1
|
Zadow ME, MacRaild CA, Creek DJ, Wilson DW. Alba protein-mediated gene and protein regulation in protozoan parasites. Int J Parasitol 2025:S0020-7519(25)00076-1. [PMID: 40246164 DOI: 10.1016/j.ijpara.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The success of protozoan parasites relies heavily on regulation of gene and protein expression to facilitate their persistence in harsh and often changing environments. These parasites display biology that is highly divergent from model eukaryotes, unfortunately leaving our understanding of these parasites' critical regulatory mechanisms incomplete. Alba proteins, a highly diverse group of DNA/RNA-binding proteins, are found across all domains of life and it has become increasingly apparent that these proteins play key regulatory roles in many protozoan parasite species including Plasmodium, Leishmania, Toxoplasma, and Trypanosoma. This review focusses on a subset of clinically relevant protozoan parasites and highlights the key biological processes known to have Alba protein involvement in these organisms including parasite development, survival, and virulence. In order to gain greater insight into these proteins, we also undertook a bioinformatic exploration of their protein sequences, leading us to identify previously unreported C-terminal Alba domain motifs and propose annotations for several currently unannotated protozoan Alba-like proteins. This collation of information allows us to observe common themes in Alba protein function across this group of parasites while also identifying areas of opportunity for further study.
Collapse
Affiliation(s)
- Meghan E Zadow
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia.
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia; Burnet Institute, Melbourne 3004 Victoria, Australia.
| |
Collapse
|
2
|
Acharya D, Bavikatte AN, Ashok VV, Hegde SR, Macpherson CR, Scherf A, Vembar SS. Ectopic overexpression of Plasmodium falciparum DNA-/RNA-binding Alba proteins misregulates virulence gene homeostasis during asexual blood development. Microbiol Spectr 2025; 13:e0088524. [PMID: 39868986 PMCID: PMC11878077 DOI: 10.1128/spectrum.00885-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite Plasmodium falciparum, six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED). Given that a tight control of gene expression is especially important during IED, when malaria pathogenesis manifests, in this study, we focus on three other P. falciparum Albas, PfAlba2-4. Because genetic manipulation of the genomic loci of PfAlba2-4 was unsuccessful, we overexpressed each of these proteins from an episome under a strong constitutive promoter. We observed that PfAlba2 or PfAlba3 overexpression strongly reduced parasite growth and impacted IED stage transitions. In contrast, elevated levels of PfAlba4 were well-tolerated by the parasite. In keeping with this, differential gene expression analysis using RNA-seq of PfAlba2 or PfAlba3 overexpressing strains revealed a significant misregulation of mRNAs encoding virulence factors, such as those related to erythrocyte invasion; a general repression of var gene expression was also apparent. PfAlba4 overexpression, on the other hand, did not significantly perturb the steady-state transcriptome of IED stages and appeared to enhance var mRNA levels. Moreover, distinct sets of genes were targeted by each PfAlba for regulation. Taken together, this study highlights the nonredundant roles of PfAlba proteins in the P. falciparum IED, emphasizing their importance in subtelomeric chromatin biology and RNA regulation.IMPORTANCEThe malaria parasite Plasmodium falciparum tightly controls the expression of its genes at the epigenetic, transcriptional, post-transcriptional, and translational levels to synthesize essential proteins, including virulence factors, in a timely and spatially coordinated manner. A family of six proteins implicated in this process is called PfAlba, characterized by the presence of the DNA-, RNA- or DNA:RNA hybrid-binding Alba domain. To better understand the cellular pathways regulated by this protein family, we overexpressed three PfAlbas during P. falciparum intra-erythrocytic growth and found that high levels of PfAlba2 and PfAlba3 were detrimental to parasite development. This was accompanied by significant changes in the parasite's transcriptome, either with regards to mRNA steady-state levels or expression timing. PfAlba4 overexpression, on the other hand, was well-tolerated by the parasite. Overall, our results delineate specific pathways targeted by individual PfAlbas for regulation and link PfAlba2/PfAlba3 to mutually exclusive expression of the virulence-promoting surface antigen PfEMP1.
Collapse
Affiliation(s)
- Dimple Acharya
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | | - Vishnu Vinayak Ashok
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Cameron Ross Macpherson
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | | |
Collapse
|
3
|
Grünebast J, Singhal R, Bromley R, Kanatani S, Watson K, Dumetz F, Pascini TV, Tripathi A, Dunning Hotopp JC, Sinnis P, Llinás M, Serre D. Degradation of ribosomal RNA during Plasmodium falciparum gametocytogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637867. [PMID: 39990385 PMCID: PMC11844502 DOI: 10.1101/2025.02.12.637867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The life cycle of Plasmodium falciparum is characterized by complex regulatory changes that allow adaptation of the parasites to different environmental conditions, which are especially pronounced during transmission between the mammalian host and the insect vector. Previous studies have shown that P. falciparum uses three types of ribosomal RNAs (rRNA A-, S1- and S2-types) at different stages of its life cycle. We used Oxford Nanopore Technologies (ONT) direct RNA sequencing to investigate the dynamics of rRNA usage throughout the parasite's intraerythrocytic development, as well as in salivary gland sporozoites. Our study revealed a preponderance of A-type rRNAs during the intraerythrocytic cycle and gametocytogenesis, while S-type rRNAs slowly increase in abundance in mosquito stages starting three days post infection. Salivary gland sporozoites showed an even proportion of all rRNA types. By examining the length distributions of rRNA molecules, we detected an extensive and specific degradation of rRNAs during gametocytogenesis, starting in stage II gametocytes and continuing until the final stages of gametocyte development. We hypothesize that rRNA degradation may be linked to the global translational repression and metabolic quiescence described in stage V gametocytes, similar to mechanisms observed in bacterial and eukaryotic stress responses.
Collapse
|
4
|
Zondag R, Ploeger E, Kocken CHM, Bártfai R. Unravelling malaria latency: parasite intrinsic and environmental factors influencing dormant liver stages. Trends Parasitol 2025; 41:102-114. [PMID: 39809619 DOI: 10.1016/j.pt.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Hypnozoites - dormant Plasmodium parasites in the liver - can cause relapse infections and form a major obstacle to malaria eradication. The mechanisms controlling dormancy remain poorly understood, but hypnozoite formation and reactivation is likely regulated by a combination of parasite intrinsic factors and external stimuli. We reviewed current knowledge of Plasmodium dormancy and drew parallels with dormancy in other parasites and life-cycle stages. Epigenetic, post-transcriptional, or post-translational regulation probably jointly control hypnozoite dormancy at the intrinsic level. Additionally, environmental factors, such as vector availability, host wellbeing, and tissue microenvironment, could be instrumental to hypnozoite reactivation. A better understanding of how external stimuli influence the intrinsic reactivation switch at a mechanistic level will be required to expand the limited toolset to combat relapsing malaria.
Collapse
Affiliation(s)
- Ruth Zondag
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands
| | - Ellen Ploeger
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands; Department of Parasitology, Biomedical Primate Research Centre, 2288GJ, Rijswijk, The Netherlands
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, 2288GJ, Rijswijk, The Netherlands
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Rios KT, McGee JP, Sebastian A, Gedara SA, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Widespread release of translational repression across Plasmodium's host-to-vector transmission event. PLoS Pathog 2025; 21:e1012823. [PMID: 39777415 PMCID: PMC11750109 DOI: 10.1371/journal.ppat.1012823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/21/2025] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, changes in the spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that ~200 transcripts are released for translation soon after fertilization, including those encoding essential functions. Moreover, we identified that many transcripts remain repressed beyond this point. TurboID-based proximity proteomics of the DOZI/CITH/ALBA regulatory complex revealed substantial spatial and/or compositional changes across this transmission event, which are consistent with recent, paradigm-shifting models of translational control. Together, these data provide a model for the essential translational control mechanisms that promote Plasmodium's efficient transmission from mammalian host to mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sanjaya Aththawala Gedara
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert L. Moritz
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
6
|
Sayers C, Pandey V, Balakrishnan A, Michie K, Svedberg D, Hunziker M, Pardo M, Choudhary J, Berntsson R, Billker O. Systematic screens for fertility genes essential for malaria parasite transmission reveal conserved aspects of sex in a divergent eukaryote. Cell Syst 2024; 15:1075-1091.e6. [PMID: 39541984 DOI: 10.1016/j.cels.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Claire Sayers
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Katharine Michie
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mercedes Pardo
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Jyoti Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. PbARID-associated chromatin remodeling events are essential for gametocyte development in Plasmodium. Nucleic Acids Res 2024; 52:5624-5642. [PMID: 38554111 PMCID: PMC11162789 DOI: 10.1093/nar/gkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Gametocyte development of the Plasmodium parasite is a key step for transmission of the parasite. Male and female gametocytes are produced from a subpopulation of asexual blood-stage parasites, but the mechanisms that regulate the differentiation of sexual stages are still under investigation. In this study, we investigated the role of PbARID, a putative subunit of a SWI/SNF chromatin remodeling complex, in transcriptional regulation during the gametocyte development of P. berghei. PbARID expression starts in early gametocytes before the manifestation of male and female-specific features, and disruption of its gene results in the complete loss of gametocytes with detectable male features and the production of abnormal female gametocytes. ChIP-seq analysis of PbARID showed that it forms a complex with gSNF2, an ATPase subunit of the SWI/SNF chromatin remodeling complex, associating with the male cis-regulatory element, TGTCT. Further ChIP-seq of PbARID in gsnf2-knockout parasites revealed an association of PbARID with another cis-regulatory element, TGCACA. RIME and DNA-binding assays suggested that HDP1 is the transcription factor that recruits PbARID to the TGCACA motif. Our results indicated that PbARID could function in two chromatin remodeling events and paly essential roles in both male and female gametocyte development.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Izumi Kaneko
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Masao Yuda
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
8
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
9
|
Tateishi YS, Araki T, Kawai S, Koide S, Umeki Y, Imai T, Saito-Nakano Y, Kikuchi M, Iwama A, Hisaeda H, Coban C, Annoura T. Histone H3.3 variant plays a critical role on zygote-to-oocyst development in malaria parasites. Parasitol Int 2024; 100:102856. [PMID: 38199522 DOI: 10.1016/j.parint.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.
Collapse
Affiliation(s)
- Yuki S Tateishi
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Minato-ku, Tokyo, Japan; Graduate School of Frontier Sciences, Department of Computational Biology and Medical Science (CBMS), University of Tokyo, Tokyo, Japan
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuko Umeki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Imai
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo (IMSUT), Minato-ku, Tokyo, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan; International Vaccine Design Center (vDesC), The Institute of Medical Science, The University of Tokyo (IMSUT), Minato-ku, Tokyo, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Guan J, Wu P, Mo X, Zhang X, Liang W, Zhang X, Jiang L, Li J, Cui H, Yuan J. An axonemal intron splicing program sustains Plasmodium male development. Nat Commun 2024; 15:4697. [PMID: 38824128 PMCID: PMC11144265 DOI: 10.1038/s41467-024-49002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.
Collapse
Affiliation(s)
- Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Peijia Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoli Mo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Zhang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Wenqi Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaoming Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lubin Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
- Department of Infectious Disease, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Liu C, Tang J, Liang K, Liu P, Li Z. Ready for renascence in mosquito: The regulation of gene expression in Plasmodium sexual development. Acta Trop 2024; 254:107191. [PMID: 38554994 DOI: 10.1016/j.actatropica.2024.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Malaria remains one of the most perilous vector-borne infectious diseases for humans globally. Sexual gametocyte represents the exclusive stage at which malaria parasites are transmitted from the vertebrate to the Anopheles host. The feasible and effective approach to prevent malaria transmission is by addressing the sexual developmental processes, that is, gametocytogenesis and gametogenesis. Thus, this review will comprehensively cover advances in the regulation of gene expression surrounding the transmissible stages, including epigenetic, transcriptional, and post-transcriptional control.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingjing Tang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kejia Liang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peng Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhenkui Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
12
|
Min H, Liang X, Wang C, Qin J, Boonhok R, Muneer A, Brashear AM, Li X, Minns AM, Adapa SR, Jiang RHY, Ning G, Cao Y, Lindner SE, Miao J, Cui L. The DEAD-box RNA helicase PfDOZI imposes opposing actions on RNA metabolism in Plasmodium falciparum. Nat Commun 2024; 15:3747. [PMID: 38702310 PMCID: PMC11068891 DOI: 10.1038/s41467-024-48140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.
Collapse
Affiliation(s)
- Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Junling Qin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Azhar Muneer
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Awtum M Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA
| | - Allen M Minns
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gang Ning
- Electron Microscopy Facility, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL, 33612, USA.
| |
Collapse
|
13
|
Nayak B, Paul P, Mishra S. Neddylation is essential for malaria transmission in Plasmodium berghei. mBio 2024; 15:e0023224. [PMID: 38411954 PMCID: PMC11005431 DOI: 10.1128/mbio.00232-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Neddylation is a type of posttranslational modification known to regulate a wide range of cellular processes by covalently conjugating the ubiquitin-like protein Nedd8 to target proteins at lysine residues. However, the role of neddylation in malaria parasites has not been determined. Here, for the first time, we showed that neddylation plays an essential role in malaria transmission in Plasmodium berghei. We found that disruption of Nedd8 did not affect blood-stage propagation, gametocyte development, gamete formation, or zygote formation while abolishing the formation of ookinetes and further transmission of the parasites in mosquitoes. These phenotypic defects in Nedd8 knockout parasites were complemented by reintroducing the gene that restored mosquito transmission to wild-type levels. Our data establish the role of P. berghei Nedd8 in malaria parasite transmission.IMPORTANCENeddylation is a process by which Nedd8 is covalently attached to target proteins through three-step enzymatic cascades. The attachment of Nedd8 residues results in a range of diverse functions, such as cell cycle regulation, metabolism, immunity, and tumorigenesis. The potential neddylation substrates are cullin (CUL) family members, which are implicated in controlling the cell cycle. Cullin neddylation leads to the activation of cullin-RING ubiquitin ligases, which regulate a myriad of biological processes through target-specific ubiquitylation. Neddylation possibly regulates meiosis in zygotes, which subsequently develop into ookinetes. Our findings point to an essential function of this neddylation pathway and highlight its possible importance in designing novel intervention strategies.
Collapse
Affiliation(s)
- Bandita Nayak
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Rios KT, McGee JP, Sebastian A, Moritz RL, Feric M, Absalon S, Swearingen KE, Lindner SE. Global Release of Translational Repression Across Plasmodium's Host-to-Vector Transmission Event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.577866. [PMID: 38352447 PMCID: PMC10862809 DOI: 10.1101/2024.02.01.577866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.
Collapse
Affiliation(s)
- Kelly T. Rios
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - James P. McGee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802
| | | | - Marina Feric
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
15
|
Farrukh A, Musabyimana JP, Distler U, Mahlich VJ, Mueller J, Bick F, Tenzer S, Pradel G, Ngwa CJ. The Plasmodium falciparum CCCH zinc finger protein MD3 regulates male gametocytogenesis through its interaction with RNA-binding proteins. Mol Microbiol 2024; 121:543-564. [PMID: 38148574 DOI: 10.1111/mmi.15215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The transmission of malaria parasites to mosquitoes is dependent on the formation of gametocytes. Once fully matured, gametocytes are able to transform into gametes in the mosquito's midgut, a process accompanied with their egress from the enveloping erythrocyte. Gametocyte maturation and gametogenesis require a well-coordinated gene expression program that involves a wide spectrum of regulatory proteins, ranging from histone modifiers to transcription factors to RNA-binding proteins. Here, we investigated the role of the CCCH zinc finger protein MD3 in Plasmodium falciparum gametocytogenesis. MD3 was originally identified as an epigenetically regulated protein of immature gametocytes and recently shown to be involved in male development in a barcode-based screen in P. berghei. We report that MD3 is mainly present in the cytoplasm of immature male P. falciparum gametocytes. Parasites deficient of MD3 are impaired in gametocyte maturation and male gametocytogenesis. BioID analysis in combination with co-immunoprecipitation assays unveiled an interaction network of MD3 with RNA-binding proteins like PABP1 and ALBA3, with translational initiators, regulators and repressors like elF4G, PUF1, NOT1 and CITH, and with further regulators of gametocytogenesis, including ZNF4, MD1 and GD1. We conclude that MD3 is part of a regulator complex crucial for post-transcriptional fine-tuning of male gametocytogenesis.
Collapse
Affiliation(s)
- Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Vanessa Jil Mahlich
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Julius Mueller
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Murata Y, Nishi T, Kaneko I, Iwanaga S, Yuda M. Coordinated regulation of gene expression in Plasmodium female gametocytes by two transcription factors. eLife 2024; 12:RP88317. [PMID: 38252559 PMCID: PMC10945693 DOI: 10.7554/elife.88317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Gametocytes play key roles in the Plasmodium lifecycle. They are essential for sexual reproduction as precursors of the gametes. They also play an essential role in parasite transmission to mosquitoes. Elucidation of the gene regulation at this stage is essential for understanding these two processes at the molecular level and for developing new strategies to break the parasite lifecycle. We identified a novel Plasmodium transcription factor (TF), designated as a partner of AP2-FG or PFG. In this article, we report that this TF regulates the gene expression in female gametocytes in concert with another female-specific TF AP2-FG. Upon the disruption of PFG, majority of female-specific genes were significantly downregulated, and female gametocyte lost the ability to produce ookinetes. ChIP-seq analysis showed that it was located in the same position as AP2-FG, indicating that these two TFs form a complex. ChIP-seq analysis of PFG in AP2-FG-disrupted parasites and ChIP-seq analysis of AP2-FG in PFG-disrupted parasites demonstrated that PFG mediates the binding of AP2-FG to a ten-base motif and that AP2-FG binds another motif, GCTCA, in the absence of PFG. In promoter assays, this five-base motif was identified as another female-specific cis-acting element. Genes under the control of the two forms of AP2-FG, with or without PFG, partly overlapped; however, each form had target preferences. These results suggested that combinations of these two forms generate various expression patterns among the extensive genes expressed in female gametocytes.
Collapse
Affiliation(s)
- Yuho Murata
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease ControlOsakaJapan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of MedicineTsu CityJapan
| |
Collapse
|
17
|
Ukegbu CV, Gomes AR, Giorgalli M, Campos M, Bailey AJ, Besson TRB, Billker O, Vlachou D, Christophides GK. Identification of genes required for Plasmodium gametocyte-to-sporozoite development in the mosquito vector. Cell Host Microbe 2023; 31:1539-1551.e6. [PMID: 37708854 DOI: 10.1016/j.chom.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Malaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, the complex regulation of gene expression and genotype-phenotype associations in the mosquito vector, along with sexual reproduction, have hindered the development of screens in this critical part of the parasite life cycle. To address this, we developed a genetic approach in the rodent parasite Plasmodium berghei that, in combination with barcode sequencing, circumvents the fertilization roadblock and enables screening for gametocyte-expressed genes required for parasite infection of the mosquito Anopheles coluzzii. Our results confirm previous findings, validating our approach for scaling up, and identify genes necessary for mosquito midgut infection, oocyst development, and salivary gland infection. These findings can aid efforts to study malaria transmission biology and to develop interventions for controlling disease transmission.
Collapse
Affiliation(s)
| | - Ana Rita Gomes
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Melina Campos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alexander J Bailey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Dina Vlachou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
18
|
Hollin T, Le Roch KG. Sex determination and transmission: Leveraging genetic screens to reveal Plasmodium's secrets. Cell Host Microbe 2023; 31:1430-1432. [PMID: 37708851 DOI: 10.1016/j.chom.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Genes and regulatory mechanisms governing malaria parasite transmission and development in mosquitoes are incompletely understood. Recently, Russell and colleagues identified genes required for parasite sexual development. In this issue of Cell Host & Microbe, Ukegbu and colleagues report a genetic approach to study genes enabling parasite survival in mosquito stages.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
19
|
McHugh E, Bulloch MS, Batinovic S, Patrick CJ, Sarna DK, Ralph SA. Nonsense-mediated decay machinery in Plasmodium falciparum is inefficient and non-essential. mSphere 2023; 8:e0023323. [PMID: 37366629 PMCID: PMC10449492 DOI: 10.1128/msphere.00233-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Nonsense-mediated decay (NMD) is a conserved mRNA quality control process that eliminates transcripts bearing a premature termination codon. In addition to its role in removing erroneous transcripts, NMD is involved in post-transcriptional regulation of gene expression via programmed intron retention in metazoans. The apicomplexan parasite Plasmodium falciparum shows relatively high levels of intron retention, but it is unclear whether these variant transcripts are functional targets of NMD. In this study, we use CRISPR-Cas9 to disrupt and epitope-tag the P. falciparum orthologs of two core NMD components: PfUPF1 (PF3D7_1005500) and PfUPF2 (PF3D7_0925800). We localize both PfUPF1 and PfUPF2 to puncta within the parasite cytoplasm and show that these proteins interact with each other and other mRNA-binding proteins. Using RNA-seq, we find that although these core NMD orthologs are expressed and interact in P. falciparum, they are not required for degradation of nonsense transcripts. Furthermore, our work suggests that the majority of intron retention in P. falciparum has no functional role and that NMD is not required for parasite growth ex vivo. IMPORTANCE In many organisms, the process of destroying nonsense transcripts is dependent on a small set of highly conserved proteins. We show that in the malaria parasite, these proteins do not impact the abundance of nonsense transcripts. Furthermore, we demonstrate efficient CRISPR-Cas9 editing of the malaria parasite using commercial Cas9 nuclease and synthetic guide RNA, streamlining genomic modifications in this genetically intractable organism.
Collapse
Affiliation(s)
- Emma McHugh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Cameron J. Patrick
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Drishti K. Sarna
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
21
|
Kaneko I, Nishi T, Iwanaga S, Yuda M. Differentiation of Plasmodium male gametocytes is initiated by the recruitment of a chromatin remodeler to a male-specific cis-element. Proc Natl Acad Sci U S A 2023; 120:e2303432120. [PMID: 37155862 PMCID: PMC10193995 DOI: 10.1073/pnas.2303432120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Plasmodium parasites, the causative agents of malaria, possess a complex lifecycle; however, the mechanisms of gene regulation involved in the cell-type changes remain unknown. Here, we report that gametocyte sucrose nonfermentable 2 (gSNF2), an SNF2-like chromatin remodeling ATPase, plays an essential role in the differentiation of male gametocytes. Upon disruption of gSNF2, male gametocytes lost the capacity to develop into gametes. ChIP-seq analyses revealed that gSNF2 is widely recruited upstream of male-specific genes through a five-base, male-specific cis-acting element. In gSNF2-disrupted parasites, expression of over a hundred target genes was significantly decreased. ATAC-seq analysis demonstrated that decreased expression of these genes correlated with a decrease of the nucleosome-free region upstream of these genes. These results suggest that global changes induced in the chromatin landscape by gSNF2 are the initial step in male differentiation from early gametocytes. This study provides the possibility that chromatin remodeling is responsible for cell-type changes in the Plasmodium lifecycle.
Collapse
Affiliation(s)
- Izumi Kaneko
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease Control, Suita, Osaka565-0871, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| |
Collapse
|
22
|
Tandel J, Walzer KA, Byerly JH, Pinkston B, Beiting DP, Striepen B. Genetic Ablation of a Female-Specific Apetala 2 Transcription Factor Blocks Oocyst Shedding in Cryptosporidium parvum. mBio 2023; 14:e0326122. [PMID: 36786597 PMCID: PMC10233709 DOI: 10.1128/mbio.03261-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
The apicomplexan parasite Cryptosporidium is a leading global cause of diarrheal disease, and the infection poses a particularly grave threat to young children and those with weakened immune function. Infection occurs by ingestion of meiotic spores called oocysts, and transmission relies on fecal shedding of new oocysts. The entire life cycle thus occurs in a single host and features asexual as well as sexual forms of replication. Here, we identify and locus tag two Apetala 2-type (AP2) transcription factors and demonstrate that they are exclusively expressed in male and female gametes, respectively. To enable functional studies of essential genes in Cryptosporidium parvum, we develop and validate a small-molecule-inducible gene excision system, which we apply to the female factor AP2-F to achieve conditional gene knockout. Analyzing this mutant, we find the factor to be dispensable for asexual growth and early female fate determination in vitro but to be required for oocyst shedding in infected animals in vivo. Transcriptional analyses conducted in the presence or absence of AP2-F revealed that the factor controls the transcription of genes encoding crystalloid body proteins, which are exclusively expressed in female gametes. In C. parvum, the organelle is restricted to sporozoites, and its loss in other apicomplexan parasites leads to blocked transmission. Overall, our development of conditional gene ablation in C. parvum provides a robust method for genetic analysis in this parasite that enabled us to identify AP2-F as an essential regulator of transcription required for oocyst shedding and transmission. IMPORTANCE The parasite Cryptosporidium infects millions of people worldwide each year, leading to life-threatening diarrheal disease in young children and immunosuppressed individuals. There is no vaccine and only limited treatment. Transmission occurs via the fecal-oral route by an environmentally resilient spore-like oocyst. Infection takes place in the intestinal epithelium, where parasites initially propagate asexually before transitioning to male and female gametes, with sex leading to the formation of new oocysts. The essential role of sexual development for continuous infection and transmission makes it an attractive target for therapy and prevention. To study essential genes and potential drug targets across the life cycle, we established inducible gene excision for C. parvum. We determined that the female-specific transcription factor AP2-F is not required for asexual growth and early female development in vitro but is necessary for oocyst shedding in vivo. This work enhances the genetic tools available to study Cryptosporidium gene function.
Collapse
Affiliation(s)
- Jayesh Tandel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brittain Pinkston
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
23
|
Guérin A, Strelau KM, Barylyuk K, Wallbank BA, Berry L, Crook OM, Lilley KS, Waller RF, Striepen B. Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell. Cell Host Microbe 2023; 31:650-664.e6. [PMID: 36958336 DOI: 10.1016/j.chom.2023.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Cryptosporidium is a leading cause of diarrheal disease in children and an important contributor to early childhood mortality. The parasite invades and extensively remodels intestinal epithelial cells, building an elaborate interface structure. How this occurs at the molecular level and the contributing parasite factors are largely unknown. Here, we generated a whole-cell spatial proteome of the Cryptosporidium sporozoite and used genetic and cell biological experimentation to discover the Cryptosporidium-secreted effector proteome. These findings reveal multiple organelles, including an original secretory organelle, and generate numerous compartment markers by tagging native gene loci. We show that secreted proteins are delivered to the parasite-host interface, where they assemble into different structures including a ring that anchors the parasite into its unique epicellular niche. Cryptosporidium thus uses a complex set of secretion systems during and following invasion that act in concert to subjugate its host cell.
Collapse
Affiliation(s)
- Amandine Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine M Strelau
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurence Berry
- LPHI, CNRS, Université de Montpellier, Montpellier 34095, France
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Russell AJC, Sanderson T, Bushell E, Talman AM, Anar B, Girling G, Hunziker M, Kent RS, Martin JS, Metcalf T, Montandon R, Pandey V, Pardo M, Roberts AB, Sayers C, Schwach F, Choudhary JS, Rayner JC, Voet T, Modrzynska KK, Waters AP, Lawniczak MKN, Billker O. Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host Microbe 2023; 31:305-319.e10. [PMID: 36634679 PMCID: PMC7616090 DOI: 10.1016/j.chom.2022.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.
Collapse
Affiliation(s)
| | - Theo Sanderson
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ellen Bushell
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Arthur M Talman
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Burcu Anar
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Mirjam Hunziker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Julie S Martin
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Metcalf
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Vikash Pandey
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | - A Brett Roberts
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Claire Sayers
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; KU Leuven Institute for Single Cell Omics, LISCO, KU Leuven, 3000 Leuven, Belgium
| | - Katarzyna K Modrzynska
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | | - Oliver Billker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden.
| |
Collapse
|
25
|
Gomes AR, Marin-Menendez A, Adjalley SH, Bardy C, Cassan C, Lee MCS, Talman AM. A transcriptional switch controls sex determination in Plasmodium falciparum. Nature 2022; 612:528-533. [PMID: 36477538 PMCID: PMC9750867 DOI: 10.1038/s41586-022-05509-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022]
Abstract
Sexual reproduction and meiotic sex are deeply rooted in the eukaryotic tree of life, but mechanisms determining sex or mating types are extremely varied and are only well characterized in a few model organisms1. In malaria parasites, sexual reproduction coincides with transmission to the vector host. Sex determination is non-genetic, with each haploid parasite capable of producing either a male or a female gametocyte in the human host2. The hierarchy of events and molecular mechanisms that trigger sex determination and maintenance of sexual identity are yet to be elucidated. Here we show that the male development 1 (md1) gene is both necessary and sufficient for male fate determination in the human malaria parasite Plasmodium falciparum. We show that Md1 has a dual function stemming from two separate domains: in sex determination through its N terminus and in male development from its conserved C-terminal LOTUS/OST-HTH domain. We further identify a bistable switch at the md1 locus, which is coupled with sex determination and ensures that the male-determining gene is not expressed in the female lineage. We describe one of only a few known non-genetic mechanisms of sex determination in a eukaryote and highlight Md1 as a potential target for interventions that block malaria transmission.
Collapse
Affiliation(s)
- A R Gomes
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - A Marin-Menendez
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | | | - C Bardy
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - C Cassan
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - M C S Lee
- Wellcome Sanger Institute, Hinxton, UK
| | - A M Talman
- MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
26
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
27
|
Guttery DS, Zeeshan M, Ferguson DJP, Holder AA, Tewari R. Division and Transmission: Malaria Parasite Development in the Mosquito. Annu Rev Microbiol 2022; 76:113-134. [PMID: 35609946 DOI: 10.1146/annurev-micro-041320-010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The malaria parasite life cycle alternates between two hosts: a vertebrate and the female Anopheles mosquito vector. Cell division, proliferation, and invasion are essential for parasite development, transmission, and survival. Most research has focused on Plasmodium development in the vertebrate, which causes disease; however, knowledge of malaria parasite development in the mosquito (the sexual and transmission stages) is now rapidly accumulating, gathered largely through investigation of the rodent malaria model, with Plasmodium berghei. In this review, we discuss the seminal genome-wide screens that have uncovered key regulators of cell proliferation, invasion, and transmission during Plasmodium sexual development. Our focus is on the roles of transcription factors, reversible protein phosphorylation, and molecular motors. We also emphasize the still-unanswered important questions around key pathways in cell division during the vector transmission stages and how they may be targeted in future studies.
Collapse
Affiliation(s)
- David S Guttery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom;
| | - Mohammad Zeeshan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Sciences and John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom;
| | - Rita Tewari
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom; ,
| |
Collapse
|
28
|
TurboID Identification of Evolutionarily Divergent Components of the Nuclear Pore Complex in the Malaria Model Plasmodium berghei. mBio 2022; 13:e0181522. [PMID: 36040030 PMCID: PMC9601220 DOI: 10.1128/mbio.01815-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups — Nup176, 269, 335, 390, and 434 — are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position.
Collapse
|
29
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
30
|
Nyonda MA, Boyer JB, Belmudes L, Krishnan A, Pino P, Couté Y, Brochet M, Meinnel T, Soldati-Favre D, Giglione C. N-Acetylation of secreted proteins is widespread in Apicomplexa and independent of acetyl-CoA ER-transporter AT1. J Cell Sci 2022; 135:275539. [PMID: 35621049 DOI: 10.1242/jcs.259811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Acetyl-CoA participates in post-translational modification of proteins, central carbon and lipid metabolism in several cell compartments. In mammals, the acetyl-CoA transporter 1 (AT1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with dedicated acetyltransferases including NAT8. However, the implication of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. We identify homologues of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei. Proteome-wide analyses revealed widespread N-terminal acetylation marks of secreted proteins in both parasites. Such acetylation profile of N-terminally processed proteins was never observed so far in any other organisms. AT1 deletion resulted in a considerable reduction of parasite fitness. In P. berghei, AT1 is important for growth of asexual blood stages and production of female gametocytes and male gametocytogenesis impaling its requirement for transmission. In the absence of AT1, the lysine and N-terminal acetylation sites remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.
Collapse
Affiliation(s)
- Mary Akinyi Nyonda
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Paco Pino
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,ExcellGene SA, CH1870 Monthey, Switzerland
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Intergrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
31
|
The Plasmodium falciparum CCCH Zinc Finger Protein ZNF4 Plays an Important Role in Gametocyte Exflagellation through the Regulation of Male Enriched Transcripts. Cells 2022; 11:cells11101666. [PMID: 35626703 PMCID: PMC9139750 DOI: 10.3390/cells11101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
CCCH zinc finger proteins (ZFPs) function mainly as RNA-binding proteins (RBPs) and play a central role in the mRNA metabolism. Over twenty seven CCCH-ZFPs are encoded in the genome of the human malaria parasite Plasmodium falciparum, the causative agent of malaria tropica. However, little is known about their functions. In this study, we characterize one member of the PfCCCH-ZFP named ZNF4. We show that ZNF4 is highly expressed in mature gametocytes, where it predominantly localizes to the cytoplasm. Targeted gene disruption of ZNF4 showed no significant effect in asexual blood stage replication and gametocyte development while male gametocyte exflagellation was significantly impaired, leading to reduced malaria transmission in the mosquito. Comparative transcriptomics between wildtype (WT) and the ZNF4-deficient line (ZNF4-KO) demonstrated the deregulation of about 473 genes (274 upregulated and 199 downregulated) in mature gametocytes. Most of the downregulated genes show peak expression in mature gametocyte with male enriched genes associated to the axonemal dynein complex formation, and cell projection organization is highly affected, pointing to the phenotype in male gametocyte exflagellation. Upregulated genes are associated to ATP synthesis. Our combined data therefore indicate that ZNF4 is a CCCH zinc finger protein which plays an important role in male gametocyte exflagellation through the regulation of male gametocyte-enriched genes.
Collapse
|
32
|
Kumar S, Abatiyow BA, Haile MT, Oualim KMZ, Leeb AS, Vaughan AM, Kappe SH. A Putative Plasmodium RNA-Binding Protein Plays a Critical Role in Female Gamete Fertility and Parasite Transmission to the Mosquito Vector. Front Cell Dev Biol 2022; 10:825247. [PMID: 35465336 PMCID: PMC9022223 DOI: 10.3389/fcell.2022.825247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Plasmodium falciparum sexual stage gametocytes are critical for parasite transmission from the human host to the mosquito vector. Mature gametocytes generate fertile male (micro-) or female (macro-) gametes upon activation inside the mosquito midgut. While a number of parasite genes have been described that are critical for P. falciparum gametogenesis and fertility, no parasite gene has been shown to have a unique function in macrogametes. The genome of P. falciparum encodes numerous RNA-binding proteins. We identified a novel protein containing a putative RNA-binding domain, which we named Macrogamete-Contributed Factor Essential for Transmission (MaCFET). This protein is expressed in the asexual and sexual stages. Parasites that carry a deletion of MaCFET (Pfmacfet¯), developed normally as asexual stages, indicating that its function is not essential for the asexual proliferation of the parasite in vitro. Furthermore, Pfmacfet¯ male and female gametocytes developed normally and underwent activation to form microgametes and macrogametes. However, by utilizing genetic crosses, we demonstrate that Pfmacfet¯ parasites suffer a complete female-specific defect in successful fertilization. Therefore, PfMaCFET is a critical female-contributed factor for parasite transmission to the mosquito. Based on its putative RNA-binding properties, PfMaCFET might be in involved in the regulation of mRNAs that encode female-specific functions for fertilization or female-contributed factors needed post fertilization.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Kenza M. Z. Oualim
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Amanda S. Leeb
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Identification of mRNA 5' cap-associated proteins in the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2021; 247:111443. [PMID: 34890716 DOI: 10.1016/j.molbiopara.2021.111443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022]
Abstract
Eukaryotic messenger RNA is translated via a 5' cap-dependent initiation mechanism. Experimental evidence for proteins involved with translation initiation among eukaryotic parasites is lacking, including Plasmodium falciparum, the human malaria parasite. Native P. falciparum proteins from asexual stage parasites were enriched using a 5' cap affinity matrix. Proteomic analysis of enriched protein eluates revealed proteins putatively associated with the 5' cap. The canonical 5' cap-binding protein eIF4E (PF3D7_0315100) was the most reproducibly enriched protein. The eIF4A and eIF4G proteins hypothesized to form the eIF4F initiation complex with eIF4E were also detected as 5' cap enriched, albeit with low reproducibility. Surprisingly, enolase (ENO) was the second most enriched protein after eIF4E. Recombinant ENO protein did not demonstrate 5' cap activity, suggesting an indirect association of the native ENO with the 5' cap.
Collapse
|
34
|
Hirai M, Maeta A, Mori T, Mita T. Pb103 Regulates Zygote/Ookinete Development in Plasmodium berghei via Double Zinc Finger Domains. Pathogens 2021; 10:pathogens10121536. [PMID: 34959491 PMCID: PMC8707419 DOI: 10.3390/pathogens10121536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
Sexual reproduction of Plasmodium parasites takes place in anopheline mosquitoes, where male and female gametes fuse to form zygotes and then ookinetes. These processes are orchestrated by stage-specific protein expression, which is mediated in part by translational repression. Accumulating evidence shows that RNA binding proteins (RBPs) play crucial roles in these processes. Here, we report the characterization of P. berghei 103 (Pb103), which encodes a protein possessing double zinc finger domains (ZFs), an RBP. Reporter parasites expressing azami green fluorescent protein (AGFP) under the endogenous Pb103 gene promoter (Pb103-AGFP reporter) showed that the AGFP fluorescent signal was detected from gametes to ookinetes, while AGFP mRNA was translationally repressed in female gametocytes. The Pb103-disrupted parasites (Pb103(−)) grew and produced gametocytes with similar efficiencies to those of wild-type parasites. However, no oocysts were formed in mosquitoes fed Pb103(−). An in vitro fertilization assay showed abortion at the zygote stage in Pb103(−), suggesting that Pb103 plays a critical role in zygote/ookinete development. Cross-fertilization assays with Pb103(−) and male- or female-sterile parasites revealed that Pb103 was essential exclusively for female gametes. To identify the domains critical for zygote/ookinete development, transgenic parasites expressing partially deleted Pb103 were generated and assayed for ookinete maturation. As a result, deleting either of two ZFs but not the C-terminal region abolished zygote/ookinete development, highlighting the indispensable roles of ZFs in parasite sexual development, most likely via translational repression.
Collapse
|
35
|
The Plasmodium NOT1-G paralogue is an essential regulator of sexual stage maturation and parasite transmission. PLoS Biol 2021; 19:e3001434. [PMID: 34673764 PMCID: PMC8562791 DOI: 10.1371/journal.pbio.3001434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g− parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G’s essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites. Malaria parasites face two bottlenecks in their life cycle: their two transmission events. This study shows that Plasmodium has taken the unorthodox approach of duplicating the gene for the NOT1 RNA regulatory scaffold protein, allowing it to dedicate one paralog to functions that are essential for transmission from mammalian hosts to the mosquito vector.
Collapse
|
36
|
Niikura M, Fukutomi T, Mitobe J, Kobayashi F. Roles and Cellular Localization of GBP2 and NAB2 During the Blood Stage of Malaria Parasites. Front Cell Infect Microbiol 2021; 11:737457. [PMID: 34604117 PMCID: PMC8479154 DOI: 10.3389/fcimb.2021.737457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
The quality control and export of mRNA by RNA-binding proteins are necessary for the survival of malaria parasites, which have complex life cycles. Nuclear poly(A) binding protein 2 (NAB2), THO complex subunit 4 (THO4), nucleolar protein 3 (NPL3), G-strand binding protein 2 (GBP2) and serine/arginine-rich splicing factor 1 (SR1) are involved in nuclear mRNA export in malaria parasites. However, their roles in asexual and sexual development, and in cellular localization, are not fully understood. In this study using the rodent malaria parasite, Plasmodium berghei, we found that NAB2 and SR1, but not THO4, NPL3 or GBP2, played essential roles in the asexual development of malaria parasites. By contrast, GBP2 but not NPL3 was involved in male and female gametocyte production. THO4 was involved in female gametocyte production, but had a lower impact than GBP2. In this study, we focused on GBP2 and NAB2, which play important roles in the sexual and asexual development of malaria parasites, respectively, and examined their cellular localization. GBP2 localized to both the nucleus and cytoplasm of malaria parasites. Using immunoprecipitation coupled to mass spectrometry (IP-MS), GBP2 interacted with the proteins ALBA4, DOZI, and CITH, which play roles in translational repression. IP-MS also revealed that phosphorylated adapter RNA export protein (PHAX) domain-containing protein, an adaptor protein for exportin-1, also interacted with GBP2, implying that mRNA export occurs via the PHAX domain-containing protein pathway in malaria parasites. Live-cell fluorescence imaging revealed that NAB2 localized at the nuclear periphery. Moreover, IP-MS indicated that NAB2 interacted with transportin. RNA immunoprecipitation coupled to RNA sequencing revealed that NAB2 bound directly to 143 mRNAs, including those encoding 40S and 60S ribosomal proteins. Our findings imply that malaria parasites use an evolutionarily ancient mechanism conserved throughout eukaryotic evolution.
Collapse
Affiliation(s)
- Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiyuki Fukutomi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Fumie Kobayashi
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
37
|
Johnson N, Philip N. Beyond phosphorylation: Putative roles of post-translational modifications in Plasmodium sexual stages. Mol Biochem Parasitol 2021; 245:111406. [PMID: 34324911 PMCID: PMC8505795 DOI: 10.1016/j.molbiopara.2021.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) allow proteins to regulate their structure, localisation and function in response to cell intrinsic and environmental signals. The diversity and number of modifications on proteins increase the complexity of cellular proteomes by orders of magnitude. Several proteomic and molecular studies have revealed an abundance of PTMs in malaria parasite proteome, where mediators of PTMs play crucial roles in parasite pathogenesis and transmission. In this article, we discuss recent findings in asexual stages of ten diverse PTMs and investigate whether these proteins are expressed in sexual stages. We discovered 25-50 % of proteins exhibiting post-translational modifications in asexual stages are also expressed in sexual stage gametocytes. Moreover we analyse the function of the modified proteins shared with the gametocyte proteome and try to encourage the scientific community to investigate the roles of diverse PTMs beyond phosphorylation in sexual stages which could not only reveal unique aspects of parasite biology, but also uncover new avenues for transmission blocking.
Collapse
Affiliation(s)
- Nila Johnson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Nisha Philip
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
38
|
Alvarez DR, Ospina A, Barwell T, Zheng B, Dey A, Li C, Basu S, Shi X, Kadri S, Chakrabarti K. The RNA structurome in the asexual blood stages of malaria pathogen plasmodium falciparum. RNA Biol 2021; 18:2480-2497. [PMID: 33960872 DOI: 10.1080/15476286.2021.1926747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Plasmodium falciparum is a deadly human pathogen responsible for the devastating disease called malaria. In this study, we measured the differential accumulation of RNA secondary structures in coding and non-coding transcripts from the asexual developmental cycle in P. falciparum in human red blood cells. Our comprehensive analysis that combined high-throughput nuclease mapping of RNA structures by duplex RNA-seq, SHAPE-directed RNA structure validation, immunoaffinity purification and characterization of antisense RNAs collectively measured differentially base-paired RNA regions throughout the parasite's asexual RBC cycle. Our mapping data not only aligned to a diverse pool of RNAs with known structures but also enabled us to identify new structural RNA regions in the malaria genome. On average, approximately 71% of the genes with secondary structures are found to be protein coding mRNAs. The mapping pattern of these base-paired RNAs corresponded to all regions of mRNAs, including the 5' UTR, CDS and 3' UTR as well as the start and stop codons. Histone family genes which are known to form secondary structures in their mRNAs and transcripts from genes which are important for transcriptional and post-transcriptional control, such as the unique plant-like transcription factor family, ApiAP2, DNA-/RNA-binding protein, Alba3 and proteins important for RBC invasion and malaria cytoadherence also showed strong accumulation of duplex RNA reads in various asexual stages in P. falciparum. Intriguingly, our study determined stage-specific, dynamic relationships between mRNA structural contents and translation efficiency in P. falciparum asexual blood stages, suggesting an essential role of RNA structural changes in malaria gene expression programs.
Collapse
Affiliation(s)
- Diana Renteria Alvarez
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Alejandra Ospina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Tiffany Barwell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Bo Zheng
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Abhishek Dey
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Chong Li
- Temple University, Philadelphia, PA, USA
| | - Shrabani Basu
- Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Sabah Kadri
- Division of Health and Biomedical Informatics, Northwestern University Feinberg School of Medicine and Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
39
|
Yuda M, Kaneko I, Murata Y, Iwanaga S, Nishi T. Mechanisms of triggering malaria gametocytogenesis by AP2-G. Parasitol Int 2021; 84:102403. [PMID: 34119684 DOI: 10.1016/j.parint.2021.102403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
The transcription factor (TF) AP2-G is essential for gametocytogenesis in the malaria parasite; however, it remains unclear if AP2-G determines commitment to sexual stage development fate in the schizont stage, or whether AP2-G directly initiates sexual stage differentiation and development beginning in the late-trophozoite stage. In this study, we addressed this issue by investigating the expression profile of AP2-G and determining genome-wide target genes in Plasmodium berghei. Fluorescence microscopy showed that AP2-G expression was first observed in the parasite 12 h after erythrocyte invasion and peaked at 18 h when sexual features were first manifested in early gametocytes. Expression of AP2-G decreased with manifestation of sex-specific features. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) was performed at peak AP2-G expression and identified over 1000 binding sites in the genome. The main binding motif of the TF predicted from the binding sites was GTACNY. Predicted targets contained a number of genes related to protein biogenesis, suggesting that AP2-G plays a role in establishing a cellular basis required for sexual differentiation. AP2-G binding sites also existed upstream of gametocyte-specific TFs, namely AP2-G2, AP2-FG, and AP2-G itself. Furthermore, the target contained two AP2 TF-related genes. Disruption of these genes resulted in the arrest of ookinete development. These results suggest another role of AP2-G: activating a transcriptional cascade to promote conversion into early gametocytes. Taken together, AP2-G is involved not in establishing sexual commitment of schizonts, but rather in triggering the initiation of differentiation and the early development of gametocytes in the late trophozoite stage.
Collapse
Affiliation(s)
- Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan.
| | - Izumi Kaneko
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| | - Yuho Murata
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease Control, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu 514-8507, Japan
| |
Collapse
|
40
|
Behari J, Borkar P, Vindu A, Dandewad V, Upadrasta S, Shanmugam D, Seshadri V. Conserved RNA Binding Activity of Phosphatidyl Inositol 5-Phosphate 4-Kinase (PIP4K2A). Front Mol Biosci 2021; 8:631281. [PMID: 34124142 PMCID: PMC8194828 DOI: 10.3389/fmolb.2021.631281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/28/2021] [Indexed: 12/04/2022] Open
Abstract
Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. During its life cycle, the malarial parasite Plasmodium goes through different asexual and sexual stages, in humans and mosquitoes. Expression of stage-specific proteins is important for successful completion of its life cycle and requires tight gene regulation. In the case of Plasmodium, due to relative paucity of the transcription factors, it is postulated that posttranscriptional regulation plays an important role in stage-specific gene expression. Translation repression of specific set of mRNA has been reported in gametocyte stages of the parasite. A conserved element present in the 3′UTR of some of these transcripts was identified. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K2A) was identified as the protein that associates with these RNA. We now show that the RNA binding activity of PIP4K2A is independent of its kinase activity. We also observe that PIP4K2A is imported into the parasite from the host on Plasmodium berghei and Toxoplasma gondii. The RNA binding activity of PIP4K2A seems to be conserved across species from Drosophila and C. elegans to humans, suggesting that the RNA binding activity of PIP4K may be important, and there may be host transcripts that may be regulated by PIP4K2A. These results identify a novel RNA binding role for PIP4K2A that may not only play a role in Plasmodium propagation but may also function in regulating gene expression in multicellular organisms.
Collapse
Affiliation(s)
- Jatin Behari
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Pranita Borkar
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Arya Vindu
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Vishal Dandewad
- National Centre for Cell Science, Pune, India.,Department of Biotechnology, SPPU, Pune, India
| | - Sindhuri Upadrasta
- CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Dhanasekaran Shanmugam
- CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | |
Collapse
|
41
|
Functional Characterization of the m 6A-Dependent Translational Modulator PfYTH.2 in the Human Malaria Parasite. mBio 2021; 12:mBio.00661-21. [PMID: 33906926 PMCID: PMC8092261 DOI: 10.1128/mbio.00661-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Posttranscriptional regulation of gene expression is central to the development and replication of the malaria parasite, Plasmodium falciparum, within its human host. The timely coordination of RNA maturation, homeostasis, and protein synthesis relies on the recruitment of specific RNA-binding proteins to their cognate target mRNAs. One possible mediator of such mRNA-protein interactions is the N6-methylation of adenosines (m6A), a prevalent mRNA modification of parasite mRNA transcripts. Here, we used RNA protein pulldowns, RNA modification mass spectrometry, and quantitative proteomics to identify two P. falciparum YTH domain proteins (PfYTH.1 and PfYTH.2) as m6A-binding proteins during parasite blood-stage development. Interaction proteomics revealed that PfYTH.2 associates with the translation machinery, including multiple subunits of the eukaryotic initiation factor 3 (eIF3) and poly(A)-binding proteins. Furthermore, knock sideways of PfYTH.2 coupled with ribosome profiling showed that this m6A reader is essential for parasite survival and is a repressor of mRNA translation. Together, these data reveal an important missing link in the m6A-mediated mechanism controlling mRNA translation in a unicellular eukaryotic pathogen.IMPORTANCE Infection with the unicellular eukaryotic pathogen Plasmodium falciparum causes malaria, a mosquito-borne disease affecting more than 200 million and killing 400,000 people each year. Underlying the asexual replication within human red blood cells is a tight regulatory network of gene expression and protein synthesis. A widespread mechanism of posttranscriptional gene regulation is the chemical modification of adenosines (m6A), through which the fate of individual mRNA transcripts can be changed. Here, we report on the protein machinery that "reads" this modification and "translates" it into a functional outcome. We provide mechanistic insight into one m6A reader protein and show that it interacts with the translational machinery and acts as a repressor of mRNA translation. This m6A-mediated phenotype has not been described in other eukaryotes as yet, and the functional characterization of the m6A interactome will ultimately open new avenues to combat the disease.
Collapse
|
42
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
43
|
Müller K, Silvie O, Mollenkopf HJ, Matuschewski K. Pleiotropic Roles for the Plasmodium berghei RNA Binding Protein UIS12 in Transmission and Oocyst Maturation. Front Cell Infect Microbiol 2021; 11:624945. [PMID: 33747980 PMCID: PMC7973279 DOI: 10.3389/fcimb.2021.624945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022] Open
Abstract
Colonization of the mosquito host by Plasmodium parasites is achieved by sexually differentiated gametocytes. Gametocytogenesis, gamete formation and fertilization are tightly regulated processes, and translational repression is a major regulatory mechanism for stage conversion. Here, we present a characterization of a Plasmodium berghei RNA binding protein, UIS12, that contains two conserved eukaryotic RNA recognition motifs (RRM). Targeted gene deletion resulted in viable parasites that replicate normally during blood infection, but form fewer gametocytes. Upon transmission to Anopheles stephensi mosquitoes, both numbers and size of midgut-associated oocysts were reduced and their development stopped at an early time point. As a consequence, no salivary gland sporozoites were formed indicative of a complete life cycle arrest in the mosquito vector. Comparative transcript profiling in mutant and wild-type infected red blood cells revealed a decrease in transcript abundance of mRNAs coding for signature gamete-, ookinete-, and oocyst-specific proteins in uis12(-) parasites. Together, our findings indicate multiple roles for UIS12 in regulation of gene expression after blood infection in good agreement with the pleiotropic defects that terminate successful sporogony and onward transmission to a new vertebrate host.
Collapse
Affiliation(s)
- Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Hans-Joachim Mollenkopf
- Core Facility Microarray/Genomics, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.,Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
44
|
Li Z, Cui H, Guan J, Liu C, Yang Z, Yuan J. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes. EMBO Rep 2021; 22:e51660. [PMID: 33665945 PMCID: PMC8097350 DOI: 10.15252/embr.202051660] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
Male and female gametocytes are sexual precursor cells essential for mosquito transmission of malaria parasite. Differentiation of gametocytes into fertile gametes (known as gametogenesis) relies on the gender‐specific transcription program. How the parasites establish distinct repertoires of transcription in the male and female gametocytes remains largely unknown. Here, we report that an Apetala2 family transcription factor AP2‐O3 operates as a transcription repressor in the female gametocytes. AP2‐O3 is specifically expressed in the female gametocytes. AP2‐O3‐deficient parasites produce apparently normal female gametocytes. Nevertheless, these gametocytes fail to differentiate into fully fertile female gametes, leading to developmental arrest in fertilization and early development post‐fertilization. AP2‐O3 disruption causes massive upregulation of transcriptionally dormant male genes and simultaneously downregulation of highly transcribed female genes in the female gametocytes. AP2‐O3 targets a substantial proportion of the male genes by recognizing an 8‐base DNA motif. In addition, the maternal AP2‐O3 is removed after fertilization, which is required for the zygote to ookinete development. Therefore, the global transcriptional repression of the male genes in the female gametocytes is required for safeguarding female‐specific transcriptome and essential for the mosquito transmission of Plasmodium.
Collapse
Affiliation(s)
- Zhenkui Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiepeng Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cong Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhengang Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
45
|
Simwela NV, Hughes KR, Rennie MT, Barrett MP, Waters AP. Mammalian Deubiquitinating Enzyme Inhibitors Display in Vitro and in Vivo Activity against Malaria Parasites and Potentiate Artemisinin Action. ACS Infect Dis 2021; 7:333-346. [PMID: 33400499 DOI: 10.1021/acsinfecdis.0c00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) is an emerging drug target in malaria due to its essential role in the parasite's life cycle stages as well its contribution to resistance to artemisinins. Polymorphisms in the Kelch13 gene of Plasmodium falciparum are primary markers of artemisinin resistance and among other things are phenotypically characterized by an overactive UPS. Inhibitors targeting the proteasome, critical components of the UPS, display activity in malaria parasites and synergize artemisinin action. Here we report the activity of small molecule inhibitors targeting mammalian deubiquitinating enzymes, DUBs (upstream UPS components), in malaria parasites. We show that generic DUB inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess antiparasitic activity in vivo and can be used in combination with additive to synergistic effect. We also show that inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in vitro as well as in vivo to the extent that artemisinin resistance can be overcome. Combinations of DUB inhibitors anticipated to target different DUB activities and downstream proteasome inhibitors are even more effective at improving the potency of artemisinins than either inhibitors alone, providing proof that targeting multiple UPS activities simultaneously could be an attractive approach to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug repurposing programs.
Collapse
Affiliation(s)
- Nelson V. Simwela
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Katie R. Hughes
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael T. Rennie
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Michael P. Barrett
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| | - Andrew P. Waters
- Institute of Infection, Immunity & Inflammation, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland G12 8TA, United Kingdom
| |
Collapse
|
46
|
Náprstková A, Malínská K, Záveská Drábková L, Billey E, Náprstková D, Sýkorová E, Bousquet-Antonelli C, Honys D. Characterization of ALBA Family Expression and Localization in Arabidopsis thaliana Generative Organs. Int J Mol Sci 2021; 22:1652. [PMID: 33562109 PMCID: PMC7914821 DOI: 10.3390/ijms22041652] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.
Collapse
Affiliation(s)
- Alena Náprstková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Kateřina Malínská
- Imaging Facility, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic;
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Elodie Billey
- CNRS LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France; (E.B.); (C.B.-A.)
- LGDP-UMR5096, Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | - Dagmar Náprstková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| | - Eva Sýkorová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská, 612 00 Brno, Czech Republic;
| | - Cécile Bousquet-Antonelli
- CNRS LGDP-UMR5096, 58 Av. Paul Alduy, 66860 Perpignan, France; (E.B.); (C.B.-A.)
- LGDP-UMR5096, Université de Perpignan via Domitia, 58 Av. Paul Alduy, 66860 Perpignan, France
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic; (A.N.); (L.Z.D.); (D.N.)
| |
Collapse
|
47
|
Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for Transmission: Gene Regulation in Plasmodium Sporozoites. Front Cell Infect Microbiol 2021; 10:618430. [PMID: 33585284 PMCID: PMC7878544 DOI: 10.3389/fcimb.2020.618430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.
Collapse
Affiliation(s)
- Sylvie Briquet
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Carine Marinach
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Olivier Silvie
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Catherine Vaquero
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
48
|
Bevkal S, Naguleswaran A, Rehmann R, Kaiser M, Heller M, Roditi I. An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition. PLoS Pathog 2021; 17:e1009239. [PMID: 33493187 PMCID: PMC7861527 DOI: 10.1371/journal.ppat.1009239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions. Trypanosoma brucei is a unicellular eukaryotic parasite that is responsible for African trypanosomiasis. The parasite needs two hosts, mammals and tsetse flies, in order to complete its life cycle. Throughout its developmental cycle, T. brucei encounters diverse environments to which it has to adapt in order to maintain its transmission and infectivity. Successful adaptation to the new environment and transition to different life-cycle stages are the general challenges faced by many digenetic parasites. In this study we show that the Alba-domain protein Alba3 is essential for differentiation of the mammalian stumpy form (transition form) to the procyclic form in the tsetse host. An Alba3 deletion mutant infects mice and shows characteristic waves of parasitaemia, but is severely compromised in its ability to infect tsetse flies. Stumpy forms are translationally repressed, but are poised to resume protein synthesis during differentiation. We show that Alba3 is key to efficient escape from translation repression; in its absence, there is a delay in the formation of polysomes and resumption of protein synthesis. This impacts the formation of procyclic-specific mitochondrial respiratory complex proteins as well as the repression of some bloodstream-specific proteins. This is the first time that a single protein has been shown to have a major influence on translation as an adaptive response to changing hosts. It is also the first time that a mechanism has been established for Alba-domain proteins in parasites.
Collapse
Affiliation(s)
- Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Department of Medical and Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
49
|
Egarter S, Santos JM, Kehrer J, Sattler J, Frischknecht F, Mair GR. Gliding motility protein LIMP promotes optimal mosquito midgut traversal and infection by Plasmodium berghei. Mol Biochem Parasitol 2021; 241:111347. [PMID: 33347893 PMCID: PMC7856051 DOI: 10.1016/j.molbiopara.2020.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022]
Abstract
Substrate-dependent gliding motility is key to malaria transmission. It mediates host cell traversal, invasion and infection by Plasmodium and related apicomplexan parasites. The 110 amino acid-long cell surface protein LIMP is essential for P. berghei sporozoites where it is required for the invasion of the mosquito's salivary glands and the liver cells of the rodent host. Here we define an additional role for LIMP during mosquito invasion by the ookinete. limp mRNA is provided as a translationally repressed mRNP (messenger ribonucleoprotein) by the female gametocyte and the protein translated in the ookinete. Parasites depleted of limp (Δlimp) develop ookinetes with apparent normal morphology and no defect during in vitro gliding motility, and yet display a pronounced reduction in oocyst numbers; compared to wildtype 82 % more Δlimp ookinetes remain within the mosquito blood meal explaining the decrease in oocysts. As in the sporozoite, LIMP exerts a profound role on ookinete infection of the mosquito.
Collapse
Affiliation(s)
- Saskia Egarter
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Jorge M Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia Sattler
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Parasitology, Department of Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal; Iowa State University, Biomedical Sciences, Ames, IA, United States.
| |
Collapse
|
50
|
Guttery DS, Ramaprasad A, Ferguson DJP, Zeeshan M, Pandey R, Brady D, Holder AA, Pain A, Tewari R. MRE11 Is Crucial for Malaria Parasite Transmission and Its Absence Affects Expression of Interconnected Networks of Key Genes Essential for Life. Cells 2020; 9:E2590. [PMID: 33287434 PMCID: PMC7761864 DOI: 10.3390/cells9122590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
The meiotic recombination 11 protein (MRE11) plays a key role in DNA damage response and maintenance of genome stability. However, little is known about its function during development of the malaria parasite Plasmodium. Here, we present a functional, ultrastructural and transcriptomic analysis of Plasmodium parasites lacking MRE11 during its life cycle in both mammalian and mosquito vector hosts. Genetic disruption of Plasmodium berghei mre11 (PbMRE11) results in significant retardation of oocyst development in the mosquito midgut associated with cytoplasmic and nuclear degeneration, along with concomitant ablation of sporogony and subsequent parasite transmission. Further, absence of PbMRE11 results in significant transcriptional downregulation of genes involved in key interconnected biological processes that are fundamental to all eukaryotic life including ribonucleoprotein biogenesis, spliceosome function and iron-sulfur cluster assembly. Overall, our study provides a comprehensive functional analysis of MRE11's role in Plasmodium development during the mosquito stages and offers a potential target for therapeutic intervention during malaria parasite transmission.
Collapse
Affiliation(s)
- David S. Guttery
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (M.Z.); (R.P.); (D.B.)
| | - Abhinay Ramaprasad
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; (A.R.); (A.P.)
- The Francis Crick Institute, London NW1 1AT, UK;
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX1 2JD, UK;
- Department Biological & Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Mohammad Zeeshan
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (M.Z.); (R.P.); (D.B.)
| | - Rajan Pandey
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (M.Z.); (R.P.); (D.B.)
| | - Declan Brady
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (M.Z.); (R.P.); (D.B.)
| | | | - Arnab Pain
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; (A.R.); (A.P.)
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX1 2JD, UK;
- Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Rita Tewari
- Queens Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (M.Z.); (R.P.); (D.B.)
| |
Collapse
|