to manipulate their microenvironment and, for instance, modulate innate and adaptive inflammatory immune responses, both in a stimulatory or suppressive manner. Gastric cancer is one of the leading causes of cancer-related deaths worldwide and infection with Helicobacter pylori (H. pylori) is considered the main risk factor for developing this disease, which is characterized by a strong inflammatory component. EVs released by host cells infected with H. pylori contribute significantly to inflammation, and in doing so promote the development of disease. Additionally, H. pylori liberates vesicles, called outer membrane vesicles (H. pylori-OMVs), which contribute to atrophia and cell transformation in the gastric epithelium. In this review, the participation of both EVs from cells infected with H. pylori and H. pylori-OMVs associated with the development of gastric cancer will be discussed. By deciphering which functions of these external vesicles during H. pylori infection benefit the host or the pathogen, novel treatment strategies may become available to prevent disease.
Collapse
Affiliation(s)
- María Fernanda González
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Paula Díaz
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Alejandra Sandoval-Bórquez
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Herrera
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Andrew F. G. Quest
- Center for studies on Exercise, Metabolism and Cancer (CEMC), Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago 8380453, Chile; (M.F.G.); (P.D.); (A.S.-B.); (D.H.)
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago 7680201, Chile
- Correspondence: ; Tel.: +56-2-29786832
| |
Collapse
|
49
|
Pirolli NH, Bentley WE, Jay SM. Bacterial Extracellular Vesicles and the Gut-Microbiota Brain Axis: Emerging Roles in Communication and Potential as Therapeutics. Adv Biol (Weinh) 2021; 5:e2000540. [PMID: 33857347 DOI: 10.1002/adbi.202000540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Indexed: 12/20/2022]
Abstract
Bacterial extracellular vesicles (BEVs) have emerged as candidate signaling vectors for long-distance interkingdom communication within the gut-microbiota brain axis. Most bacteria release these nanosized vesicles, capable of signaling to the brain via their abundant protein and small RNA cargo, possibly directly via crossing the blood-brain barrier. BEVs have been shown to regulate brain gene expression and induce pathology at most stages of neuroinflammation and neurodegeneration, and thus they may play a causal role in diseases such as Alzheimer's, Parkinson's, and depression/anxiety. On the other hand, BEVs have intrinsic therapeutic properties that may be relevant to probiotic therapy and can also be engineered to function as drug delivery vehicles and vaccines. Thus, BEVs may be both a cause of and solution to neuropathological conditions. In this review, current knowledge of the physiological roles of BEVs as well as state of the art pertaining to the development of therapeutic BEVs in the context of the microbiome-gut-brain axis are summarized.
Collapse
Affiliation(s)
- Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, Robert E. Fischell Institute, and Institute for Bioscience and Biotechnology Research, University of Maryland, 5120A A. James Clark Hall, College Park, MD, 20742, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and Cell Biology, University of Maryland, 3116 A. James Clark Hall, College Park, MD, 20742, USA
| |
Collapse
|
50
|
Behrens F, Funk-Hilsdorf TC, Kuebler WM, Simmons S. Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates. Int J Mol Sci 2021; 22:3858. [PMID: 33917862 PMCID: PMC8068278 DOI: 10.3390/ijms22083858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches.
Collapse
Affiliation(s)
- Felix Behrens
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Teresa C. Funk-Hilsdorf
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, ON M5B 1X1, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Szandor Simmons
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; (F.B.); (T.C.F.-H.); (S.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10117 Berlin, Germany
| |
Collapse
|