1
|
Keeling PJ, Mtawali M, Trznadel M, Livingston SJ, Wakeman KC. Parallel functional reduction in the mitochondria of apicomplexan parasites. Eur J Protistol 2024; 94:126065. [PMID: 38492251 DOI: 10.1016/j.ejop.2024.126065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Extreme functional reduction of mitochondria has taken place in parallel in many distantly related lineages of eukaryotes, leading to a number of recurring metabolic states with variously lost electron transport chain (ETC) complexes, loss of the tricarboxylic acid (TCA) cycle, and/or loss of the mitochondrial genome. The resulting mitochondria-related organelles (MROs) are generally structurally reduced and in the most extreme cases barely recognizable features of the cell with no role in energy metabolism whatsoever (e.g., mitosomes, which generally only make iron-sulfur clusters). Recently, a wide diversity of MROs were discovered to be hiding in plain sight: in gregarine apicomplexans. This diverse group of invertebrate parasites has been known and observed for centuries, but until recent applications of culture-free genomics, their mitochondria were unremarkable. The genomics, however, showed that mitochondrial function has reduced in parallel in multiple gregarine lineages to several different endpoints, including the most reduced mitosomes. Here we review this remarkable case of parallel evolution of MROs, and some of the interesting questions this work raises.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada.
| | - Mahara Mtawali
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Morelia Trznadel
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
2
|
Flipphi M, Márton A, Bíró V, Ág N, Sándor E, Fekete E, Karaffa L. Generation, Transfer, and Loss of Alternative Oxidase Paralogues in the Aspergillaceae Family. J Fungi (Basel) 2023; 9:1195. [PMID: 38132795 PMCID: PMC10744626 DOI: 10.3390/jof9121195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative oxidase (Aox) is a terminal oxidase operating in branched electron transport. The activity correlates positively with overflow metabolisms in certain Aspergilli, converting intracellular glucose by the shortest possible path into organic acids, like citrate or itaconate. Aox is nearly ubiquitous in fungi, but aox gene multiplicity is rare. Nevertheless, within the family of the Aspergillaceae and among its various species of industrial relevance-Aspergillus niger, A. oryzae, A. terreus, Penicillium rubens-paralogous aox genes coexist. Paralogous genes generally arise from duplication and are inherited vertically. Here, we provide evidence of four independent duplication events along the lineage that resulted in aox paralogues (aoxB) in contemporary Aspergillus and Penicillium taxa. In some species, three aox genes are co-expressed. The origin of the A. niger paralogue is different than that of the A. terreus paralogue, but all paralogous clades ultimately arise from ubiquitous aoxA parent genes. We found different patterns of uncorrelated gene losses reflected in the Aspergillus pedigree, albeit the original aoxA orthologues persist everywhere and are never replaced. The loss of acquired paralogues co-determines the contemporary aox gene content of individual species. In Aspergillus calidoustus, the two more ancient paralogues have, in effect, been replaced by two aoxB genes of distinct origins.
Collapse
Affiliation(s)
- Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Alexandra Márton
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| |
Collapse
|
3
|
Gao H, Zhou L, Zhang P, Wang Y, Qian X, Liu Y, Wu G. Filamentous Fungi-Derived Orsellinic Acid-Sesquiterpene Meroterpenoids: Fungal Sources, Chemical Structures, Bioactivities, and Biosynthesis. PLANTA MEDICA 2023; 89:1110-1124. [PMID: 37225133 DOI: 10.1055/a-2099-4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fungi-derived polyketide-terpenoid hybrids are important meroterpenoid natural products that possess diverse structure scaffolds with a broad spectrum of bioactivities. Herein, we focus on an ever-increasing group of meroterpenoids, orsellinic acid-sesquiterpene hybrids comprised of biosynthetic start unit orsellinic acid coupling to a farnesyl group or/and its modified cyclic products. The review entails the search of China National Knowledge Infrastructure (CNKI), Web of Science, Science Direct, Google Scholar, and PubMed databases up to June 2022. The key terms include "orsellinic acid", "sesquiterpene", "ascochlorin", "ascofuranone", and "Ascochyta viciae", which are combined with the structures of "ascochlorin" and "ascofuranone" drawn by the Reaxys and Scifinder databases. In our search, these orsellinic acid-sesquiterpene hybrids are mainly produced by filamentous fungi. Ascochlorin was the first compound reported in 1968 and isolated from filamentous fungus Ascochyta viciae (synonym: Acremonium egyptiacum; Acremonium sclerotigenum); to date, 71 molecules are discovered from various filamentous fungi inhabiting in a variety of ecological niches. As typical representatives of the hybrid molecules, the biosynthetic pathway of ascofuranone and ascochlorin are discussed. The group of meroterpenoid hybrids exhibits a broad arrange of bioactivities, as highlighted by targeting hDHODH (human dihydroorotate dehydrogenase) inhibition, antitrypanosomal, and antimicrobial activities. This review summarizes the findings related to the structures, fungal sources, bioactivities, and their biosynthesis from 1968 to June 2022.
Collapse
Affiliation(s)
- Hua Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, People's Republic of China
| | - Peng Zhang
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Ying Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Xuan Qian
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yujia Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Guangwei Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Dunn AK. Alternative oxidase in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148929. [PMID: 36265564 DOI: 10.1016/j.bbabio.2022.148929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
While alternative oxidase (AOX) was discovered in bacteria in 2003, the expression, function, and evolutionary history of this protein in these important organisms is largely unexplored. To date, expression and functional analysis is limited to studies in the Proteobacteria Novosphingobium aromaticivorans and Vibrio fischeri, where AOX likely plays roles in maintenance of cellular energy homeostasis and supporting responses to cellular stress. This review describes the history of the study of AOX in bacteria, details current knowledge of the predicted biochemical and structural characteristics, distribution, and function of bacterial AOX, and highlights interesting areas for the future study of AOX in bacteria.
Collapse
Affiliation(s)
- Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
5
|
Sendra KM, Watson AK, Kozhevnikova E, Moore AL, Embley TM, Hirt RP. Inhibition of mitosomal alternative oxidase causes lifecycle arrest of early-stage Trachipleistophora hominis meronts during intracellular infection of mammalian cells. PLoS Pathog 2022; 18:e1011024. [PMID: 36538568 PMCID: PMC9767352 DOI: 10.1371/journal.ppat.1011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.
Collapse
Affiliation(s)
- Kacper M. Sendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew K. Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - T. Martin Embley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
7
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
8
|
Xu F, Copsey AC, Young L, Barsottini MRO, Albury MS, Moore AL. Comparison of the Kinetic Parameters of Alternative Oxidases From Trypanosoma brucei and Arabidopsis thaliana-A Tale of Two Cavities. FRONTIERS IN PLANT SCIENCE 2021; 12:744218. [PMID: 34745175 PMCID: PMC8569227 DOI: 10.3389/fpls.2021.744218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) is widespread in plants, fungi, and some protozoa. While the general structure of the AOX remains consistent, its overall activity, sources of kinetic activation and their sensitivity to inhibitors varies between species. In this study, the recombinant Trypanosoma brucei AOX (rTAO) and Arabidopsis thaliana AOX1A (rAtAOX1A) were expressed in the Escherichia coli ΔhemA mutant FN102, and the kinetic parameters of purified AOXs were compared. Results showed that rTAO possessed the highest V max and K m for quinol-1, while much lower V max and K m were observed in the rAtAOX1A. The catalytic efficiency (k cat/K m) of rTAO was higher than that of rAtAOX1A. The rTAO also displayed a higher oxygen affinity compared to rAtAOX1A. It should be noted that rAtAOX1a was sensitive to α-keto acids while rTAO was not. Nevertheless, only pyruvate and glyoxylate can fully activate Arabidopsis AOX. In addition, rTAO and rAtAOX1A showed different sensitivity to AOX inhibitors, with ascofuranone (AF) being the best inhibitor against rTAO, while colletochlorin B (CB) appeared to be the most effective inhibitor against rAtAOX1A. Octylgallate (OG) and salicylhydroxamic acid (SHAM) are less effective than the other inhibitors against protist and plant AOX. A Caver analysis indicated that the rTAO and rAtAOX1A differ with respect to the mixture of polar residues lining the hydrophobic cavity, which may account for the observed difference in kinetic and inhibitor sensitivities. The data obtained in this study are not only beneficial for our understanding of the variation in the kinetics of AOX within protozoa and plants but also contribute to the guidance for the future development of phytopathogenic fungicides.
Collapse
|
9
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
10
|
Abou-El-Naga IF, Gaafar MR, Gomaa MM, Khedr SI, Achy SXANXAE. Encephalitozoon intestinalis: A new target for auranofin in a mice model. Med Mycol 2021; 58:810-819. [PMID: 31868212 DOI: 10.1093/mmy/myz126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the fact that many approaches have been developed over years to find efficient and well-tolerated therapeutic regimens for microsporidiosis, the effectiveness of current drugs remains doubtful, and effective drugs against specific targets are still scarce. The present study is the first that was designed to evaluate the potency of auranofin, an anti-rheumatoid FDA approved drug, against intestinal Encephalitozoon intestinalis. Evaluation of the drug was achieved through counting of fecal and intestinal spores, studying the intestinal histopathological changes, measuring of intestinal hydrogen peroxide level, and post therapy follow-up of mice for 2 weeks for detection of relapse. Results showed that auranofin has promising anti-microsporidia potential. It showed a promising efficacy in mice experimentally infected with E. intestinalis. It has revealed an obvious reduction in fecal spore shedding and intestinal tissue spore load, amelioration of intestinal tissue pathological changes, and improvement of the local inflammatory infiltration without significant changes in hydrogen peroxide level. Interestingly, auranofin prevented the relapse of infection. Thus, considering the results of the present work, auranofin could be considered a therapeutic alternative for the gold standard drug 'albendazole' against the intestinal E. intestinalis infection especially in relapsing cases.
Collapse
Affiliation(s)
- I F Abou-El-Naga
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - M R Gaafar
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - M M Gomaa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | - S I Khedr
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt
| | | |
Collapse
|
11
|
Molecular characterization and gene expression modulation of the alternative oxidase in a scuticociliate parasite by hypoxia and mitochondrial respiration inhibitors. Sci Rep 2020; 10:11880. [PMID: 32681023 PMCID: PMC7367826 DOI: 10.1038/s41598-020-68791-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/01/2020] [Indexed: 12/26/2022] Open
Abstract
Philasterides dicentrarchi is a marine benthic microaerophilic scuticociliate and an opportunistic endoparasite that can infect and cause high mortalities in cultured turbot (Scophthalmus maximus). In addition to a cytochrome pathway (CP), the ciliate can use a cyanide-insensitive respiratory pathway, which indicates the existence of an alternative oxidase (AOX) in the mitochondrion. Although AOX activity has been described in P. dicentrarchi, based on functional assay results, genetic evidence of the presence of AOX in the ciliate has not previously been reported. In this study, we conducted genomic and transcriptomic analysis of the ciliate and identified the AOX gene and its corresponding mRNA. The AOX gene (size 1,106 bp) contains four exons and three introns that generate an open reading frame of 915 bp and a protein with a predicted molecular weight of 35.6 kDa. The amino acid (aa) sequence of the AOX includes an import signal peptide targeting the mitochondria and the protein is associated with the inner membrane of the mitochondria. Bioinformatic analysis predicted that the peptide is a homodimeric glycoprotein, although monomeric forms may also appear under native conditions, with EXXH motifs associated with the diiron active centers. The aa sequences of the AOX of different P. dicentrarchi isolates are highly conserved and phylogenetically closely related to AOXs of other ciliate species, especially scuticociliates. AOX expression increased significantly during infection in the host and after the addition of CP inhibitors. This confirms the important physiological roles of AOX in respiration under conditions of low levels of O2 and in protecting against oxidative stress generated during infection in the host.
Collapse
|
12
|
Young L, Rosell-Hidalgo A, Inaoka DK, Xu F, Albury M, May B, Kita K, Moore AL. Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148247. [PMID: 32565080 DOI: 10.1016/j.bbabio.2020.148247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs. In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in Vmax and catalytic efficiency whilst some also affected the Km for quinol and oxygen. The extent to which mutation effects inhibitor sensitivity was also investigated, with mutation of R118 and T219 leading to a complete loss of inhibitor potency. However, only a slight reduction in IC50 values was observed when R96 was mutated, implying that this residue is less important in inhibitor binding. In silico modelling has been used to provide insight into the reason for such changes, which we suggest is due to disruptions in the proton transfer network, resulting in a reduction in overall reaction kinetics. We discuss our results in terms of the structural features of the ubiquinol binding site and consider the implications of such findings on the nature of the catalytic cycle. SIGNIFICANCE: The alternative oxidase is a ubiquinol oxidoreductase enzyme that catalyses the oxidation of ubiquinol and the reduction of oxygen to water. It is widely distributed amongst the plant, fungal and parasitic kingdoms and plays a central role in metabolism through facilitating the turnover of the TCA cycle whilst reducing ROS production.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | - Alicia Rosell-Hidalgo
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shinogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Fei Xu
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Mary Albury
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Benjamin May
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
13
|
Luo J, Deng J, Cui L, Chang P, Dai X, Yang C, Li N, Ren Z, Zhang X. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in the biodegradation of benz(a)anthracene and the related mechanism analysis. CHEMOSPHERE 2020; 249:126097. [PMID: 32078851 DOI: 10.1016/j.chemosphere.2020.126097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 02/01/2020] [Indexed: 05/22/2023]
Abstract
Benz(a)anthracene (BaA) is a polycyclic aromatic hydrocarbons (PAHs), that belongs to a group of carcinogenic and mutagenic persistent organic pollutants found in a variety of ecological habitats. In this study, the efficient biodegradation of BaA by a green alga Chlamydomonas reinhardtii (C. reinhardtii) CC-503 was investigated. The results showed that the growth of C. reinhardtii was hardly affected with an initial concentration of 10 mg/L, but was inhibited significantly under higher concentrations of BaA (>30 mg/L) (p < 0.05). We demonstrated that the relatively high concentration of 10 mg/L BaA was degraded completely in 11 days, which indicated that C. reinhardtii had an efficient degradation system. During the degradation, the intermediate metabolites were determined to be isomeric phenanthrene or anthracene, 2,6-diisopropylnaphthalene, 1,3-diisopropylnaphthalene, 1,7-diisopropylnaphthalene, and cyclohexanol. The enzymes involved in the degradation included the homogentisate 1,2-dioxygenase (HGD), the carboxymethylenebutenolidase, the ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ubiquinol oxidase. The respective genes encoding these proteins were significantly up-regulated ranging from 3.17 fold to 13.03 fold and the activity of enzymes, such as HGD and Rubisco, was significantly induced up to 4.53 and 1.46 fold (p < 0.05), during the BaA metabolism. This efficient degradation ability suggests that the green alga C. reinhardtii CC-503 may be a sustainable candidate for PAHs remediation.
Collapse
Affiliation(s)
- Jun Luo
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Jinglin Deng
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Lili Cui
- Institute of Environment and Ecology, Shandong Normal University, 250014, Ji'nan, PR China
| | - Peng Chang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Nannan Li
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, 250014, Ji'nan, PR China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, 443002, Yichang, PR China.
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resource and Environment, Southwest University, 400715, Chongqing, PR China.
| |
Collapse
|
14
|
Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Commun Biol 2020; 3:263. [PMID: 32451394 PMCID: PMC7248098 DOI: 10.1038/s42003-020-0981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Moniliophthora perniciosa is a fungal pathogen and causal agent of the witches' broom disease of cocoa, a threat to the chocolate industry and to the economic and social security in cocoa-planting countries. The membrane-bound enzyme alternative oxidase (MpAOX) is crucial for pathogen survival; however a lack of information on the biochemical properties of MpAOX hinders the development of novel fungicides. In this study, we purified and characterised recombinant MpAOX in dose-response assays with activators and inhibitors, followed by a kinetic characterization both in an aqueous environment and in physiologically-relevant proteoliposomes. We present structure-activity relationships of AOX inhibitors such as colletochlorin B and analogues which, aided by an MpAOX structural model, indicates key residues for protein-inhibitor interaction. We also discuss the importance of the correct hydrophobic environment for MpAOX enzymatic activity. We envisage that such results will guide the future development of AOX-targeting antifungal agents against M. perniciosa, an important outcome for the chocolate industry.
Collapse
Affiliation(s)
- Mario R O Barsottini
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.,Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Alice Copsey
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Luke Young
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Renata M Baroni
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Artur T Cordeiro
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Gonçalo A G Pereira
- Genomics and bioEnergy Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Anthony L Moore
- Biochemistry & Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
15
|
Timofeev S, Tokarev Y, Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitol Res 2020; 119:1433-1441. [DOI: 10.1007/s00436-020-06657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
16
|
Dolgikh VV, Tsarev AA, Timofeev SA, Zhuravlyov VS. Heterologous overexpression of active hexokinases from microsporidia Nosema bombycis and Nosema ceranae confirms their ability to phosphorylate host glucose. Parasitol Res 2019; 118:1511-1518. [DOI: 10.1007/s00436-019-06279-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 01/10/2023]
|
17
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
18
|
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biol Evol 2018; 10:2736-2748. [PMID: 30239727 PMCID: PMC6190962 DOI: 10.1093/gbe/evy205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hélène Timpano
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Gita Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Elena Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
19
|
Santos HJ, Makiuchi T, Nozaki T. Reinventing an Organelle: The Reduced Mitochondrion in Parasitic Protists. Trends Parasitol 2018; 34:1038-1055. [PMID: 30201278 DOI: 10.1016/j.pt.2018.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria originated from the endosymbiotic event commencing from the engulfment of an ancestral α-proteobacterium by the first eukaryotic ancestor. Establishment of niches has led to various adaptations among eukaryotes. In anaerobic parasitic protists, the mitochondria have undergone modifications by combining features shared from the aerobic mitochondria with lineage-specific components and mechanisms; a diversified class of organelles emerged and are generally called mitochondrion-related organelles (MROs). In this review we summarize and discuss the recent advances in the knowledge of MROs from parasitic protists, particularly the themes such as metabolic functions, contribution to parasitism, dynamics, protein targeting, and novel lineage- specific proteins, with emphasis on the diversity among these organelles.
Collapse
Affiliation(s)
- Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Summerbell RC, Gueidan C, Guarro J, Eskalen A, Crous PW, Gupta AK, Gené J, Cano-Lira JF, van Iperen A, Starink M, Scott JA. The Protean Acremonium. A. sclerotigenum/egyptiacum: Revision, Food Contaminant, and Human Disease. Microorganisms 2018; 6:E88. [PMID: 30115839 PMCID: PMC6164869 DOI: 10.3390/microorganisms6030088] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022] Open
Abstract
Acremonium is known to be regularly isolated from food and also to be a cause of human disease. Herein, we resolve some sources of confusion that have strongly hampered the accurate interpretation of these and other isolations. The recently designated type species of the genus Acremonium, A. alternatum, is known only from a single isolate, but it is the closest known relative of what may be one of the planet's most successful organisms, Acremonium sclerotigenum/egyptianum, shown herein to be best called by its earliest valid name, A. egyptiacum. The sequencing of ribosomal internal transcribed spacer (ITS) regions, actin genes, or both for 72 study isolates within this group allowed the full range of morphotypes and ITS barcode types to be elucidated, along with information on temperature tolerance and habitat. The results showed that nomenclatural confusion and frequent misidentifications facilitated by morphotaxonomy, along with misidentified early sequence deposits, have obscured the reality that this species is, in many ways, the definitive match of the historical concept of Acremonium: a pale orange or dull greenish-coloured monophialidic hyphomycete, forming cylindrical, ellipsoidal, or obovoid conidia in sticky heads or obovoid conidia in dry chains, and acting ecologically as a soil organism, marine organism, plant pathogen, plant endophyte, probable insect pathogen, human opportunistic pathogen, food contaminant, probable dermatological communicable disease agent, and heat-tolerant spoilage organism. Industrially, it is already in exploratory use as a producer of the antibiotic ascofuranone, active against trypanosomes, cryptosporidia, and microsporidia, and additional applications are in development. The genus-level clarification of the phylogeny of A. egyptiacum shows other historic acremonia belong to separate genera, and two are here described, Parasarocladium for the Acremonium radiatum complex and Kiflimonium for the Acremonium curvulum complex.
Collapse
Affiliation(s)
- Richard C Summerbell
- Sporometrics, 219 Dufferin St. Ste. 20C, Toronto, ON M6K 1Y9 Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada.
| | - Cecile Gueidan
- Australian National Herbarium, National Research Collections Australia, CSIRO-NCMI, Canberra, ACT 2601, Australia.
| | - Josep Guarro
- Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut and IISPV, Universitat Rovira i Virgili, Reus, 43201 Tarragona, Spain.
| | - Akif Eskalen
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA.
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
| | - Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON M5G 2C4, Canada.
- Mediprobe Research Inc., London, ON N5X 2P1, Canada.
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut and IISPV, Universitat Rovira i Virgili, Reus, 43201 Tarragona, Spain.
| | - Jose F Cano-Lira
- Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut and IISPV, Universitat Rovira i Virgili, Reus, 43201 Tarragona, Spain.
| | - Arien van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
| | - Mieke Starink
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
| | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada.
| |
Collapse
|
21
|
Structural insights into the alternative oxidases: are all oxidases made equal? Biochem Soc Trans 2017; 45:731-740. [PMID: 28620034 DOI: 10.1042/bst20160178] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 01/15/2023]
Abstract
The alternative oxidases (AOXs) are ubiquinol-oxidoreductases that are members of the diiron carboxylate superfamily. They are not only ubiquitously distributed within the plant kingdom but also found in increasing numbers within the fungal, protist, animal and prokaryotic kingdoms. Although functions of AOXs are highly diverse in general, they tend to play key roles in thermogenesis, stress tolerance (through the management of radical oxygen species) and the maintenance of mitochondrial and cellular energy homeostasis. The best structurally characterised AOX is from Trypanosoma brucei In this review, we compare the structure of AOXs, created using homology modelling, from many important species in an attempt to explain differences in activity and sensitivity to AOX inhibitors. We discuss the implications of these findings not only for future structure-based drug design but also for the design of novel AOXs for gene therapy.
Collapse
|
22
|
Mikhailov KV, Simdyanov TG, Aleoshin VV. Genomic Survey of a Hyperparasitic Microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol Evol 2017; 9:454-467. [PMID: 27694476 PMCID: PMC5381614 DOI: 10.1093/gbe/evw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Metchnikovellidae are a group of unusual microsporidians that lack some of the defining ultrastructural features characteristic of derived Microsporidia and are thought to be one of their earliest-branching lineages. The basal position of metchnikovellids was never confirmed by molecular phylogeny in published research, and thus far no genomic data for this group were available. In this work, we obtain a partial genome of metchnikovellid Amphiamblys sp. using multiple displacement amplification, next-generation sequencing, and metagenomic binning approaches. The partial genome, which we estimate to be close to 90% complete, displays genome compaction on par with gene-dense microsporidian genomes, but contains an unusual repertoire of unique repeat elements. Phylogenetic analyses of multigene datasets place Amphiamblys sp. as the first branch of the microsporidian lineage following the divergence of a mitochondriate microsporidian Mitosporidium. We find evidence for a mitochondrial remnant presumably functionally equivalent to a mitosome in Amphiamblys sp. and the common enzymatic complement for microsporidian anaerobic metabolism. Comparative genomic analyses identify the conservation of components for clathrin vesicle formation as one of the key features distinguishing the metchnikovellid from its highly derived relatives. The presented data confirm the notion of Metchnikovellidae as a less derived microsporidian group, and provide an additional stepping stone for reconstruction of an evolutionary transition from the early diverging parasitic fungi to derived Microsporidia.
Collapse
Affiliation(s)
- Kirill V. Mikhailov
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Timur G. Simdyanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir V. Aleoshin
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
23
|
Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci Rep 2017; 7:41040. [PMID: 28106122 PMCID: PMC5247736 DOI: 10.1038/srep41040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023] Open
Abstract
Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed.
Collapse
|
24
|
Matsuzaki M, Tatsumi R, Kita K. Protoplast Generation from the Ascofuranone-Producing Fungus Acremonium sclerotigenum. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo
- School of Tropical Medicine and Global Health, Nagasaki University
| | - Ryoko Tatsumi
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo
- School of Tropical Medicine and Global Health, Nagasaki University
| |
Collapse
|
25
|
Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 2016; 48:509-520. [PMID: 27816999 DOI: 10.1007/s10863-016-9685-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.
Collapse
|
26
|
Re-identification of the ascofuranone-producing fungus Ascochyta viciae as Acremonium sclerotigenum. J Antibiot (Tokyo) 2016; 70:304-307. [PMID: 27804952 DOI: 10.1038/ja.2016.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022]
|
27
|
Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P, Polticelli F. Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach. J Mol Evol 2016; 82:207-18. [PMID: 27090422 DOI: 10.1007/s00239-016-9738-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Alternative oxidases (AOXs) are mitochondrial cyanide-resistant membrane-bound metallo-proteins catalyzing the oxidation of ubiquinol and the reduction of oxygen to water bypassing two sites of proton pumping, thus dissipating a major part of redox energy into heat. Here, the structure of Arabidopsis thaliana AOX 1A has been modeled using the crystal structure of Trypanosoma brucei AOX as a template. Analysis of this model and multiple sequence alignment of members of the AOX family from all kingdoms of Life indicate that AOXs display a high degree of conservation of the catalytic core, which is formed by a four-α-helix bundle, hosting the di-iron catalytic site, and is flanked by two additional α-helices anchoring the protein to the membrane. Plant AOXs display a peculiar covalent dimerization mode due to the conservation in the N-terminal region of a Cys residue forming the inter-monomer disulfide bond. The multiple sequence alignment has also been used to infer a phylogenetic tree of AOXs whose analysis shows a polyphyletic origin for the AOXs found in Fungi and a monophyletic origin of the AOXs of Eubacteria, Mycetozoa, Euglenozoa, Metazoa, and Land Plants. This suggests that AOXs evolved from a common ancestral protein in each of these kingdoms. Within the Plant AOX clade, the AOXs of monocotyledon plants form two distinct clades which have unresolved relationships relative to the monophyletic clade of the AOXs of dicotyledonous plants. This reflects the sequence divergence of the N-terminal region, probably due to a low selective pressure for sequence conservation linked to the covalent homo-dimerization mode.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Daniele Salvi
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Riccardo Angelini
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy. .,National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy.
| |
Collapse
|
28
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
29
|
Škodová-Sveráková I, Verner Z, Skalický T, Votýpka J, Horváth A, Lukeš J. Lineage-specific activities of a multipotent mitochondrion of trypanosomatid flagellates. Mol Microbiol 2015; 96:55-67. [PMID: 25557487 DOI: 10.1111/mmi.12920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 01/19/2023]
Abstract
Trypanosomatids are a very diverse group composed of monoxenous and dixenous parasites belonging to the excavate class Kinetoplastea. Here we studied the respiration of five monoxenous species (Blechomonas ayalai, Herpetomonas muscarum, H. samuelpessoai, Leptomonas pyrrhocoris and Sergeia podlipaevi) introduced into culture, each representing a novel yet globally distributed and/or species-rich clade, and compare them with well-studied flagellates Trypanosoma brucei, Phytomonas serpens, Crithidia fasciculata and Leishmania tarentolae. Differences in structure and activities of respiratory chain complexes, respiration and other biochemical parameters recorded under laboratory conditions reveal their substantial diversity, likely a reflection of different host environments. Phylogenetic relationships of the analysed trypanosomatids do not correlate with their biochemical parameters, with the differences within clades by far exceeding those among clades. As the S. podlipaevi canonical respiratory chain complexes have very low activities, we believe that its mitochondrion is utilised for purposes other than oxidative phosphorylation. Hence, the single reticulated mitochondrion of diverse trypanosomatids seems to retain multipotency, with the capacity to activate its individual components based on the host environment.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
30
|
He X, He X, Liu H, Li M, Cai S, Fu Z, Lu X. Proteomic analysis of BmN cells (Bombyx mori) in response to infection with Nosema bombycis. Acta Biochim Biophys Sin (Shanghai) 2014; 46:982-90. [PMID: 25267721 DOI: 10.1093/abbs/gmu092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Nosema bombycis (N. bombycis, Nb) is an obligate intracellular parasite, which can cause pebrine disease in the silkworm. To investigate the effects of N. bombycis infection on the host cells, proteomes from BmN cells that had or had not been infected with N. bombycis at different infection stages were characterized with two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry, which identified 24 differentially expressed host proteins with significant intensity differences (P < 0.05) at least at one time point in mock- and N. bombycis infected cells. Notably, gene ontology analyses showed that these proteins are involved in many important biological reactions. During the infection phase, proteins involved in energy metabolism and oxidative stress had up-regulated expression. Two proteins participated in ubiquitin-dependent protein catabolic process had down-regulated expression. Quantitative real-time polymerase chain reaction was used to analyze the transcriptional profiles of these identified proteins. Taken together, the abundance changes, putative functions, and participation in biological reactions for the identified proteins produce a host-responsive protein model in N. bombycis-infected BmN cells. These findings further our knowledge about the effect of energy defect parasites on the host cells.
Collapse
Affiliation(s)
- Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangkang He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Abstract
Philasterides dicentrarchi causes a severe disease in turbot, and at present there are no drugs available to treat infected fish. We have previously demonstrated that, in addition to the classical respiratory pathway, P. dicentrarchi possesses an alternative mitochondrial respiratory pathway that is cyanide-insensitive and salicylhydroxamic acid (SHAM)-sensitive. In this study, we found that during the initial phase of growth in normoxia, ciliate respiration is sensitive to the natural polyphenol resveratrol (RESV) and to Antimycin A (AMA). However, under hypoxic conditions, the parasite utilizes AMA-insensitive respiration, which is completely inhibited by RESV and by the antioxidant propyl gallate (PG), an alternative oxidase (AOX) inhibitor. PG caused significantly dose-dependent inhibition of the in vitro growth of the parasite under normoxia and hypoxia and an over-expression of heat shock proteins of the Hsp70 subfamily. RESV and PG may affect the protective role of the AOX against mitochondrial oxidative stress, leading to an impaired mitochondrial membrane potential and mitochondrial dysfunction, which the parasite attempts to neutralize by increasing the expression of Hsp70. In view of the antiparasitic effects induced by AOX inhibitors and the absence of AOX in their host, this enzyme constitutes a potential target for the development of new drugs against scuticociliatosis.
Collapse
|
32
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
33
|
Mallo N, Lamas J, Leiro JM. Evidence of an alternative oxidase pathway for mitochondrial respiration in the scuticociliate Philasterides dicentrarchi. Protist 2013; 164:824-36. [PMID: 24211656 DOI: 10.1016/j.protis.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
The presence of an alternative oxidase (AOX) in the mitochondria of the scuticociliate P. dicentrarchi was investigated. The mitochondrial oxygen consumption was measured in the presence of KCN, an inhibitor of cytochrome pathway (CP) respiration and salicylhydroxamic acid (SHAM), a specific inhibitor of alternative pathway (AP) respiration. AOX expression was monitored by western blotting with an AOX polyclonal antibody. The results showed that P. dicentrarchi possesses a branched mitochondrial electron transport chain with both cyanide-sensitive and -insensitive oxygen consumption. Mitochondrial respiration was partially inhibited by cyanide and completely inhibited by the combination of cyanide and SHAM, which is direct evidence for the existence of an AP in this ciliate. SHAM significantly inhibited in vitro growth of trophozoites both under normoxic and hypoxic conditions. AOX is a 42kD monomeric protein inducible by hypoxic conditions in experimental infections and by CP inhibitors such as cyanide and antimycin A, or by AP inhibitors such as SHAM. CP respiration was greatly stimulated during the exponential growth phase, while AP respiration increased during the stationary phase, in which AOX expression is induced. As the host does not possess AOX, and because during infection P. dicentrarchi respires via AP, it may be possible to develop inhibitors targeting the AP as a novel anti-scuticociliate therapy.
Collapse
Affiliation(s)
- Natalia Mallo
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain)
| | - Jesús Lamas
- Departamento de Biología Celular y Ecología; Universidad de Santiago de Compostela; Santiago de Compostela, (La Coruña, Spain)
| | - José Manuel Leiro
- Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Universidad de Santiago de Compostela; Santiago de Compostela (La Coruña, Spain).
| |
Collapse
|
34
|
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 2013; 23:1548-53. [PMID: 23932404 DOI: 10.1016/j.cub.2013.06.057] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
Fungi grow within their food, externally digesting it and absorbing nutrients across a semirigid chitinous cell wall. Members of the new phylum Cryptomycota were proposed to represent intermediate fungal forms, lacking a chitinous cell wall during feeding and known almost exclusively from ubiquitous environmental ribosomal RNA sequences that cluster at the base of the fungal tree [1, 2]. Here, we sequence the first Cryptomycotan genome (the water mold endoparasite Rozella allomycis) and unite the Cryptomycota with another group of endoparasites, the microsporidia, based on phylogenomics and shared genomic traits. We propose that Cryptomycota and microsporidia share a common endoparasitic ancestor, with the clade unified by a chitinous cell wall used to develop turgor pressure in the infection process [3, 4]. Shared genomic elements include a nucleotide transporter that is used by microsporidia for stealing energy in the form of ATP from their hosts [5]. Rozella harbors a mitochondrion that contains a very rapidly evolving genome and lacks complex I of the respiratory chain. These degenerate features are offset by the presence of nuclear genes for alternative respiratory pathways. The Rozella proteome has not undergone major contraction like microsporidia; instead, several classes have undergone expansion, such as host-effector, signal-transduction, and folding proteins.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
36
|
Saimoto H, Kido Y, Haga Y, Sakamoto K, Kita K. Pharmacophore identification of ascofuranone, potent inhibitor of cyanide-insensitive alternative oxidase of Trypanosoma brucei. ACTA ACUST UNITED AC 2012. [DOI: 10.1093/jb/mvs135] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
38
|
Minagawa N. [Mitochondria as targets of chemotherapy]. YAKUGAKU ZASSHI 2012; 132:1093-8. [PMID: 23037693 DOI: 10.1248/yakushi.12-00220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Living organisms have developed a wide variety of energy metabolism to survive within the specialized environments. There is a remarkable diversity in mitochondrial electron transport system, which might be potential targets for chemotherapy. Atovaquone, clinically used to treat malaria and pneumocystis pneumonia, is a specific inhibitor of Qo site in the cytochrome bc(1) complex of Plasmodium falciparum and Pneumocystis jirovecii. Phytopathogenic fungus, Ascochyta viciae produces two antibiotics, ascochlorin and ascofuranone. Ascochlorin specifically binds to inhibit the electron transport of both Qi and Qo sites in cytochrome bc(1) complex. Besides the unique respiratory inhibition, further investigation is in progress to elucidate the effects on cancer cells. On the other hand, ascofuranone specifically inhibits cyanide-insensitive trypanosome alternative oxidase, which is a sole terminal oxidase in the mitochondrion of Trypanosoma brucei, causative of African trypanosomiasis. In vivo study suggests that ascofuranone is a promising candidate for chemotherapeutic agents to treat African trypanosomiasis.
Collapse
Affiliation(s)
- Nobuko Minagawa
- Department of Health Chemistry, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha, Niigata, Japan.
| |
Collapse
|
39
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 517] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
40
|
Lin L, Pan G, Li T, Dang X, Deng Y, Ma C, Chen J, Luo J, Zhou Z. The protein import pore Tom40 in the microsporidian Nosema bombycis. J Eukaryot Microbiol 2012; 59:251-7. [PMID: 22486892 DOI: 10.1111/j.1550-7408.2012.00618.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/11/2012] [Accepted: 12/09/2012] [Indexed: 11/28/2022]
Abstract
Microsporidia, an unusual group of unicellular parasites related to fungi, possess a highly reduced mitochondrion known as the mitosome. Since mitosomes lack an organellar genome, their proteins must be translated in the cytosol before being imported into the mitosome via translocases. We have identified a Tom40 gene (NbTom40), the main component of the translocase of the outer mitochondrial membrane, in the genome of the microsporidian Nosema bombycis. NbTom40 is reduced in size, but it is predicted to form a β-barrel structure composed of 19 β-strands. Phylogenetic analysis confirms that NbTom40 forms a clade with Tom40 sequences from other species, distinct from a related clade of voltage-dependent anion channels (VDACs). The NbTom40 contains a β-signal motif that the polar residue is substituted by glycine. Furthermore, we show that expression of NbTom40, as a GFP fusion protein within yeast cells, directs GFP to mitochondria of yeast. These findings suggest that NbTom40 may serve as an import channel of the microsporidian mitosome and facilitate protein translocation into this organelle.
Collapse
Affiliation(s)
- Lipeng Lin
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ghosh K, Nieves E, Keeling P, Cali A, Weiss LM. A new vesicular compartment in Encephalitozoon cuniculi. Microbes Infect 2012; 14:324-8. [PMID: 22166342 PMCID: PMC3299913 DOI: 10.1016/j.micinf.2011.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 01/13/2023]
Abstract
The microsporidia are emerging human and veterinary pathogens known to infect every tissue type and organ system. Their infectious spore possesses a number of peculiar organelles, including the diagnostic polar tube. In a proteomics-driven effort to find novel components of this organelle in the human-pathogenic species Encephalitozoon cuniculi, we unexpectedly discovered a protein which localizes to punctate structures consistent with the appearance of relic mitochondria, or mitosomes. However, this novel protein did not colocalize with ferredoxin, a mitochondrial iron-sulfur cluster protein which shows a similar localization pattern by light microscopy. The distribution pattern of this protein thus suggests either a novel vesicular compartment that is similar to mitosomes in size and distribution, the presence of subdomains or branching architecture within mitosomes, or heterogeneity in the protein composition of E. cuniculi mitosomes.
Collapse
Affiliation(s)
- Kaya Ghosh
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
- Department of Biological Science, 195 University Avenue, Boyden Hall, Rutgers University, Newark, New Jersey 07102
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Patrick Keeling
- Botany Department, University of British Columbia, 6270 University Blvd., Vancouver BC, V6T 1Z4, Canada
| | - Ann Cali
- Department of Biological Science, 195 University Avenue, Boyden Hall, Rutgers University, Newark, New Jersey 07102
| | - Louis M. Weiss
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
42
|
Heinz E, Lithgow T. Back to basics: a revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:295-303. [PMID: 22366436 DOI: 10.1016/j.bbamcr.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 12/31/2022]
Abstract
Mitochondria are present in all eukaryotes, but remodeling of their metabolic contribution has in some cases left them almost unrecognizable and they are referred to as mitochondria-like organelles, hydrogenosomes or, in the case where evolution has led to a great deal of simplification, as mitosomes. Mitochondria rely on the import of proteins encoded in the nucleus and the protein import machinery has been investigated in detail in yeast: several sophisticated molecular machines act in concert to import substrate proteins across the outer mitochondrial membrane and deliver them to a precise sub-mitochondrial compartment. Because these machines are so sophisticated, it has been a major challenge to conceptualize the first phase of their evolution. Here we review recent studies on the protein import pathway in parasitic species that have mitosomes: in the course of their evolution for highly specialized niches these parasites, particularly Cryptosporidia and Microsporidia, have secondarily lost numerous protein functions, in accordance with the evolution of their genomes towards a minimal size. Microsporidia are related to fungi, Cryptosporidia are apicomplexans and kin to the malaria parasite Plasmodium; and this great phylogenetic distance makes it remarkable that Microsporidia and Cryptosporidia have independently evolved skeletal protein import pathways that are almost identical. We suggest that the skeletal pathway reflects the protein import machinery of the first eukaryotes, and defines the essential roles of the core elements of the mitochondrial protein import machinery. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Biochemistry & Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia.
| | | |
Collapse
|
43
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
44
|
Dolgikh VV, Senderskiy IV, Pavlova OA, Naumov AM, Beznoussenko GV. Immunolocalization of an alternative respiratory chain in Antonospora (Paranosema) locustae spores: mitosomes retain their role in microsporidial energy metabolism. EUKARYOTIC CELL 2011; 10:588-93. [PMID: 21296913 PMCID: PMC3127642 DOI: 10.1128/ec.00283-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/28/2011] [Indexed: 11/20/2022]
Abstract
Microsporidia are a group of fungus-related intracellular parasites with severely reduced metabolic machinery. They lack canonical mitochondria, a Krebs cycle, and a respiratory chain but possess genes encoding glycolysis enzymes, a glycerol phosphate shuttle, and ATP/ADP carriers to import host ATP. The recent finding of alternative oxidase genes in two clades suggests that microsporidial mitosomes may retain an alternative respiratory pathway. We expressed the fragments of mitochondrial chaperone Hsp70 (mitHsp70), mitochondrial glycerol-3-phosphate dehydrogenase (mitG3PDH), and alternative oxidase (AOX) from the microsporidium Antonospora (Paranosema) locustae in Escherichia coli. Immunoblotting with antibodies against recombinant polypeptides demonstrated specific accumulation of both metabolic enzymes in A. locustae spores. At the same time comparable amounts of mitochondrial Hsp70 were found in spores and in stages of intracellular development as well. Immunoelectron microscopy of ultrathin cryosections of spores confirmed mitosomal localization of the studied proteins. Small amounts of enzymes of an alternative respiratory chain in merogonial and early sporogonial stages, alongside their accumulation in mature spores, suggest conspicuous changes in components and functions of mitosomes during the life cycle of microsporidia and the important role of these organelles in parasite energy metabolism, at least at the final stages of sporogenesis.
Collapse
|
45
|
Peyretaillade E, El Alaoui H, Diogon M, Polonais V, Parisot N, Biron DG, Peyret P, Delbac F. Extreme reduction and compaction of microsporidian genomes. Res Microbiol 2011; 162:598-606. [PMID: 21426934 DOI: 10.1016/j.resmic.2011.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/21/2011] [Indexed: 12/19/2022]
Abstract
Microsporidia are fungi-related obligate intracellular parasites with a highly reduced and compact genome, as for Encephalitozoon species which harbor a genome smaller than 3 Mbp. Genome compaction is reflected by high gene density and, for larger microsporidian genomes, size variation is due to repeat elements that do not drastically affect gene density. Furthermore, these pathogens present strong host dependency illustrated by extensive gene loss. Such adaptations associated with genome compaction induced gene size reduction but also simplification of cellular processes such as transcription. Thus, microsporidia are excellent models for eukaryotic genome evolution and gene expression in the context of host-pathogen relationships.
Collapse
Affiliation(s)
- Eric Peyretaillade
- Clermont Université, Université d'Auvergne, Laboratoire Microorganismes Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
47
|
Texier C, Vidau C, Viguès B, El Alaoui H, Delbac F. Microsporidia: a model for minimal parasite–host interactions. Curr Opin Microbiol 2010; 13:443-9. [DOI: 10.1016/j.mib.2010.05.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022]
|
48
|
Keeling PJ, Corradi N, Morrison HG, Haag KL, Ebert D, Weiss LM, Akiyoshi DE, Tzipori S. The reduced genome of the parasitic microsporidian Enterocytozoon bieneusi lacks genes for core carbon metabolism. Genome Biol Evol 2010; 2:304-9. [PMID: 20624735 PMCID: PMC2942035 DOI: 10.1093/gbe/evq022] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|