1
|
Mukhongo HN, Kinyua JK, Weldemichael YG, Kasili RW. Screening for antifolate and artemisinin resistance in Plasmodium falciparum dried-blood spots from three hospitals of Eritrea. F1000Res 2024; 10:628. [PMID: 38840941 PMCID: PMC11150900 DOI: 10.12688/f1000research.54195.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/07/2024] Open
Abstract
Background Antimalarial drug resistance is a major challenge hampering malaria control and elimination. About three-quarters of Eritrea's population resides in the malaria-endemic western lowlands of the country. Plasmodium falciparum, the leading causative parasite species, has developed resistance to basically all antimalarials. Continued surveillance of drug resistance using genetic markers provides important molecular data for treatment policies which complements clinical studies, and strengthens control efforts. This study sought to genotype point mutations associated with P. falciparum resistance to sulfadoxine-pyrimethamine and artemisinin, in dried-blood spots from three hospitals in the western lowlands of Eritrea. Methods Dried-blood spot samples were collected from patients visiting Adi Quala, Keren and Gash Barka Hospitals, between July and October, 2014. The patients were followed up after treatment with first line artesunate-amodiaquine, and dried-blood spots were collected on day three after treatment. Nested polymerase chain reaction and Sanger sequencing techniques were employed to genotype point mutations in the Pfdhfr (PF3D7_0417200), Pfdhps (PF3D7_0810800) and PfK13 (PF3D7_1343700) partial gene regions. Results Sequence data analyses of PCR-positive isolates found wild-type artemisinin haplotypes associated with resistance (Y493Y, R539R, I543I) in three isolates, whereas four mutant antifolate haplotypes associated with resistance were observed in six isolates. These included the triple-mutant Pfdhfr (S108N, C59R, N51I) haplotype, the double-mutant Pfdhfr (N51I, S108N) haplotype, the single-mutant Pfdhfr (K540E) haplotype, and the mixed-mutant Pfdhfr-Pfdhps (S108N, N51I + K540E) haplotype. Other findings observed were, a rare non-synonymous Pfdhfr V45A mutation in four isolates, and a synonymous Pfdhps R449R in one isolate. Conclusions The mutant antifolate haplotypes observed indicate a likely existence of full SP resistance. Further studies can be carried out to estimate the prevalence of SP resistance. The wild-type artemisinin haplotypes observed suggest artemisinin is still an effective treatment. Continuous monitoring of point mutations associated with delayed parasite clearance in ART clinical studies is recommended.
Collapse
Affiliation(s)
- Harriet Natabona Mukhongo
- College of Health Sciences; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, P.O. Box 62000-00200, Nairobi, Kenya
| | - Johnson Kang'ethe Kinyua
- College of Health Sciences; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Juja, P.O. Box 62000-00200, Nairobi, Kenya
| | - Yishak Gebrekidan Weldemichael
- College of Science; Department of Biology, Eritrea Institute of Technology, Asmara, P.O. Box 12676, Mai-Nefhi, Asmara, Eritrea
| | - Remmy Wekesa Kasili
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Juja, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
2
|
Foo YS, Flegg JA. A spatio-temporal model of multi-marker antimalarial resistance. J R Soc Interface 2024; 21:20230570. [PMID: 38228183 PMCID: PMC10791536 DOI: 10.1098/rsif.2023.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
The emergence and spread of drug-resistant Plasmodium falciparum parasites have hindered efforts to eliminate malaria. Monitoring the spread of drug resistance is vital, as drug resistance can lead to widespread treatment failure. We develop a Bayesian model to produce spatio-temporal maps that depict the spread of drug resistance, and apply our methods for the antimalarial sulfadoxine-pyrimethamine. We infer from genetic count data the prevalences over space and time of various malaria parasite haplotypes associated with drug resistance. Previous work has focused on inferring the prevalence of individual molecular markers. In reality, combinations of mutations at multiple markers confer varying degrees of drug resistance to the parasite, indicating that multiple markers should be modelled together. However, the reporting of genetic count data is often inconsistent as some studies report haplotype counts, whereas some studies report mutation counts of individual markers separately. In response, we introduce a latent multinomial Gaussian process model to handle partially reported spatio-temporal count data. As drug-resistant mutations are often used as a proxy for treatment efficacy, point estimates from our spatio-temporal maps can help inform antimalarial drug policies, whereas the uncertainties from our maps can help with optimizing sampling strategies for future monitoring of drug resistance.
Collapse
Affiliation(s)
- Yong See Foo
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Nkemngo FN, Raissa LW, Nguete DN, Ndo C, Fru-Cho J, Njiokou F, Wanji S, Wondji CS. Geographical emergence of sulfadoxine-pyrimethamine drug resistance-associated P. falciparum and P. malariae alleles in co-existing Anopheles mosquito and asymptomatic human populations across Cameroon. Antimicrob Agents Chemother 2023; 67:e0058823. [PMID: 37947766 PMCID: PMC10720508 DOI: 10.1128/aac.00588-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Malaria molecular surveillance remains critical in detecting and tracking emerging parasite resistance to anti-malarial drugs. The current study employed molecular techniques to determine Plasmodium species prevalence and characterize the genetic diversity of Plasmodium falciparum and Plasmodium malariae molecular markers of sulfadoxine-pyrimethamine resistance in humans and wild Anopheles mosquito populations in Cameroon. Anopheles mosquito collections and parasitological survey were conducted in villages to determine Plasmodium species infection, and genomic phenotyping of anti-folate resistance was accomplished by sequencing the dihydrofolate-reductase (dhfr) and dihydropteroate-synthase (dhps) genes of naturally circulating P. falciparum and P. malariae isolates. The malaria prevalence in Elende was 73.5% with the 5-15 years age group harboring significant P. falciparum (27%) and P. falciparum + P. malariae (19%) infections. The polymorphism breadth of the pyrimethamine-associated Pfdhfr marker revealed a near fixation (94%) of the triple-mutant -A16I51R59N108I164. The Pfdhps backbone mediating sulfadoxine resistance reveals a high frequency of the V431A436G437K540A581A613 alleles (20.8%). Similarly, the Pmdhfr N50K55L57R58S59S114F168I170 haplotype (78.4%) was predominantly detected in the asexual blood stage. In contrast, the Pmdhps- S436A437occured at 37.2% frequency. The combined quadruple N50K55L57R58S59S114F168I170_ S436G437K540A581A613 (31.9%) was the major circulating haplotype with similar frequency in humans and mosquitoes. This study highlights the increasing frequency of the P. malariae parasite mostly common in asymptomatic individuals with apparent P. falciparum infection. Interventions directed at reducing malaria transmission such as the scaling-up of SP are favoring the emergence and spread of multiple drug-resistant alleles between the human and mosquito host systems.
Collapse
Affiliation(s)
- Francis N. Nkemngo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Lymen W. Raissa
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Daniel N. Nguete
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Cyrille Ndo
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Jerome Fru-Cho
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
- Centre for Infection Biology and Translational Research, Forzi Institute, Buea, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Samuel Wanji
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
4
|
Quan H, Yu P, Kassegne K, Shen HM, Chen SB, Chen JH. Polymorphism of Drug Resistance Genes dhfr and dhps in Plasmodium falciparum Isolates among Chinese Migrant Workers Who Returned from Ghana in 2013. Trop Med Infect Dis 2023; 8:504. [PMID: 37999623 PMCID: PMC10675347 DOI: 10.3390/tropicalmed8110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
In 2013, an epidemic of falciparum malaria involving over 820 persons unexpectedly broke out in Shanglin County, Guangxi Zhuang Autonomous Region, China, after a large number of migrant workers returned from Ghana, where they worked as gold miners. Herein, we selected 146 isolates randomly collected from these patients to investigate the resistance characteristics of the parasite to sulfadoxine-pyrimethamine (SP) by screening mutations in the dhfr and dhps genes. All 146 isolates were successfully genotyped for dhps, and only 137 samples were successfully genotyped for dhfr. In the dhfr gene, point mutations occurred at three codons: 51 (83.2%, 114/137), 59 (94.9%, 130/137), and 108 (96.4%, 132/137). In the dhps gene, mutations occurred at four codons: 436 (36.3%, 53/146 for S436A, 0.7%, 1/146 for S436Y), 437 (95.2%, 139/146), 540 (3.4%, 5/146), and 613 (2.7%, 4/146). All 146 isolates had mutations in at least one codon, either within dhfr or dhps. Quadruple mutation I51R59N108/G437 (41.1%, 60/146) of partial or low resistance level was the most prevalent haplotype combination. Quintuple I51R59N108/G437E540 accounted for 2.1% (3/146). Sextuple I51R59N108/A436G437S613 was also found and accounted for 1.4% (2/146). A chronological assay incorporating two sets of resistance data from the studies of Duah and Amenga-Etego provided an overview of the resistance trend from 2003 to 2018. During this period, the results we obtained generally coincided with the total development tendency of SP resistance. It can be concluded that Plasmodium falciparum samples collected from Chinese migrant workers from Ghana presented prevalent but relatively partial or low resistance to SP. A chronological assay incorporating two sets of data around 2013 indicates that our results possibly reflect the SP resistance level of Ghana in 2013 and that the possibility of increased resistance exists. Therefore, reasonable drug use and management should be strengthened while also maintaining a continuous screening of resistance to SP. These findings also underscore the need to strengthen the prevention of malaria importation from overseas and focus on preventing its reintroduction and transmission in China.
Collapse
Affiliation(s)
- Hong Quan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Peng Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- Dalian Center for Disease Control and Prevention, Dalian 116000, China
| | - Kokouvi Kassegne
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Mo Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shen-Bo Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Jun-Hu Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou 571199, China
| |
Collapse
|
5
|
Funwei RI, Uyaiabasi GN, Hammed WA, Ojurongbe O, Walker O, Falade CO. High prevalence of persistent residual parasitemia on days 3 and 14 after artemether-lumefantrine or pyronaridine-artesunate treatment of uncomplicated Plasmodium falciparum malaria in Nigeria. Parasitol Res 2023; 122:519-526. [PMID: 36510009 DOI: 10.1007/s00436-022-07753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Microscopic evaluation of parasite clearance is the gold standard in antimalarial drug efficacy trials. However, the presence of sub-microscopic residual parasitemia after artemisinin-based combination therapy (ACT) needs to be investigated. METHODS One hundred and twenty (AL: n = 60, PA: n = 60) days 3 and 14 dried blood spots, negative by microscopy were analysed for residual parasitemia using nested PCR. Isolates with residual parasitemia on days 3 and 14 were further genotyped with their corresponding day-0 isolates using merozoite surface proteins msp-1, msp-2, and glurp genes for allelic similarity. RESULTS Persistent PCR-determined sub-microscopic residual parasitemia at day 3 post ACT treatment was 83.3 (AL) and 88.3% (PA), respectively (ρ = 0.600), while 63.6 and 36.4% (ρ = 0.066) isolates were parasitemic at day 14 for AL and PA, respectively. Microscopy-confirmed gametocytemia persisted from days 0 to 7 and from days 0 to 21 for AL and PA. When the alleles of day 3 versus day 0 were compared according to base pair sizes, 59% of parasites shared identical alleles for glurp, 36% each for 3D7 and FC27, while K1 was 77%, RO33 64%, and MAD20 23%, respectively. Similarly, day 14 versus day 0 was 36% (glurp), 64% (3D7), and 32% (FC27), while 73% (K1), 77% (RO33), and 41% (MAD20), respectively. CONCLUSION The occurrence of residual parasitemia on days 3 and 14 following AL or PA treatment may be attributable to the presence of either viable asexual, gametocytes, or dead parasite DNAs, which requires further investigation.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria. .,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Gabriel N Uyaiabasi
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Wasiu A Hammed
- Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Olusola Ojurongbe
- Department of Medical Microbiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.,Center for Emerging and Re-Emerging Infectious Diseases (CERID), Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oladapo Walker
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training (IAMRAT), University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Srisutham S, Madmanee W, Kouhathong J, Sutawong K, Tripura R, Peto TJ, van der Pluijm RW, Callery JJ, Dysoley L, Mayxay M, Newton PN, Pongvongsa T, Hongvanthong B, Day NPJ, White NJ, Dondorp AM, Imwong M. Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries. PLoS One 2022; 17:e0278928. [PMID: 36525403 PMCID: PMC9757559 DOI: 10.1371/journal.pone.0278928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxine-pyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used. METHODS A total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay. RESULTS Sequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia. CONCLUSION Despite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns.
Collapse
Affiliation(s)
- Suttipat Srisutham
- Faculty of Allied Health Sciences, Department of Clinical Microscopy, Chulalongkorn University, Bangkok, Thailand
| | - Wanassanan Madmanee
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Jindarat Kouhathong
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kreepol Sutawong
- Buntharik Hospital, Amphoe Buntharik, Ubon Ratchathani, Thailand
| | - Rupam Tripura
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Thomas J. Peto
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rob W. van der Pluijm
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - James J. Callery
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Lek Dysoley
- Center for Parasitology Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Mayfong Mayxay
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom,Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao PDR,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Paul N. Newton
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Health Department, Phonsavangnuea Village, Kaysone-Phomvihan District, Savannakhet, Laos
| | - Bouasy Hongvanthong
- Center of Malariology, Parasitology and Entomology, Ministry of Health, Vientiane, Laos
| | - Nicholas P. J. Day
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,* E-mail:
| |
Collapse
|
7
|
Ali IM, Kom Tchuenkam PV, Tagomo SS, Hornela M, Moyeh MN, Nfor EN, Nji AM, Fomboh CT, Nana WD, Chedjou Kengne JP, Ngwa Niba PT, Ekoyol GE, Achu DF, Bigoga JD, Mbacham WF. Allelic Frequencies of Mutants of the Plasmodium falciparum, Quinoline and Folate Metabolizing genes in the West Region of Cameroon. Heliyon 2022; 8:e11861. [DOI: 10.1016/j.heliyon.2022.e11861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
8
|
Guerra AP, Olivera MJ, Cortés LJ, Chenet SM, Macedo de Oliveira A, Lucchi NW. Molecular surveillance for anti-malarial drug resistance and genetic diversity of Plasmodium falciparum after chloroquine and sulfadoxine-pyrimethamine withdrawal in Quibdo, Colombia, 2018. Malar J 2022; 21:306. [PMID: 36307852 PMCID: PMC9617338 DOI: 10.1186/s12936-022-04328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background Resistance to anti-malarial drugs is associated with polymorphisms in target genes and surveillance for these molecular markers is important to detect the emergence of mutations associated with drug resistance and signal recovering sensitivity to anti-malarials previously used. Methods The presence of polymorphisms in genes associated with Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine was evaluated by Sanger sequencing, in 85 P. falciparum day of enrollment samples from a therapeutic efficacy study of artemether–lumefantrine conducted in 2018–2019 in Quibdo, Colombia. Samples were genotyped to assess mutations in pfcrt (codons 72–76), pfdhfr (codons 51, 59, 108, and 164), and pfdhps genes (codons 436, 437, 540, and 581). Further, the genetic diversity of infections using seven neutral microsatellites (NMSs) (C2M34, C3M69, Poly α, TA1, TA109, 2490, and PfPK2) was assessed. Results All isolates carried mutant alleles for pfcrt (K76T and N75E), and for pfdhfr (N51I and S108N), while for pfdhps, mutations were observed only for codon A437G (32/73, 43.8%). Fifty samples (58.8%) showed a complete neutral microsatellites (NMS) profile. The low mean number of alleles (2 ± 0.57) per locus and mean expected heterozygosity (0.17 ± 0.03) showed a reduced genetic diversity. NMS multilocus genotypes (MMG) were built and nine MMG were identified. Conclusions Overall, these findings confirm the fixation of chloroquine and pyrimethamine-resistant alleles already described in the literature, implying that these drugs are not currently appropriate for use in Colombia. In contrast, mutations in the pfdhps gene were only observed at codon 437, an indication that full resistance to sulfadoxine has not been achieved in Choco. MMGs found matched the clonal lineage E variant 1 previously reported in northwestern Colombia. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04328-x.
Collapse
Affiliation(s)
| | | | | | - Stella M Chenet
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Perú
| | - Alexandre Macedo de Oliveira
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, GA, Atlanta, USA
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, GA, Atlanta, USA
| |
Collapse
|
9
|
Identification of polymorphisms in genes associated with drug resistance in Plasmodium falciparum isolates from school-age children in Kinshasa, Democratic Republic of Congo. Parasitol Int 2022; 88:102541. [PMID: 35051550 DOI: 10.1016/j.parint.2022.102541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The emergence and spread of Plasmodium falciparum parasites resistant to antimalarial drugs constitutes an obstacle to malaria control and elimination. This study aimed to identify the prevalence of polymorphisms in pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt genes in isolates from asymptomatic and symptomatic school-age children in Kinshasa. METHODS Nested-PCR followed by sequencing was performed for the detection of pfk13, pfmdr1, pfdhfr, pfdhps and pfcrt polymorphisms. RESULTS Two mutations in pfk13, C532S and Q613E were identified in the Democratic Republic of Congo for the first time. The prevalence of the drug-resistance associated mutations pfcrt K76T, pfdhps K540E and pfmdr1 N86Y was low, being 27%, 20% and 9%, respectively. CONCLUSION We found a low prevalence of genetic markers associated with chloroquine and sulfadoxine-pyrimethamine resistance in Kinshasa. Furthermore, no mutations previously associated with resistance against artemisinin and is derivatives were observed in the pfK13 gene. These findings support the continued use of ACTs and IPTp-SP. Continuous molecular monitoring of antimalarial resistance markers is recommended.
Collapse
|
10
|
Nsanzabana C. Time to scale up molecular surveillance for anti-malarial drug resistance in sub-saharan Africa. Malar J 2021; 20:401. [PMID: 34645475 PMCID: PMC8513315 DOI: 10.1186/s12936-021-03942-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 02/02/2023] Open
Abstract
Artemisinin resistance has emerged and spread in the Greater Mekong Sub-region (GMS), followed by artemisinin-based combination therapy failure, due to both artemisinin and partner drug resistance. More worrying, artemisinin resistance has been recently reported and confirmed in Rwanda. Therefore, there is an urgent need to strengthen surveillance systems beyond the GMS to track the emergence or spread of artemisinin and partner drug resistance in other endemic settings. Currently, anti-malarial drug efficacy is monitored primarily through therapeutic efficacy studies (TES). Even though essential for anti-malarial drug policy change, these studies are difficult to conduct, expensive, and may not detect the early emergence of resistance. Additionally, results from TES may take years to be available to the stakeholders, jeopardizing their usefulness. Molecular markers are additional and useful tools to monitor anti-malarial drug resistance, as samples collected on dried blood spots are sufficient to monitor known and validated molecular markers of resistance, and could help detecting and monitoring the early emergence of resistance. However, molecular markers are not monitored systematically by national malaria control programmes, and are often assessed in research studies, but not in routine surveillance. The implementation of molecular markers as a routine tool for anti-malarial drug resistance surveillance could greatly improve surveillance of anti-malarial drug efficacy, making it possible to detect resistance before it translates to treatment failures. When possible, ex vivo assays should be included as their data could be useful complementary, especially when no molecular markers are validated.
Collapse
Affiliation(s)
- Christian Nsanzabana
- Department of Medicine, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| |
Collapse
|
11
|
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2021; 20:353-372. [PMID: 34348573 DOI: 10.1080/14787210.2021.1962291] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Since the spread of chloroquine resistance in Plasmodium falciparum in the 1960s, recommendations have been made on how to respond to antimalarial resistance. Only with the advent of artemisinin partial resistance were large scale efforts made in the Greater Mekong Subregion to carry out recommendations in a coordinated and well-funded manner. Independent emergence of parasites partially resistant to artemisinins has now been reported in Rwanda. AREAS COVERED We reviewed past recommendations and activities to respond to resistance as well as the research ongoing into new ways to stop or delay the spread of resistant parasites. EXPERT OPINION Inadequate information limits the options and support for a strong, coordinated response to artemisinin partial resistance in Africa, making better phenotypic and genotypic surveillance a priority. A response to resistance needs to address factors that may have hastened the emergence and could speed the spread, including overuse of drugs and lack of access to quality treatment. New ways to use the existing treatments in the response to resistance such as multiple first-lines are currently impeded by the limited number of drugs available.
Collapse
Affiliation(s)
| | - Pedro Alonso
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
12
|
Evaluation of the usefulness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine in a context with increased resistance of Plasmodium falciparum in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo. INFECTION GENETICS AND EVOLUTION 2021; 94:105009. [PMID: 34284138 DOI: 10.1016/j.meegid.2021.105009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Increasing resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine (SP) threatens its usefulness for intermittent preventive treatment in pregnancy (IPTp-SP). The prophylactic effects of IPTp-SP on maternal malaria and adverse pregnancy outcomes were evaluated in Kingasani Hospital, Kinshasa in the Democratic Republic of Congo (DRC). METHODS Laboring women (n = 844) and respective newborns were investigated. Blood samples collected from women were tested for malaria using rapid diagnostic test (RDT), blood smears examination, and real-time PCR. The hemoglobin level was measured by HemoCue© analyzer. A PCR-RFLP method was applied for detecting N51I, C59R, and S108N mutations on dhfr along with A437G and K540E mutations on dhps in P. falciparum positive samples. Logistic regression models assessed relationships between IPTp-SP uptake and pregnancy outcomes. RESULTS P. falciparum malaria was detected at delivery in 10.8% of women and was statistically associated with fever during the pregnancy (OR = 2.9 [1.5; 6.3]; p = 0.004) and maternal anemia (OR = 3.9 [2.4; 6.3]; p < 0.001). One out of five parasites was a quintuple mutant encoding dhfr mutations 51I, 59R, and 108 N along with dhps mutations 437G and 540E. The molecular profile of parasites (i.e., 32.6% of parasites carrying dhps K540E) was suitable with continued use of SP for IPTp. IPTp-SP uptake was not associated with reduced maternal malaria, fever reported in pregnancy, or fetal deaths (p > 0.05). Conversely, three or more doses of SP were associated with reduced maternal anemia at delivery (OR = 0.4 [0.2; 0.9]; p = 0.024), shortened gestation (OR = 0.4 [0.2; 0.8]; p = 0.009), and low-birth weights (OR = 0.2 [0.1; 0.5]; p < 0.001). CONCLUSION IPTp-SP was not associated with reduced maternal malaria in our study, but evidence was found of a prophylactic effect against adverse pregnancy outcomes. To counteract further loss of clinical effects of IPTp-SP in the study population, alternative strategies able to improve its anti-malarial efficacy such as combination of SP with partner molecules should be implemented.
Collapse
|
13
|
Chaturvedi R, Chhibber-Goel J, Verma I, Gopinathan S, Parvez S, Sharma A. Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites. Int J Parasitol 2021; 51:505-525. [PMID: 33775670 DOI: 10.1016/j.ijpara.2020.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
The global spread of sulfadoxine (Sdx, S) and pyrimethamine (Pyr, P) resistance is attributed to increasing number of mutations in DHPS and DHFR enzymes encoded by malaria parasites. The association between drug resistance mutations and SP efficacy is complex. Here we provide an overview of the geographical spread of SP resistance mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) encoded dhps and dhfr genes. In addition, we have collated the mutation data and mapped it on to the three-dimensional structures of DHPS and DHFR which have become available. Data from genomic databases and 286 studies were collated to provide a comprehensive landscape of mutational data from 2005 to 2019. Our analyses show that the Pyr-resistant double mutations are widespread in Pf/PvDHFR (P. falciparum ∼61% in Asia and the Middle East, and in the Indian sub-continent; in P. vivax ∼33% globally) with triple mutations prevailing in Africa (∼66%) and South America (∼33%). For PfDHPS, triple mutations dominate South America (∼44%), Asia and the Middle East (∼34%) and the Indian sub-continent (∼27%), while single mutations are widespread in Africa (∼45%). Contrary to the status for P. falciparum, Sdx-resistant single point mutations in PvDHPS dominate globally. Alarmingly, highly resistant quintuple and sextuple mutations are rising in Africa (PfDHFR-DHPS) and Asia (Pf/PvDHFR-DHPS). Structural analyses of DHFR and DHPS proteins in complexes with substrates/drugs have revealed that resistance mutations map proximal to Sdx and Pyr binding sites. Thus new studies can focus on discovery of novel inhibitors that target the non-substrate binding grooves in these two validated malaria parasite drug targets.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ishika Verma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sreehari Gopinathan
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; National Institute of Malaria Research, Dwarka, New Delhi, India.
| |
Collapse
|
14
|
Zhao D, Zhang H, Ji P, Li S, Yang C, Liu Y, Qian D, Deng Y, Wang H, Lu D, Zhou R, Zhao Y. Surveillance of Antimalarial Drug-Resistance Genes in Imported Plasmodium falciparum Isolates From Nigeria in Henan, China, 2012-2019. Front Cell Infect Microbiol 2021; 11:644576. [PMID: 33968801 PMCID: PMC8102827 DOI: 10.3389/fcimb.2021.644576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Malaria remains a major public health issue in Nigeria, and Nigeria is one of the main sources of imported malaria in China. Antimalarial drug resistance is a significant obstacle to the control and prevention of malaria globally. The molecular markers associated with antimalarial drug resistance can provide early warnings about the emergence of resistance. The prevalence of antimalarial drug resistant genes and mutants, including PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, was evaluated among the imported Plasmodium falciparum isolates from Nigeria in Henan, China, from 2012 to 2019. Among the 167 imported P. falciparum isolates, the wild-type frequency of PfK13, Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps was 98.7, 63.9, 34.8, 3.1, and 3.1%, respectively. The mutation of PfK13 was rare, with just two nonsynonymous (S693F and Q613H) and two synonymous mutations (C469C and G496G) identified from four isolates. The prevalence of Pfcrt mutation at codon 74–76 decreased year-by-year, while the prevalence of pfmdr1 86Y also decreased significantly with time. The prevalence of Pfdhfr and Pfdhps mutants was high. Combined mutations of Pfdhfr and Pfdhps had a high prevalence of the quadruple mutant I51R59N108-G437 (39.0%), followed by the octal mutant I51R59N108-V431A436G437G581S613 (17.0%). These molecular findings update the known data on antimalarial drug-resistance genes and provide supplemental information for Nigeria.
Collapse
Affiliation(s)
- Dongyang Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hongwei Zhang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Penghui Ji
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Suhua Li
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Chengyun Yang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ying Liu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Dan Qian
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yan Deng
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Hao Wang
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Deling Lu
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Ruimin Zhou
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| | - Yuling Zhao
- Department of Parasite Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Henan Key Laboratory of Infectious Disease Microbiology, Zhengzhou, China
| |
Collapse
|
15
|
Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, Habimana RM, Rucogoza A, Moriarty LF, Sandford R, Piercefield E, Goldman I, Ezema B, Talundzic E, Pacheco MA, Escalante AA, Ngamije D, Mangala JLN, Kabera M, Munguti K, Murindahabi M, Brieger W, Musanabaganwa C, Mutesa L, Udhayakumar V, Mbituyumuremyi A, Halsey ES, Lucchi NW. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1120-1128. [PMID: 33864801 DOI: 10.1016/s1473-3099(21)00142-0] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Partial artemisinin resistance is suspected if delayed parasite clearance (ie, persistence of parasitaemia on day 3 after treatment initiation) is observed. Validated markers of artemisinin partial resistance in southeast Asia, Plasmodium falciparum kelch13 (Pfkelch13) R561H and P574L, have been reported in Rwanda but no association with parasite clearance has been observed. We aimed to establish the efficacy of artemether-lumefantrine and genetic characterisation of Pfkelch13 alleles and their association with treatment outcomes. METHODS This open-label, single-arm, multicentre, therapeutic efficacy study was done in 2018 in three Rwandan sites: Masaka, Rukara, and Bugarama. Children aged 6-59 months with P falciparum monoinfection and fever were eligible and treated with a 3-day course of artemether-lumefantrine. Treatment response was monitored for 28 days using weekly microscopy screenings of blood samples for P falciparum. Mutations in Pfkelch13 and P falciparum multidrug resistance-1 (Pfmdr1) genes were characterised in parasites collected from enrolled participants. Analysis of flanking microsatellites surrounding Pfkelch13 was done to define the origins of the R561H mutations. The primary endpoint was PCR-corrected parasitological cure on day 28, as per WHO protocol. FINDINGS 228 participants were enrolled and 224 (98·2%) reached the study endpoint. PCR-corrected efficacies were 97·0% (95% CI 88-100) in Masaka, 93·8% (85-98) in Rukara, and 97·2% (91-100) in Bugarama. Pfkelch13 R561H mutations were present in 28 (13%) of 218 pre-treatment samples and P574L mutations were present in two (1%) pre-treatment samples. 217 (90%) of the 240 Pfmdr1 haplotypes observed in the pretreatment samples, had either the NFD (N86Y, Y184F, D1246Y) or NYD haplotype. Eight (16%) of 51 participants in Masaka and 12 (15%) of 82 participants in Rukara were microscopically positive 3 days after treatment initiation, which was associated with pre-treatment presence of Pfkelch13 R561H in Masaka (p=0·0005). Genetic analysis of Pfkelch13 R561H mutations suggest their common ancestry and local origin in Rwanda. INTERPRETATION We confirm evidence of emerging artemisinin partial resistance in Rwanda. Although artemether-lumefantrine remains efficacious, vigilance for decreasing efficacy, further characterisation of artemisinin partial resistance, and evaluation of additional antimalarials in Rwanda should be considered. FUNDING The US President's Malaria Initiative. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Noella Umulisa
- Maternal and Child Survival Program, Jhpiego, Kigali, Rwanda; PMI Impact Malaria, Kigali, Rwanda
| | - Meera Venkatesan
- US President's Malaria Initiative, US Agency for International Development, Washington, DC, USA
| | - Samaly S Svigel
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Zhiyong Zhou
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | - Rafiki M Habimana
- National Reference Laboratory, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Anicet Rucogoza
- National Reference Laboratory, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Leah F Moriarty
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States; US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Emily Piercefield
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Kigali, Rwanda
| | - Ira Goldman
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Bryan Ezema
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Eldin Talundzic
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - M Andreína Pacheco
- Biology Department, Institute of Genomics and Evolutionary Medicine, Temple University Philadelphia, PA, USA
| | - Ananias A Escalante
- Biology Department, Institute of Genomics and Evolutionary Medicine, Temple University Philadelphia, PA, USA
| | | | - Jean-Louis N Mangala
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Michee Kabera
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Kaendi Munguti
- US President's Malaria Initiative, US Agency for International Development, Kigali, Rwanda
| | - Monique Murindahabi
- Roll Back Malaria, West and Central Africa National Malaria Control Programme, Bobo-Dioulasso, Burkina Faso
| | - William Brieger
- Bloomberg School of Public Health, Department of International Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Leon Mutesa
- Centre for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | | | | | - Eric S Halsey
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States; US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi W Lucchi
- Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, United States; US President's Malaria Initiative, US Centers for Disease Control and Prevention, Kigali, Rwanda.
| |
Collapse
|
16
|
Pacheco MA, Schneider KA, Cheng Q, Munde EO, Ndege C, Onyango C, Raballah E, Anyona SB, Ouma C, Perkins DJ, Escalante AA. Changes in the frequencies of Plasmodium falciparum dhps and dhfr drug-resistant mutations in children from Western Kenya from 2005 to 2018: the rise of Pfdhps S436H. Malar J 2020; 19:378. [PMID: 33092587 PMCID: PMC7583259 DOI: 10.1186/s12936-020-03454-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/18/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Sulfadoxine-pyrimethamine (SP) is the only anti-malarial drug formulation approved for intermittent preventive treatment in pregnancy (IPTp). However, mutations in the Plasmodium falciparum dhfr (Pfdhfr) and dhps (Pfdhps) genes confer resistance to pyrimethamine and sulfadoxine, respectively. Here, the frequencies of SP resistance-associated mutations from 2005 to 2018 were compared in samples from Kenyan children with malaria residing in a holoendemic transmission region. METHODS Partial sequences of the Pfdhfr and Pfdhps genes were amplified and sequenced from samples collected in 2005 (n = 81), 2010 (n = 95), 2017 (n = 43), and 2018 (n = 55). The frequency of known mutations conferring resistance to pyrimethamine and sulfadoxine were estimated and compared. Since artemisinin-based combination therapy (ACT) is the current first-line treatment for malaria, the presence of mutations in the propeller domain of P. falciparum kelch13 gene (Pfk13) linked to ACT-delayed parasite clearance was studied in the 2017/18 samples. RESULTS Among other changes, the point mutation of Pfdhps S436H increased in frequency from undetectable in 2005 to 28% in 2017/18. Triple Pfdhfr mutant allele (CIRNI) increased in frequency from 84% in 2005 to 95% in 2017/18, while the frequency of Pfdhfr double mutant alleles declined (allele CICNI from 29% in 2005 to 6% in 2017/18, and CNRNI from 9% in 2005 to undetectable in 2010 and 2017/18). Thus, a multilocus Pfdhfr/Pfdhps genotype with six mutations (HGEAA/CIRNI), including Pfdhps S436H, increased in frequency from 2010 to 2017/18. Although none of the mutations associated with ACT-delayed parasite clearance was observed, the Pfk13 mutation A578S, the most widespread Pfk13 SNP found in Africa, was detected in low frequency (2.04%). CONCLUSIONS There were changes in SP resistance mutant allele frequencies, including an increase in the Pfdhps S436H. Although these patterns seem consistent with directional selection due to drug pressure, there is a lack of information to determine the actual cause of such changes. These results suggest incorporating molecular surveillance of Pfdhfr/Pfdhps mutations in the context of SP efficacy studies for intermittent preventive treatment in pregnancy (IPTp).
Collapse
Affiliation(s)
- M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - Kristan A Schneider
- Department of Applied Computer and Biosciences, University of Applied Sciences Mittweida, Technikumplatz, Mittweida, Germany
| | - Qiuying Cheng
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Elly O Munde
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Clinical Medicine, School of Health Sciences, Kirinyaga University, Kerugoya, Kenya
| | - Caroline Ndege
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Clinton Onyango
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Samuel B Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Douglas J Perkins
- Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico-Kenya Global Health Programs, Kisumu, Siaya, Kenya.
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Pathak A, Mårtensson A, Gawariker S, Sharma A, Diwan V, Purohit M, Ursing J. Stable high frequencies of sulfadoxine-pyrimethamine resistance associated mutations and absence of K13 mutations in Plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine-pyrimethamine in Ujjain, Madhya Pradesh, India. Malar J 2020; 19:290. [PMID: 32795288 PMCID: PMC7427725 DOI: 10.1186/s12936-020-03274-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Artesunate plus sulfadoxine–pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015–2016 after 3–4 years of ASP use, are reported. Methods Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16–185, pfdhps 436–632 and K13 407–689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. Results Sulfadoxine–pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. Conclusion The frequency of P. falciparum with reduced susceptibility to sulfadoxine–pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.
Collapse
Affiliation(s)
- Ashish Pathak
- Department of Pediatrics, R D Gardi Medical College, Surasa, 456010, Ujjain, India.,Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Sudhir Gawariker
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Ashish Sharma
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Vishal Diwan
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Public Health & Environment in R D Gardi Medical College, Ujjain, India
| | - Manju Purohit
- Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.,Department of Pathology, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Johan Ursing
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden. .,Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Escobar DF, Lucchi NW, Abdallah R, Valenzuela MT, Udhayakumar V, Jercic MI, Chenet SM. Molecular and epidemiological characterization of imported malaria cases in Chile. Malar J 2020; 19:289. [PMID: 32792011 PMCID: PMC7427082 DOI: 10.1186/s12936-020-03353-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Chile is one of the South American countries certified as malaria-free since 1945. However, the recent increase of imported malaria cases and the presence of the vector Anopheles pseudopunctipennis in previously endemic areas in Chile require an active malaria surveillance programme. Methods Specimens from 268 suspected malaria cases—all imported—collected between 2015 and 2018 at the Public Health Institute of Chile (ISP), were diagnosed by microscopy and positive cases were included for epidemiological analysis. A photo-induced electron transfer fluorogenic primer real-time PCR (PET-PCR) was used to confirm the presence of malaria parasites in available blood samples. Sanger sequencing of drug resistance molecular markers (pfk13, pfcrt and pfmdr1) and microsatellite (MS) analysis were performed in confirmed Plasmodium falciparum samples and results were related to origin of infection. Results Out of the 268 suspected cases, 65 were Plasmodium spp. positive by microscopy. A total of 63% of the malaria patients were male and 37% were female; 43/65 of the patients acquired infections in South American endemic countries. Species confirmation of available blood samples by PET-PCR revealed that 15 samples were positive for P. falciparum, 27 for Plasmodium vivax and 4 were mixed infections. The P. falciparum samples sequenced contained four mutant pfcrt genotypes (CVMNT, CVMET, CVIET and SVMNT) and three mutant pfmdr1 genotypes (Y184F/S1034C/N1042D/D1246Y, Y184F/N1042D/D1246Y and Y184F). MS analysis confirmed that all P. falciparum samples presented different haplotypes according to the suspected country of origin. Four patients with P. vivax infection returned to the health facilities due to relapses. Conclusion The timely detection of polymorphisms associated with drug resistance will contribute to understanding if current drug policies in the country are appropriate for treatment of imported malaria cases and provide information about the most frequent resistant genotypes entering Chile.
Collapse
Affiliation(s)
- Daniel F Escobar
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rispah Abdallah
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - María Isabel Jercic
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile
| | - Stella M Chenet
- Sección de Parasitología, Instituto de Salud Pública de Chile, Santiago, Región Metropolitana, Chile. .,Instituto de Investigación en Ganadería y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru. .,Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas, Peru.
| |
Collapse
|
19
|
Chugh A, Kumar A, Verma A, Kumar S, Kumar P. A review of antimalarial activity of two or three nitrogen atoms containing heterocyclic compounds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02604-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Brashear AM, Fan Q, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Barry A, Cui L. Population genomics identifies a distinct Plasmodium vivax population on the China-Myanmar border of Southeast Asia. PLoS Negl Trop Dis 2020; 14:e0008506. [PMID: 32745103 PMCID: PMC7425983 DOI: 10.1371/journal.pntd.0008506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax has become the predominant malaria parasite and a major challenge for malaria elimination in the Greater Mekong Subregion (GMS). Yet, our knowledge about the evolution of P. vivax populations in the GMS is fragmental. We performed whole genome sequencing on 23 P. vivax samples from the China-Myanmar border (CMB) and used 21 high-coverage samples to compare to over 200 samples from the rest of the GMS. Using genome-wide single nucleotide polymorphisms (SNPs), we analyzed population differentiation, genetic structure, migration and potential selection using an array of methods. The CMB parasites displayed a higher proportion of monoclonal infections, and 52% shared over 90% of their genomes in identity-by-descent segments with at least one other sample from the CMB, suggesting preferential expansion of certain parasite strains in this region, likely resulting from the P. vivax outbreaks occurring during this study period. Principal component, admixture, fixation index and phylogenetic analyses all identified that parasites from the CMB were genetically distinct from parasites from eastern parts of the GMS (Cambodia, Laos, Vietnam, and Thailand), whereas the eastern GMS parasite populations were largely undifferentiated. Such a genetic differentiation pattern of the P. vivax populations from the GMS parasite was largely explainable through geographic distance. Using the genome-wide SNPs, we narrowed down to a set of 36 SNPs for differentiating parasites from different areas of the GMS. Genome-wide scans to determine selection in the genome with two statistical methods identified genes potentially under drug selection, including genes associated with antifolate resistance and genes linked to chloroquine resistance in Plasmodium falciparum.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Qi Fan
- Dalian Institute of Technology, Dalian, Liaoning Province, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zenglei Wang
- MHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Alyssa Barry
- Infection Systems Epidemiology, School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
21
|
Quan H, Igbasi U, Oyibo W, Omilabu S, Chen SB, Shen HM, Okolie C, Chen JH, Zhou XN. High multiple mutations of Plasmodium falciparum-resistant genotypes to sulphadoxine-pyrimethamine in Lagos, Nigeria. Infect Dis Poverty 2020; 9:91. [PMID: 32653033 PMCID: PMC7353807 DOI: 10.1186/s40249-020-00712-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Plasmodium falciparum-resistance to sulphadoxine-pyrimethamine (SP) has been largely reported among pregnant women. However, the profile of resistance markers to SP dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) in the general population are varied and not frequently monitored. Currently, SP is used as partner drug for artemisinin combination therapy (SP-artesunate) in some sub-Saharan African countries or as a prophylactic drug in intermittent preventive treatment of malaria during pregnancy and infants and in seasonal malaria chemoprevention (SMC). Profiling of P. falciparum-resistant genotypes to SP is dynamic and critical in providing data that would be useful for malaria control programmes. This study assessed the profile of dhfr and dhps genes genotypes among individuals with malaria in Lagos, Nigeria. METHODS Molecular markers of SP resistance were identified by nested PCR and sequenced among malaria positive dried blood spots (DBS) that were collected from individuals attending health facilities from January 2013 to February 2014 and during community surveys from October 2010 to September 2011 across different Local Government Areas of Lagos State, Nigeria. RESULTS A total of 242 and 167 samples were sequenced for dhfr and dhps, respectively. Sequence analysis of dhfr showed that 95.5% (231/242), 96.3% (233/242) and 96.7% (234/242) of the samples had N51I, C59R and S108N mutant alleles, respectively. The prevalence of dhps mutation at codons A437G, A613S, S436A, A581G, I431V and K540E were 95.8% (160/167), 41.9% (70/167), 41.3% (69/167), 31.1% (52/167), 25.1% (42/167), and 1.2% (2/167) respectively. The prevalence of triple mutations (CIRNI) in dhfr was 93.8% and 44.3% for the single dhps haplotype mutation (SGKAA). Partial SP-resistance due to quadruple dhfr-dhps haplotype mutations (CIRNI-SGKAA) and octuple haplotype mutations (CIRNI-VAGKGS) with rate of 42.6% and 22.0%, respectively has been reported. CONCLUSIONS There was increased prevalence in dhfr triple haplotype mutations when compared with previous reports in the same environment but aligned with high prevalence in other locations in Nigeria and other countries in Africa. Also, high prevalence of dhfr and dhps mutant alleles occurred in the study areas in Lagos, Nigeria five to eight years after the introduction of artemisinin combination therapy underscores the need for continuous monitoring.
Collapse
Affiliation(s)
- Hong Quan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 People’s Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention⁃Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, 200025 People’s Republic of China
| | - Uche Igbasi
- Center for Infectious Diseases Research, Microbiology Department, Nigerian Institute of Medical Research, 6 Edmund Crescent, Yaba, Lagos, Nigeria
| | - Wellington Oyibo
- ANDI Center of Excellence for Malaria Diagnosis, Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Sunday Omilabu
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 People’s Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention⁃Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, 200025 People’s Republic of China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 People’s Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention⁃Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, 200025 People’s Republic of China
| | - Chukwuma Okolie
- Department of Surveying and Geoinformatics, Faculty of Engineering, University of Lagos, Lagos, Nigeria
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 People’s Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention⁃Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, 200025 People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Center for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 People’s Republic of China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention⁃Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
22
|
Olivera MJ, Guerra AP, Cortes LJ, Horth RZ, Padilla J, Novoa J, Ade MDLP, Ljolje D, Lucchi NW, Marquiño W, Renteria M, Yurgaky W, Macedo de Oliveira A. Artemether-Lumefantrine Efficacy for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Choco, Colombia after 8 Years as First-Line Treatment. Am J Trop Med Hyg 2020; 102:1056-1063. [PMID: 32100686 DOI: 10.4269/ajtmh.19-0954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemether-lumefantrine (AL) is the first-line treatment for uncomplicated Plasmodium falciparum infection in Colombia. To assess AL efficacy for uncomplicated falciparum malaria in Quibdo, Choco, Colombia, we conducted a 28-day therapeutic efficacy study (TES) following the WHO guidelines. From July 2018 to February 2019, febrile patients aged 5-65 years with microscopy-confirmed P. falciparum mono-infection and asexual parasite density of 250-100,000 parasites/µL were enrolled and treated with a supervised 3-day course of AL. The primary endpoint was adequate clinical and parasitological response (ACPR) on day 28. We attempted to use polymerase chain reaction (PCR) genotyping to differentiate reinfection and recrudescence, and conducted genetic testing for antimalarial resistance-associated genes. Eighty-eight patients consented and were enrolled; four were lost to follow-up or missed treatment doses. Therefore, 84 (95.5%) participants reached a valid endpoint: treatment failure or ACPR. No patient remained microscopy positive for malaria on day 3, evidence of delayed parasite clearance and artemisinin resistance. One patient had recurrent infection (12 parasites/µL) on day 28. Uncorrected ACPR rate was 98.8% (83/84) (95% CI: 93.5-100%). The recurrent infection sample did not amplify during molecular testing, giving a PCR-corrected ACPR of 100% (83/83) (95% CI: 95.7-100%). No P. falciparum kelch 13 polymorphisms associated with artemisinin resistance were identified. Our results support high AL efficacy for falciparum malaria in Choco. Because of the time required to conduct TESs in low-endemic settings, it is important to consider complementary alternatives to monitor antimalarial efficacy and resistance.
Collapse
Affiliation(s)
- Mario J Olivera
- Grupo de Parasitología, Instituto Nacional de Salud, Bogota, Colombia
| | | | | | - Roberta Z Horth
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Julio Padilla
- Ministerio de Salud y Protección Social, Bogota, Colombia
| | | | - María de la Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan-American Health Organization, Washington, District of Columbia
| | - Dragan Ljolje
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Martha Renteria
- Laboratorio Departamental de Salud Pública de Choco, Quibdo, Colombia
| | | | - Alexandre Macedo de Oliveira
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
23
|
Mathieu LC, Cox H, Early AM, Mok S, Lazrek Y, Paquet JC, Ade MP, Lucchi NW, Grant Q, Udhayakumar V, Alexandre JS, Demar M, Ringwald P, Neafsey DE, Fidock DA, Musset L. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife 2020; 9:51015. [PMID: 32394893 PMCID: PMC7217694 DOI: 10.7554/elife.51015] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016-2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.
Collapse
Affiliation(s)
- Luana C Mathieu
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana.,Ecole Doctorale n°587, Diversités, Santé, et Développement en Amazonie, Université de Guyane, Cayenne, French Guiana
| | - Horace Cox
- Ministry of Public Health, Georgetown, Guyana
| | - Angela M Early
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Yassamine Lazrek
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Jeanne-Celeste Paquet
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Maria-Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization/World Health Organization, Washington, United States
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, United States
| | - Quacy Grant
- Ministry of Public Health, Georgetown, Guyana
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, United States
| | | | - Magalie Demar
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Ecosystèmes Amazoniens et Pathologie Tropicale (EPAT), EA3593, Université de Guyane, Cayenne, French Guiana
| | - Pascal Ringwald
- Global Malaria Program, World Health Organization, Geneva, Switzerland
| | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Lise Musset
- Laboratoire de parasitologie, Centre Nationale de Référence du Paludisme, World Health Organization Collaborating Center for surveillance of antimalarial drug resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
24
|
Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day NPJ, Sudathip P, Prempree P, Dondorp AM, Imwong M. Molecular characterization of Plasmodium falciparum antifolate resistance markers in Thailand between 2008 and 2016. Malar J 2020; 19:107. [PMID: 32127009 PMCID: PMC7055081 DOI: 10.1186/s12936-020-03176-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. METHODS Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. RESULTS Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. CONCLUSIONS Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.
Collapse
Affiliation(s)
- Rungniran Sugaram
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vivek Bhakta Mathema
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Preecha Prempree
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Arjen M Dondorp
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd., Bangkok, 10400, Thailand.
| |
Collapse
|
25
|
Sharma M, Prasher P. An epigrammatic status of the ' azole'-based antimalarial drugs. RSC Med Chem 2020; 11:184-211. [PMID: 33479627 PMCID: PMC7536834 DOI: 10.1039/c9md00479c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/26/2019] [Indexed: 11/21/2022] Open
Abstract
The development of multidrug resistance in the malarial parasite has sabotaged majority of the eradication efforts by restraining the inhibition profile of first line as well as second line antimalarial drugs, thus necessitating the development of novel pharmaceutics constructed on appropriate scaffolds with superior potency against the drug-resistant and drug-susceptible Plasmodium parasite. Over the past decades, the infectious malarial parasite has developed resistance against most of the contemporary therapeutics, thus necessitating the rational development of novel approaches principally focused on MDR malaria. This review presents an epigrammatic collation of the epidemiology and the contemporary antimalarial therapeutics based on the 'azole' motif.
Collapse
Affiliation(s)
- Mousmee Sharma
- Department of Chemistry , Uttaranchal University , Dehradun 248007 , India
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| | - Parteek Prasher
- Department of Chemistry , University of Petroleum & Energy Studies , Dehradun 248007 , India . ;
- UGC Sponsored Centre for Advanced Studies , Department of Chemistry , Guru Nanak Dev University , Amritsar 143005 , India
| |
Collapse
|
26
|
Deutsch-Feldman M, Aydemir O, Carrel M, Brazeau NF, Bhatt S, Bailey JA, Kashamuka M, Tshefu AK, Taylor SM, Juliano JJ, Meshnick SR, Verity R. The changing landscape of Plasmodium falciparum drug resistance in the Democratic Republic of Congo. BMC Infect Dis 2019; 19:872. [PMID: 31640574 PMCID: PMC6805465 DOI: 10.1186/s12879-019-4523-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Drug resistant malaria is a growing concern in the Democratic Republic of the Congo (DRC), where previous studies indicate that parasites resistant to sulfadoxine/pyrimethamine or chloroquine are spatially clustered. This study explores longitudinal changes in spatial patterns to understand how resistant malaria may be spreading within the DRC, using samples from nation-wide population-representative surveys. METHODS We selected 552 children with PCR-detectable Plasmodium falciparum infection and identified known variants in the pfdhps and pfcrt genes associated with resistance. We compared the proportion of mutant parasites in 2013 to those previously reported from adults in 2007, and identified risk factors for carrying a resistant allele using multivariate mixed-effects modeling. Finally, we fit a spatial-temporal model to the observed data, providing smooth allele frequency estimates over space and time. RESULTS The proportion of co-occurring pfdhps K540E/A581G mutations increased by 16% between 2007 and 2013. The spatial-temporal model suggests that the spatial range of the pfdhps double mutants expanded over time, while the prevalence and range of pfcrt mutations remained steady. CONCLUSIONS This study uses population-representative samples to describe the changing landscape of SP resistance within the DRC, and the persistence of chloroquine resistance. Vigilant molecular surveillance is critical for controlling the spread of resistance.
Collapse
Affiliation(s)
- Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Margaret Carrel
- Department of Geographical & Sustainability Sciences, University of Iowa, Iowa City, IA, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Samir Bhatt
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Melchior Kashamuka
- Ecole de Santé Publique, , Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Antoinette K Tshefu
- Ecole de Santé Publique, , Faculté de Médecine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA.,Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
27
|
Zhao Y, Liu Z, Soe MT, Wang L, Soe TN, Wei H, Than A, Aung PL, Li Y, Zhang X, Hu Y, Wei H, Zhang Y, Burgess J, Siddiqui FA, Menezes L, Wang Q, Kyaw MP, Cao Y, Cui L. Genetic Variations Associated with Drug Resistance Markers in Asymptomatic Plasmodium falciparum Infections in Myanmar. Genes (Basel) 2019; 10:genes10090692. [PMID: 31505774 PMCID: PMC6770986 DOI: 10.3390/genes10090692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of drug resistance is a problem hindering malaria elimination in Southeast Asia. In this study, genetic variations in drug resistance markers of Plasmodium falciparum were determined in parasites from asymptomatic populations located in three geographically dispersed townships of Myanmar by PCR and sequencing. Mutations in dihydrofolate reductase (pfdhfr), dihydropteroate synthase (pfdhps), chloroquine resistance transporter (pfcrt), multidrug resistance protein 1 (pfmdr1), multidrug resistance-associated protein 1 (pfmrp1), and Kelch protein 13 (k13) were present in 92.3%, 97.6%, 84.0%, 98.8%, and 68.3% of the parasites, respectively. The pfcrt K76T, pfmdr1 N86Y, pfmdr1 I185K, and pfmrp1 I876V mutations were present in 82.7%, 2.5%, 87.5%, and 59.8% isolates, respectively. The most prevalent haplotypes for pfdhfr, pfdhps, pfcrt and pfmdr1 were 51I/59R/108N/164L, 436A/437G/540E/581A, 74I/75E/76T/220S/271E/326N/356T/371I, and 86N/130E/184Y/185K/1225V, respectively. In addition, 57 isolates had three different point mutations (K191T, F446I, and P574L) and three types of N-terminal insertions (N, NN, NNN) in the k13 gene. In total, 43 distinct haplotypes potentially associated with multidrug resistance were identified. These findings demonstrate a high prevalence of multidrug-resistant P. falciparum in asymptomatic infections from diverse townships in Myanmar, emphasizing the importance of targeting asymptomatic infections to prevent the spread of drug-resistant P.falciparum.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Ziling Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Than Naing Soe
- Department of Public Health, Ministry of Health and Sports, Nay Pyi Taw 15011, Myanmar.
| | - Huanping Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Aye Than
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Pyae Linn Aung
- Myanmar Health Network Organization, Yangon 11211, Myanmar.
| | - Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Yangminghui Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Jessica Burgess
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Faiza A Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | | | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Plasmodium Genomics and Genetics: New Insights into Malaria Pathogenesis, Drug Resistance, Epidemiology, and Evolution. Clin Microbiol Rev 2019; 32:32/4/e00019-19. [PMID: 31366610 DOI: 10.1128/cmr.00019-19] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protozoan Plasmodium parasites are the causative agents of malaria, a deadly disease that continues to afflict hundreds of millions of people every year. Infections with malaria parasites can be asymptomatic, with mild or severe symptoms, or fatal, depending on many factors such as parasite virulence and host immune status. Malaria can be treated with various drugs, with artemisinin-based combination therapies (ACTs) being the first-line choice. Recent advances in genetics and genomics of malaria parasites have contributed greatly to our understanding of parasite population dynamics, transmission, drug responses, and pathogenesis. However, knowledge gaps in parasite biology and host-parasite interactions still remain. Parasites resistant to multiple antimalarial drugs have emerged, while advanced clinical trials have shown partial efficacy for one available vaccine. Here we discuss genetic and genomic studies of Plasmodium biology, host-parasite interactions, population structures, mosquito infectivity, antigenic variation, and targets for treatment and immunization. Knowledge from these studies will advance our understanding of malaria pathogenesis, epidemiology, and evolution and will support work to discover and develop new medicines and vaccines.
Collapse
|
29
|
Orwa TO, Mbogo RW, Luboobi LS. Multiple-Strain Malaria Infection and Its Impacts on Plasmodium falciparum Resistance to Antimalarial Therapy: A Mathematical Modelling Perspective. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:9783986. [PMID: 31341510 PMCID: PMC6594251 DOI: 10.1155/2019/9783986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/15/2019] [Indexed: 11/18/2022]
Abstract
The emergence of parasite resistance to antimalarial drugs has contributed significantly to global human mortality and morbidity due to malaria infection. The impacts of multiple-strain malarial parasite infection have further generated a lot of scientific interest. In this paper, we demonstrate, using the epidemiological model, the effects of parasite resistance and competition between the strains on the dynamics and control of Plasmodium falciparum malaria. The analysed model has a trivial equilibrium point which is locally asymptotically stable when the parasite's effective reproduction number is less than unity. Using contour plots, we observed that the efficacy of antimalarial drugs used, the rate of development of resistance, and the rate of infection by merozoites are the most important parameters in the multiple-strain P. falciparum infection and control model. Although the drug-resistant strain is shown to be less fit, the presence of both strains in the human host has a huge impact on the cost and success of antimalarial treatment. To reduce the emergence of resistant strains, it is vital that only effective antimalarial drugs are administered to patients in hospitals, especially in malaria-endemic regions. Our results emphasize the call for regular and strict surveillance on the use and distribution of antimalarial drugs in health facilities in malaria-endemic countries.
Collapse
Affiliation(s)
- Titus Okello Orwa
- Institute of Mathematical Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | - Rachel Waema Mbogo
- Institute of Mathematical Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | | |
Collapse
|
30
|
Origin of the New World Plasmodium vivax: Facts and New Approaches. Int Microbiol 2019; 22:337-342. [PMID: 30810995 DOI: 10.1007/s10123-018-00053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023]
Abstract
Malaria is one of the most important human diseases throughout tropical and sub-tropical regions of the world. Global distribution and ample host range have contributed to the genetic diversity of the etiological agent, Plasmodium. Phylogeographical analyses demonstrated that Plasmodium falciparum and Plasmodium vivax follow an Out of Africa (OOA) expansion, having a higher genetic diversity in African populations and a low genetic diversity in South American populations. Modeling the evolutionary rate of conserved genes for both P. falciparum and P. vivax determined the approximate arrival of human malaria in South America. Bayesian computational methods suggest that P. falciparum originated in Africa and arrived in South America through multiple independent introductions by the transatlantic African slave trade; however, in South America, P. vivax could have been introduced through an alternate migratory route. Alignments of P. vivax mitogenomes have revealed low genetic variation between the South American and Southeast Asian populations suggesting introduction through either pre-Columbian human migration or post-colonization events. To confirm the findings of these phylogeographical analyses, molecular methods were used to diagnose malaria infection in archeological remains of pre-Columbian ethnic groups. Immunohistochemistry tests were used and identified P. vivax but not P. falciparum in histologically prepared tissues from pre-Columbian Peruvian mummies, whereas shotgun metagenomics sequencing of DNA isolated from pre-Columbian Caribbean coprolites revealed Plasmodium-homologous reads; current evidence suggests that only P. vivax might have been present in pre-Columbian South America.
Collapse
|
31
|
Abstract
While the precise mode of action of artemisinin (ART) derivatives remains obscure, it is nonetheless commonly accepted that ART generates reactive oxygen intermediates that contribute to cell death. Also, numerous studies confirm that point mutations in the propeller domain of K13 protein play a key role in resistance to ART derivatives. Because of its homology with the KEAP1 protein, it is thought that this protein may have a role in the polyubiquitination of proteins and that its alteration may cause resistance of young parasite stages to the drug. In this chapter, we present our current knowledge of K13-related resistance to ART and its spread in Southeast Asia and discuss its possible emergence and/or diffusion in Africa.
Collapse
|
32
|
Muiruri P, Juma DW, Ingasia LA, Chebon LJ, Opot B, Ngalah BS, Cheruiyot J, Andagalu B, Akala HM, Nyambati VCS, Ng'ang'a JK, Kamau E. Selective sweeps and genetic lineages of Plasmodium falciparum multi-drug resistance (pfmdr1) gene in Kenya. Malar J 2018; 17:398. [PMID: 30376843 PMCID: PMC6208105 DOI: 10.1186/s12936-018-2534-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.
Collapse
Affiliation(s)
- Peninah Muiruri
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Denis W Juma
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Luicer A Ingasia
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Lorna J Chebon
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Benjamin Opot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Bidii S Ngalah
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Jelagat Cheruiyot
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Ben Andagalu
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Hoseah M Akala
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya
| | - Venny C S Nyambati
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Joseph K Ng'ang'a
- Department of Biochemistry, School of Biomedical Sciences, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200, Nairobi, Kenya
| | - Edwin Kamau
- Global Emerging Infections Surveillance Program, United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute, P.O. Box 54, 40100, Kisumu, Kenya.
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA.
| |
Collapse
|
33
|
Oboh MA, Singh US, Antony HA, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Molecular epidemiology and evolution of drug-resistant genes in the malaria parasite Plasmodium falciparum in southwestern Nigeria. INFECTION GENETICS AND EVOLUTION 2018; 66:222-228. [PMID: 30316883 DOI: 10.1016/j.meegid.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022]
Abstract
Malaria is an age-old disease of human kind living in the tropical and sub-tropical regions of the globe, with Africa contributing the highest incidence of morbidity and mortality. Among many hurdles, evolution and spread of drug-resistant Plasmodium falciparum parasites constitute major challenges to malaria control and elimination. Information on molecular epidemiology and pattern of evolution of genes conferring resistance to different antimalarials are needed to track the route of the spread of resistant parasites and also to inform if the drug-resistant genes are adapted in the population following the Darwinian model of evolution. In the present study, we have followed molecular methods to detect both the known and emerging mutations in three genes (Pfcrt, Pfdhfr and Pfdhps) of P. falciparum conferring resistance to chloroquine and sulfadoxine-pyrimethamine from two different states (Edo: meso-endemic and Lagos: hypo-endemic) in southwestern Nigeria. High diversities in haplotypes and nucleotides in genes responsible for chloroquine (Pfcrt) and sulfadoxine (Pfdhps) resistance are recorded. About 96% of Pfdhfr and Pfdhps gene in both the meso- and hypo- endemic areas were mutant type, followed by 61% in Pfcrt gene. Many unique haplotypes of Pfdhps and Pfcrt were found to be segregated in these two populations. One particular mutant haplotype of Pfdhfr (AIRNI) was found to be in very high frequency in both Lagos and Edo. While the net haplotype diversity was highest in Pfdhps (0.81 in Lagos, 0.87 in Edo), followed by Pfcrt (0.69 in Lagos, 0.65 in Edo); highest number of haplotype was found in Pfdhps with 13 distinct haplotypes, followed by seven in Pfcrt and four in Pfdhfr gene. Moreover, detection of strong linkage among mutations of Pfcrt and Pfdhfr and feeble evidence for balancing selection in Pfdhps are indicative of evolutionary potential of mutation in genes responsible for drug resistance in Nigerian populations of P. falciparum.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Upasana Shyamsunder Singh
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Hiasindh Ashmi Antony
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Praveen Kumar Bharti
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Aparup Das
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
34
|
Voumbo-Matoumona DF, Kouna LC, Madamet M, Maghendji-Nzondo S, Pradines B, Lekana-Douki JB. Prevalence of Plasmodium falciparum antimalarial drug resistance genes in Southeastern Gabon from 2011 to 2014. Infect Drug Resist 2018; 11:1329-1338. [PMID: 30214253 PMCID: PMC6118251 DOI: 10.2147/idr.s160164] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE The introduction of artemisinin-based combination therapies (ACTs) in treating uncomplicated malaria and sulfadoxine-pyrimethamine (SP) as intermittent preventive treatment during pregnancy drastically decreased the burden of malarial disease around the world. However, ACTs are known to select for drug resistance markers. In Gabon, artemether-lumefantrine induced an increase in the prevalence of N86-Pfmdr1, which is associated with treatment failure. However, little data are available regarding resistance markers in Southeastern Gabon. This study aimed to evaluate the evolution of resistance haplotypes in the Pfcrt, Pfdhps, Pfdhfr, and PfK13 genes from 2011 to 2014 in Southeastern Gabon. METHODS A total of 233 Plasmodium falciparum DNA samples were collected from febrile pediatric patients in South Gabon: Franceville, an urban area; Koulamoutou, a semi-urban area; and Lastourville, a rural area. Pfcrt, Pfdhps, Pfdhfr, and the propeller domain of PfK13 were sequenced for all isolates. RESULTS The overall prevalence (3.7%-11.5%) of the wild-type haplotype Pfcrt 72-76 CVMNK was not significantly different between 2011 and 2014 in Southeast Gabon. For Pfdhfr (codons 51, 59, 108, 164), the IRNI triple-mutant haplotype was the most prevalent (>89.0%). The ICNI and NCNI mutant haplotypes and the NCSI wild-type haplotype showed a minor prevalence. There were no differences in the distributions of these haplotypes across the 4 years and the three study sites. For Pfdhps, the AAKAA and SGKAA mutant haplotypes and the SAKAA wild-type haplotype were similarly present in the three areas during the study period. The AGKAA double mutant was first observed in 2013 in Franceville and in 2014 in Koulamoutou and Lastourville. Interestingly, only the A578S mutation (0.4%) and two new A494V (0.4%) and V504A (0.9%) mutations were found in PfK13. CONCLUSION Despite the withdrawal of chloroquine, the frequency of the resistant allele 76T remained high in the south of Gabon. Moreover, a high level of resistant haplotypes against IPTp-SP was found.
Collapse
Affiliation(s)
- Dominique Fatima Voumbo-Matoumona
- Unit of Evolution, Epidemiology and Parasitic Resistances (UNEEREP), International Medical Research Center of Franceville (CIRMF), Franceville, Gabon,
- Parasitology and Entomology Unit, Department of Infectious Diseases, Biomedical Research Institute of Army, Marseille, France
- Regional Doctoral School of Central Africa in Tropical Infectiology, Franceville, Gabon
| | - Lady Charlène Kouna
- Department of Parasitology, Mycology and Tropical Medicine, University of Health Sciences, Libreville, Gabon,
| | - Marylin Madamet
- Parasitology and Entomology Unit, Department of Infectious Diseases, Biomedical Research Institute of Army, Marseille, France
- Research Unit on Infectious and Tropical Emerging Diseases, Aix Marseille University, Marseille, France
- National Malaria Reference Center, Marseille, France
| | - Sydney Maghendji-Nzondo
- Department of Parasitology, Mycology and Tropical Medicine, University of Health Sciences, Libreville, Gabon,
| | - Bruno Pradines
- Parasitology and Entomology Unit, Department of Infectious Diseases, Biomedical Research Institute of Army, Marseille, France
- Research Unit on Infectious and Tropical Emerging Diseases, Aix Marseille University, Marseille, France
- National Malaria Reference Center, Marseille, France
| | - Jean Bernard Lekana-Douki
- Unit of Evolution, Epidemiology and Parasitic Resistances (UNEEREP), International Medical Research Center of Franceville (CIRMF), Franceville, Gabon,
- Department of Parasitology, Mycology and Tropical Medicine, University of Health Sciences, Libreville, Gabon,
| |
Collapse
|
35
|
Bushman M, Antia R, Udhayakumar V, de Roode JC. Within-host competition can delay evolution of drug resistance in malaria. PLoS Biol 2018; 16:e2005712. [PMID: 30130363 PMCID: PMC6103507 DOI: 10.1371/journal.pbio.2005712] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
In the malaria parasite P. falciparum, drug resistance generally evolves first in low-transmission settings, such as Southeast Asia and South America. Resistance takes noticeably longer to appear in the high-transmission settings of sub-Saharan Africa, although it may spread rapidly thereafter. Here, we test the hypothesis that competitive suppression of drug-resistant parasites by drug-sensitive parasites may inhibit evolution of resistance in high-transmission settings, where mixed-strain infections are common. We employ a cross-scale model, which simulates within-host (infection) dynamics and between-host (transmission) dynamics of sensitive and resistant parasites for a population of humans and mosquitoes. Using this model, we examine the effects of transmission intensity, selection pressure, fitness costs of resistance, and cross-reactivity between strains on the establishment and spread of resistant parasites. We find that resistant parasites, introduced into the population at a low frequency, are more likely to go extinct in high-transmission settings, where drug-sensitive competitors and high levels of acquired immunity reduce the absolute fitness of the resistant parasites. Under strong selection from antimalarial drug use, however, resistance spreads faster in high-transmission settings than low-transmission ones. These contrasting results highlight the distinction between establishment and spread of resistance and suggest that the former but not the latter may be inhibited in high-transmission settings. Our results suggest that within-host competition is a key factor shaping the evolution of drug resistance in P. falciparum. The malaria parasite Plasmodium falciparum has evolved resistance to most antimalarial drugs, greatly complicating treatment and control of the disease. Curiously, although sub-Saharan Africa accounts for the majority of the global burden of malaria, the evolution of drug resistance in Africa has been markedly delayed compared to Asia and the Americas. One reason might be that, in a population in which the prevalence of infection is high, a newly emerged drug-resistant strain faces a high risk of extinction due to competition from drug-sensitive parasites that already “occupy” most of the host population. Using a mathematical model, we confirm that drug-resistant parasites face a much greater risk of extinction in a “high-transmission” setting like sub-Saharan Africa than in a “low-transmission” setting like Southeast Asia. However, we also find that when drug-resistant parasites manage to avoid extinction, their subsequent spread may be more rapid in high-transmission settings than in low-transmission settings, especially when selection is strong. These results offer a novel explanation for global patterns of drug resistance evolution in malaria and suggest a new dimension to consider in resistance prevention and containment efforts: namely, the intrinsic favorability of low- and high-transmission settings for establishment and spread of drug resistance.
Collapse
Affiliation(s)
- Mary Bushman
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacobus C. de Roode
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
36
|
Voumbo-Matoumona DF, Akiana J, Madamet M, Kouna LC, Lekana-Douki JB, Pradines B. High prevalence of Plasmodium falciparum antimalarial drug resistance markers in isolates from asymptomatic patients from the Republic of the Congo between 2010 and 2015. J Glob Antimicrob Resist 2018; 14:277-283. [PMID: 30121345 DOI: 10.1016/j.jgar.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study investigated the prevalence of haplotypes of the Pfdhps, Pfdhfr, Pfcrt, Pfmdr1 and PfK13 resistance markers in isolates from asymptomatic patients from the Republic of the Congo following implementation of artemisinin based-combination therapy (ACT). METHODS Peripheral blood was collected from asymptomatic children in 2010 and 2015 from Brazzaville in the south and in 2013 in the north of the Congo. Genotypes of Pfmdr1, Pfcrt, Pfdhps, Pfdhfr and PfK13 were assessed by PCR. RESULTS Children from 2010 were younger than those from 2015 (mean age 5.38 years vs. 8.67 years; P=0.003). The main Pfcrt haplotype was the wild-type CVMNK (84.85%) in 2010, whereas the mutant CVIET (61.64%) predominated in 2015 (P<0.001). In the north, 45.00% of samples were CVMNK and 10.00% were CVIET. Other samples harboured new haplotypes in the country or mixed alleles. No significant difference in Pfmdr1 haplotypes was observed in 2010 and 2015 and the main haplotypes were NYD and NFD (30.56% vs. 28.57% and 61.11% vs. 42.86% for 2010 and 2015, respectively). In the south, the Pfdhps haplotypes observed were AAKAA, AGKAA, SGKAA and SGEGA (87.50% vs. 0%, 12.50% vs. 33.33%, 0% vs. 33.33% and 0% vs. 33.33% for 2010 and 2015, respectively). For Pfdhfr, the IRNI haplotype was most prevalent (85.71% for 2010, 87.50% for 2013 and 100% for 2015). No PfK13 mutations were found. CONCLUSIONS Monitoring the efficacy of ACT and intermittent preventive treatment with sulfadoxine-pyrimethamine is necessary to ensure an epidemiological survey of asymptomatic malaria.
Collapse
Affiliation(s)
- Dominique Fatima Voumbo-Matoumona
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon; Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Ecole Doctorale Régionale d'Afrique Centrale en Infectiologie Tropicale, BP 876 Franceville, Gabon
| | - Jean Akiana
- Départements des Masters/Licences, Parcours-Types des Sciences Biologiques, Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69, Brazzaville, Congo; Direction de la Médecine Préventive et des Essais Cliniques, Laboratoire National de Santé Publique, BP 120 Brazzaville, Congo
| | - Marylin Madamet
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France
| | - Lady Charlène Kouna
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicales de Franceville, BP 769 Franceville, Gabon; Département de Parasitologie Mycologie et de Médecine Tropicale, Université des Science de la Santé, BP 4005 Libreville, Gabon
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France; Centre National de Référence du Paludisme, Marseille, France.
| |
Collapse
|
37
|
Mita T, Hombhanje F, Takahashi N, Sekihara M, Yamauchi M, Tsukahara T, Kaneko A, Endo H, Ohashi J. Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its effect on within-population genetic diversity in Papua New Guinea. Sci Rep 2018; 8:5565. [PMID: 29615786 PMCID: PMC5882878 DOI: 10.1038/s41598-018-23811-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of the human malarial parasite Plasmodium falciparum to adapt to environmental changes depends considerably on its ability to maintain within-population genetic variation. Strong selection, consequent to widespread antimalarial drug usage, occasionally elicits a rapid expansion of drug-resistant isolates, which can act as founders. To investigate whether this phenomenon induces a loss of within-population genetic variation, we performed a population genetic analysis on 302 P. falciparum cases detected during two cross-sectional surveys in 2002/2003, just after the official introduction of sulphadoxine/pyrimethamine as a first-line treatment, and again in 2010/2011, in highly endemic areas in Papua New Guinea. We found that a single-origin sulphadoxine-resistant parasite isolate rapidly increased from 0% in 2002/2003 to 54% in 2010 and 84% in 2011. However, a considerable number of pairs exhibited random associations among 10 neutral microsatellite markers located in various chromosomes, suggesting that outcrossing effectively reduced non-random associations, albeit at a low average multiplicity of infection (1.35–1.52). Within-population genetic diversity was maintained throughout the study period. This indicates that the parasites maintained within-population variation, even after a clonal expansion of drug-resistant parasites. Outcrossing played a role in the preservation of within-population genetic diversity despite low levels of multiplicity of infection.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, Nabasa Road, P.O. Box 483, Madang, Papua New Guinea
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takahiro Tsukahara
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Parasitology, Osaka City University Graduate School of Medicine, Asahi-cho 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
38
|
Updates on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:159-165. [DOI: 10.1016/j.jmii.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/30/2017] [Accepted: 06/19/2017] [Indexed: 11/17/2022]
|
39
|
Esu E, Tacoli C, Gai P, Berens-Riha N, Pritsch M, Loescher T, Meremikwu M. Prevalence of the Pfdhfr and Pfdhps mutations among asymptomatic pregnant women in Southeast Nigeria. Parasitol Res 2018; 117:801-807. [PMID: 29332155 DOI: 10.1007/s00436-018-5754-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Sulfadoxine-pyrimethamine (SP) is the recommended drug for intermittent preventive treatment of malaria in pregnancy in most of sub-Saharan Africa. Resistance to SP is related to mutations in the dhfr and dhps gene of Plasmodium falciparum. This study determined the prevalence of Pfdhfr and Pfdhps polymorphisms found in asymptomatic pregnant women attending antenatal care in Calabar, Nigeria. From October 2013 to November 2014, asymptomatic pregnant women attending antenatal care clinics were enrolled after obtaining informed consent. Malaria diagnosis testing was done using thick and thin smears. Dried blood spot filter papers were collected. Parasite DNA was extracted from the filter papers using a chelex extraction. Extraction was followed by nested PCR and restriction enzyme digestion. P. falciparum infection was detected by microscopy in 7% (32/459) participants. Twenty-eight P. falciparum isolates were successfully genotyped. In the Pfdhfr gene, the triple mutation was almost fixed; S108N mutation was (100%), N51I (93%) and C59R mutations (93%), whereas the I164L mutation was absent. The prevalence of Pfdhps S436A, A437G, A581G and A613S mutations was 82.1% (23/28), 96.4% (27/28), 71.4% (20/28) and 71.4% (20/28) respectively. The K540E mutation was absent. The prevalence of the Pfdhfr triple mutation IRNI was 92.9% (26/28). The efficacy of SP as IPTp in Southeast Nigeria may be severely threatened. The continuous monitoring of SP molecular markers of resistance is required to assess thresholds. The evaluation of alternative preventive treatment strategies and drug options for preventing malaria in pregnancy may be necessary.
Collapse
Affiliation(s)
- Ekpereonne Esu
- Center for International Health (CIH), Ludwig-Maximilians-Universität (LMU), Leopoldstraße 7, 80802, Munich, Germany. .,Department of Public Health, College of Medical Sciences, University of Calabar, Calabar, Nigeria.
| | - Costanza Tacoli
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Prabhanjan Gai
- Institute of Tropical Medicine and International Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nicole Berens-Riha
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany
| | - Thomas Loescher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany
| | - Martin Meremikwu
- Department of Paediatrics, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
40
|
Nqoro X, Tobeka N, Aderibigbe BA. Quinoline-Based Hybrid Compounds with Antimalarial Activity. Molecules 2017; 22:molecules22122268. [PMID: 29257067 PMCID: PMC6149725 DOI: 10.3390/molecules22122268] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Naki Tobeka
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Blessing A Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
41
|
Chenet SM, Silva-Flannery L, Lucchi NW, Dragan L, Dirlikov E, Mace K, Rivera-García B, Arguin PM, Udhayakumar V. Molecular Characterization of a Cluster of Imported Malaria Cases in Puerto Rico. Am J Trop Med Hyg 2017; 97:758-760. [PMID: 28749761 DOI: 10.4269/ajtmh.16-0837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Caribbean island of Hispaniola is targeted for malaria elimination. Currently, this is the only island with ongoing transmission of malaria in the Caribbean. In 2015, six patients from Puerto Rico and one from Massachusetts, who traveled to Punta Cana, Dominican Republic, were confirmed to be infected with Plasmodium falciparum. Additional molecular analysis was performed at the Centers for Disease Control and Prevention to characterize the drug-resistant alleles and Plasmodium population genetic markers. All specimens carried wildtype genotypes for chloroquine, sulfadoxine-pyrimethamine, and artemisinin resistance genetic markers. A mutation in codon 184 (Y/F) of Pfmdr-1 gene was observed in all samples and they shared an identical genetic lineage as determined by microsatellite analysis. This genetic profile was similar to one previously reported from Hispaniola suggesting that a clonal P. falciparum residual parasite population present in Punta Cana is the source population for these imported malaria cases.
Collapse
Affiliation(s)
- Stella M Chenet
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ljolje Dragan
- Atlanta Research and Education Foundation, Decatur, Georgia
| | - Emilio Dirlikov
- Office of Epidemiology and Research, Puerto Rico Department of Health, San Juan, Puerto Rico.,Epidemic Intelligence Service, Division of Scientific Education and Professional Development, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kimberly Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brenda Rivera-García
- Office of Epidemiology and Research, Puerto Rico Department of Health, San Juan, Puerto Rico
| | - Paul M Arguin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
42
|
Molecular Profile of Malaria Drug Resistance Markers of Plasmodium falciparum in Suriname. Antimicrob Agents Chemother 2017; 61:AAC.02655-16. [PMID: 28438929 DOI: 10.1128/aac.02655-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/27/2017] [Indexed: 11/20/2022] Open
Abstract
In Suriname, an artesunate monotherapy therapeutic efficacy trial was recently conducted to evaluate partial artemisinin resistance emerging in Plasmodium falciparum We genotyped the PfK13 propeller domain of P. falciparum in 40 samples as well as other mutations proposed to be associated with artemisinin-resistant mutants. We did not find any mutations previously associated with artemisinin resistance in Southeast Asia, but we found fixed resistance mutations for chloroquine (CQ) and sulfadoxine-pyrimethamine. Additionally, the PfCRT C350R mutation, associated with reversal of CQ resistance and piperaquine-selective pressure, was present in 62% of the samples. Our results from neutral microsatellite data also confirmed a high parasite gene flow in the Guiana Shield. Although recruiting participants for therapeutic efficacy studies is challenging in areas where malaria endemicity is very low due to the low number of malaria cases reported, conducting these studies along with molecular surveillance remains essential for the monitoring of artemisinin-resistant alleles and for the characterization of the population structure of P. falciparum in areas targeted for malaria elimination.
Collapse
|
43
|
Jovel IT, Björkman A, Roper C, Mårtensson A, Ursing J. Unexpected selections of Plasmodium falciparum polymorphisms in previously treatment-naïve areas after monthly presumptive administration of three different anti-malarial drugs in Liberia 1976-78. Malar J 2017; 16:113. [PMID: 28288632 PMCID: PMC5347173 DOI: 10.1186/s12936-017-1747-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background To assess the effect on malaria prevalence, village specific monthly administrations of pyrimethamine, chlorproguanil, chloroquine or placebo were given to children in four previously treatment-naïve Liberian villages, 1976–78. Plasmodium falciparum in vivo resistance developed to pyrimethamine only. Selection of molecular markers of P. falciparum resistance after 2 years of treatment are reported. Methods Blood samples were collected from 191 study children in a survey in 1978. Polymorphisms in pfcrt, pfmdr1, pfdhfr, pfdhps, pfmrp1 and pfnhe1 genes were determined using PCR-based methods. Results Pfcrt 72–76 CVIET was found in one chloroquine village sample, all remaining samples had pfcrt CVMNK. Pfmdr1 N86 prevalence was 100%. A pfmdr1 T1069ACT→ACG synonymous polymorphism was found in 30% of chloroquine village samples and 3% of other samples (P = 0.008). Variations in pfnhe1 block I were found in all except the chloroquine treated village (P < 0.001). Resistance associated pfdhfr 108N prevalence was 2% in the pyrimethamine village compared to 45–65% elsewhere, including the placebo village (P = 0.001). Conclusions Chloroquine treatment possibly resulted in the development of pfcrt 72–76 CVIET. Selection of pfmdr1 T1069ACG and a pfnhe1 block 1 genotypes indicates that chloroquine treatment exerted a selective pressure on P. falciparum. Pyrimethamine resistance associated pfdhfr 108N was present prior to the introduction of any drug. Decreased pfdhfr 108N frequency concurrent with development of pyrimethamine resistance suggests a non-pfdhfr polymorphisms mediated resistance mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1747-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irina T Jovel
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health Unit, Uppsala University, Uppsala, Sweden
| | - Johan Ursing
- Malaria Research, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
| |
Collapse
|
44
|
Guerra M, Neres R, Salgueiro P, Mendes C, Ndong-Mabale N, Berzosa P, de Sousa B, Arez AP. Plasmodium falciparum Genetic Diversity in Continental Equatorial Guinea before and after Introduction of Artemisinin-Based Combination Therapy. Antimicrob Agents Chemother 2017; 61:e02556-15. [PMID: 27795385 PMCID: PMC5192141 DOI: 10.1128/aac.02556-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Mónica Guerra
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Rita Neres
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Patrícia Salgueiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Cristina Mendes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Nicolas Ndong-Mabale
- Centro de Referencia para el Control de Endemias, Instituto de Salud Carlos III, Bata, Equatorial Guinea
| | - Pedro Berzosa
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Bruno de Sousa
- Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
45
|
Ravenhall M, Benavente ED, Mipando M, Jensen ATR, Sutherland CJ, Roper C, Sepúlveda N, Kwiatkowski DP, Montgomery J, Phiri KS, Terlouw A, Craig A, Campino S, Ocholla H, Clark TG. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi. Malar J 2016; 15:575. [PMID: 27899115 PMCID: PMC5129638 DOI: 10.1186/s12936-016-1634-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting the genomic variation of the Plasmodium falciparum population. METHODS Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries assessed, as well as genetic regions under positive selection determined. RESULTS Positive selection signals were identified within dhps, dhfr and gch1, all components of the parasite folate pathway associated with SP resistance. Sitting predominantly on a dhfr triple mutation background, a novel copy number increase of ~twofold was identified in the gch1 promoter. This copy number was almost fixed (96.8% frequency) in Malawi samples, but found at less than 45% frequency in other African populations, and distinct from a whole gene duplication previously reported in Southeast Asian parasites. CONCLUSIONS SP resistance selection pressures have been retained in the Malawian population, with known resistance dhfr mutations at fixation, complemented by a novel gch1 promoter duplication. The effects of the duplication on the fitness costs of SP variants and resistance need to be elucidated.
Collapse
Affiliation(s)
- Matt Ravenhall
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja T. R. Jensen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Colin J. Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Cally Roper
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Nuno Sepúlveda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | | | - Jacqui Montgomery
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Kamija S. Phiri
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Anja Terlouw
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Das MK, Chetry S, Kalita MC, Dutta P. Evidence of triple mutant Pfdhps IS GNGA haplotype in Plasmodium falciparum isolates from North-east India: An analysis of sulfadoxine resistant haplotype selection. GENOMICS DATA 2016; 10:144-150. [PMID: 27872816 PMCID: PMC5109277 DOI: 10.1016/j.gdata.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Background North-east region of India has consistent role in the spread of multi drug resistant Plasmodium (P.) falciparum to other parts of Southeast Asia. After rapid clinical treatment failure of Artemisinin based combination therapy–Sulphadoxine/Pyrimethamine (ACT-SP) chemoprophylaxis, Artemether-Lumefantrine (ACT-AL) combination therapy was introduced in the year 2012 in this region for the treatment of uncomplicated P. falciparum malaria. In a DNA sequencing based polymorphism analysis, seven codons of P. falciparum dihydropteroate synthetase (Pfdhps) gene were screened in a total of 127 P. falciparum isolates collected from Assam, Arunachal Pradesh and Tripura of North-east India during the year 2014 and 2015 to document current sulfadoxine resistant haplotypes. Materials and methods Sequences were analyzed to rearrange both nucleotide and protein haplotypes. Molecular diversity indices were analyzed in DNA Sequence Polymorphism software (DnaSP) on the basis of Pfdhps gene sequences. Disappearance from selective neutrality was assessed based on the ratio of non-synonomous to synonomous nucleotide substitutions [dN/dS ratio]. Moreover, two-tailed Z test was performed in search of the significance for probability of rejecting null hypothesis of strict neutrality [dN = dS]. Presence of mutant P. falciparum multidrug resistance protein1 (Pfmdr1) was also checked in those isolates that were present with new Pfdhps haplotypes. Phylogenetic relationship based on Pfdhps gene was reconstructed in Molecular Evolutionary Genetics Analysis (MEGA). Results Among eight different sulfadoxine resistant haplotypes found, ISGNGA haplotype was documented in a total of five isolates from Tripura with association of a new mutant M538R allele. Sequence analysis of Pfmdr1 gene in these five isolates came to notice that not all but only one isolate was mutant at codon 86 (N86Y; YYSND) in the multidrug resistance protein. Molecular diversity based on Pfdhps haplotypes revealed that P. falciparum populations in Assam and Tripura were under balancing selection for sulfadoxine resistant haplotypes but population from Arunachal Pradesh was under positive selection with comparatively high haplotype diversity (h = 0.870). In reconstructed phylogenetic analysis, isolates having ISGNGA haplotype were grouped into two separate sub-clusters from the other isolates based on their genetic distances and diversities. Conclusion This study suggests that sulfadoxine resistant isolates are still migrating from its epicenter to the other parts of Southeast Asia and hence control and elimination of the drug resistant isolates have become impedimental. Moreover, P. falciparum populations in different areas may undergo selection of particular sulfadoxine resistant haplotypes either in the presence of drug or after its removal to maintain their plasticity.
Collapse
Affiliation(s)
- Manuj K Das
- Department of Bioengineering & Technology, Gauhati University Institute of Science and Technology (GUIST), Gauhati University, Gopinath Bordoloi Nagar, Assam 786014, India
| | - Sumi Chetry
- Division of Entomology and Filariasis, Regional Medical Research Centre (RMRC), North East Region (ICMR), Post Box No.-105, Dibrugarh, Assam 786001, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Gopinath Bordoloi Nagar, Assam 786014, India
| | - Prafulla Dutta
- Division of Entomology and Filariasis, Regional Medical Research Centre (RMRC), North East Region (ICMR), Post Box No.-105, Dibrugarh, Assam 786001, India
| |
Collapse
|
47
|
Bhagavathula AS, Elnour AA, Shehab A. Alternatives to currently used antimalarial drugs: in search of a magic bullet. Infect Dis Poverty 2016; 5:103. [PMID: 27809883 PMCID: PMC5095999 DOI: 10.1186/s40249-016-0196-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 09/20/2016] [Indexed: 01/09/2023] Open
Abstract
Malaria is a major cause of morbidity and mortality in many African countries and parts of Asia and South America. Novel approaches to combating the disease have emerged in recent years and several drug candidates are now being tested clinically. However, it is long before these novel drugs can hit the market, especially due to a scarcity of safety and efficacy data.To reduce the malaria burden, the Medicines for Malaria Venture (MMV) was established in 1999 to develop novel medicines through industry and academic partners' collaboration. However, no reviews were focused following various preclinical and clinical studies published since the MMV initiation (2000) to till date.We identify promising approaches in the global portfolio of antimalarial medicines, and highlight challenges and patient specific concerns of these novel molecules. We discuss different clinical studies focusing on the evaluation of novel drugs against malaria in different human trials over the past five years.The drugs KAE609 and DDD107498 are still being evaluated in Phase I trials and preclinical developmental studies. Both the safety and efficacy of novel compounds such as KAF156 and DSM265 need to be assessed further, especially for use in pregnant women. Synthetic non-artemisinin ozonides such as OZ277 raised concerns in terms of its insufficient efficacy against high parasitic loads. Aminoquinoline-based scaffolds such as ferroquine are promising but should be combined with good partner drugs for enhanced efficacy. AQ-13 induced electrocardiac events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase inhibitor), are available but cannot be used in children.At this stage, we are unable to identify a single magic bullet against malaria. Future studies should focus on effective single-dose molecules that can act against all stages of malaria in order to prevent transmission. Newer medicines have also raised concerns in terms of efficacy and safety. Overall, more evidence is needed to effectively reduce the current malaria burden. Treatment strategies that target the blood stage with transmission-blocking properties are needed to prevent future drug resistance.
Collapse
Affiliation(s)
- Akshaya Srikanth Bhagavathula
- Department of Clinical Pharmacy, University of Gondar-College of Medicine and Health Sciences, School of Pharmacy, Gondar, Ethiopia
| | - Asim Ahmed Elnour
- Pharmacy College, Fatima College of Health Sciences, Al Ain, Abu Dhabi United Arab Emirates
| | - Abdulla Shehab
- Department of Internal medicine, College of Medicine and Health Sciences, UAE University, Al Ain, Abu Dhabi United Arab Emirates
| |
Collapse
|
48
|
Kavishe RA, Kaaya RD, Nag S, Krogsgaard C, Notland JG, Kavishe AA, Ishengoma D, Roper C, Alifrangis M. Molecular monitoring of Plasmodium falciparum super-resistance to sulfadoxine-pyrimethamine in Tanzania. Malar J 2016; 15:335. [PMID: 27339129 PMCID: PMC4918075 DOI: 10.1186/s12936-016-1387-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Sulfadoxine-pyrimethamine (SP) is recommended for prophylactic treatment of malaria in pregnancy while artemisinin combination therapy is the recommended first-line anti-malarial treatment. Selection of SP resistance is ongoing since SP is readily available in health facilities and in private drug shops in sub-Saharan Africa. This study reports on the prevalence and distribution of Pfdhps mutations A540E and A581G in Tanzania. When found together, these mutations confer high-level SP resistance (sometimes referred to as 'super-resistance'), which is associated with loss in protective efficacy of SP-IPTp. METHODS DNA samples were extracted from malaria-positive blood samples on filter paper, used malaria rapid diagnostic test strips and whole blood collected from eight sites in seven administrative regions of Tanzania. PCR-RFLP and SSOP-ELISA techniques were used to genotype the A540E and A581G Pfdhps. Data were analysed using SPSS version 18 while Chi square and/or Fischer Exact tests were used to compare prevalence between regions. RESULTS A high inter-regional variation of Pfdhps-540E was observed (χ(2) = 76.8, p < 0.001). High inter-regional variation of 581G was observed (FE = 85.3, p < 0.001). Both Tanga and Kagera were found to have the highest levels of SP resistance. A high prevalence of Pfdhps-581G was observed in Tanga (56.6 %) in northeastern Tanzania and in Kagera (20.4 %) in northwestern Tanzania and the 540-581 EG haplotype was found at 54.5 and 19.4 %, respectively. Pfdhps-581G was not detected in Pwani and Lindi regions located south of Tanga region. CONCLUSIONS Selection of SP super-resistant Pfdhps A581G is highest in northern Tanzania. Variation in distribution of SP resistance is observed across the country: northeastern Tanga region and northwestern Kagera region have highest prevalence of SP super-resistance markers, while in Pwani and Lindi in the southeast the prevalence of super-resistance was zero. More studies should be conducted to understand the factors underlying the remarkable heterogeneity in SP resistance in the country.
Collapse
Affiliation(s)
| | - Robert D Kaaya
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Sidsel Nag
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Krogsgaard
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Ginsbak Notland
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Deus Ishengoma
- National Institute for Medical Research, Tanga Centre, Tanzania
| | - Cally Roper
- London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, Rahim-Awab G, Barnadas C, Berry A, Boum Y, Bustos MD, Cao J, Chen JH, Collet L, Cui L, Thakur GD, Dieye A, Djallé D, Dorkenoo MA, Eboumbou-Moukoko CE, Espino FECJ, Fandeur T, Ferreira-da-Cruz MF, Fola AA, Fuehrer HP, Hassan AM, Herrera S, Hongvanthong B, Houzé S, Ibrahim ML, Jahirul-Karim M, Jiang L, Kano S, Ali-Khan W, Khanthavong M, Kremsner PG, Lacerda M, Leang R, Leelawong M, Li M, Lin K, Mazarati JB, Ménard S, Morlais I, Muhindo-Mavoko H, Musset L, Na-Bangchang K, Nambozi M, Niaré K, Noedl H, Ouédraogo JB, Pillai DR, Pradines B, Quang-Phuc B, Ramharter M, Randrianarivelojosia M, Sattabongkot J, Sheikh-Omar A, Silué KD, Sirima SB, Sutherland C, Syafruddin D, Tahar R, Tang LH, Touré OA, Tshibangu-wa-Tshibangu P, Vigan-Womas I, Warsame M, Wini L, Zakeri S, Kim S, Eam R, Berne L, Khean C, Chy S, Ken M, Loch K, Canier L, Duru V, Legrand E, Barale JC, Stokes B, Straimer J, Witkowski B, Fidock DA, Rogier C, Ringwald P, Ariey F, Mercereau-Puijalon O. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N Engl J Med 2016; 374:2453-64. [PMID: 27332904 PMCID: PMC4955562 DOI: 10.1056/nejmoa1513137] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).
Collapse
Affiliation(s)
- Didier Ménard
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Nimol Khim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Johann Beghain
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Ayola A Adegnika
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mohammad Shafiul-Alam
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Olukemi Amodu
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Ghulam Rahim-Awab
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Céline Barnadas
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Antoine Berry
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Yap Boum
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maria D Bustos
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jun Cao
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jun-Hu Chen
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Louis Collet
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Liwang Cui
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Garib-Das Thakur
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Alioune Dieye
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Djibrine Djallé
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Monique A Dorkenoo
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | | | - Thierry Fandeur
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Abebe A Fola
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Hans-Peter Fuehrer
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Abdillahi M Hassan
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Socrates Herrera
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bouasy Hongvanthong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sandrine Houzé
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maman L Ibrahim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mohammad Jahirul-Karim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lubin Jiang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Shigeyuki Kano
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Wasif Ali-Khan
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Maniphone Khanthavong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Peter G Kremsner
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Marcus Lacerda
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rithea Leang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mindy Leelawong
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Mei Li
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Khin Lin
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Baptiste Mazarati
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sandie Ménard
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Isabelle Morlais
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Lise Musset
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kesara Na-Bangchang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Michael Nambozi
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Karamoko Niaré
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Harald Noedl
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Bosco Ouédraogo
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Dylan R Pillai
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bruno Pradines
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Bui Quang-Phuc
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Michael Ramharter
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Jetsumon Sattabongkot
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Abdiqani Sheikh-Omar
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kigbafori D Silué
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sodiomon B Sirima
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Colin Sutherland
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Din Syafruddin
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rachida Tahar
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lin-Hua Tang
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Offianan A Touré
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | | - Inès Vigan-Womas
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Marian Warsame
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lyndes Wini
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sedigheh Zakeri
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Saorin Kim
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Rotha Eam
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Laura Berne
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Chanra Khean
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Sophy Chy
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Malen Ken
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Kaknika Loch
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Lydie Canier
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Valentine Duru
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Eric Legrand
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Jean-Christophe Barale
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Barbara Stokes
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Judith Straimer
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Benoit Witkowski
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - David A Fidock
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Christophe Rogier
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Pascal Ringwald
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | - Frederic Ariey
- The authors' affiliations are listed in the Supplementary Appendix , available at NEJM.org
| | | |
Collapse
|
50
|
Lee AH, Fidock DA. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites. PLoS One 2016; 11:e0154166. [PMID: 27100094 PMCID: PMC4839739 DOI: 10.1371/journal.pone.0154166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/09/2016] [Indexed: 12/22/2022] Open
Abstract
Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring detrimental fitness costs.
Collapse
Affiliation(s)
- Andrew H. Lee
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| |
Collapse
|