1
|
Pagnossin D, Smith A, Weir W, McDonald E, Coelho J, Ure R, Oravcová K. Epidemiological and genomic characterisation of an outbreak of Streptococcus pyogenes emm5.23. J Infect 2025; 90:106498. [PMID: 40319945 DOI: 10.1016/j.jinf.2025.106498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES This retrospective cross-sectional study examined the epidemiology, clinical presentations, and genomics of Streptococcus pyogenes genotype emm5.23, linked to severe outcomes in Scotland. METHODS Between 2014 and 2022, 58 cases of invasive Group A Streptococcus (iGAS) disease associated with emm5.23 were reported in Scotland. Surveillance data from 45 cases were analysed for clinical characteristics and risk factors. Whole-genome sequencing (WGS) included all available emm5.23 strains from Scotland (n=58), a subset from England (n=29), and emm5 strains of non-5.23 subtypes from Scotland (n=10), England (n=2), and Canada (n=1). RESULTS Nearly all cases (96%, 43/45) were hospitalised, of whom 33% (15/45) required intensive care and 20% (9/45) died with iGAS. The most common presentations were bacteraemia (51%, 23/45) and pneumonia (24%, 11/45). WGS identified an emerging emm5.23 clade in Scotland, encompassing most isolates, which shared highly similar genomes and three non-synonymous polymorphisms. CONCLUSIONS Although genomic traits known to increase GAS virulence potential were not found, polymorphisms that may affect the emm5.23 phenotype were detected. This suggests this emm5.23 genotype was transiently successful rather than hypervirulent, with low population-level immunity contributing to its spread. This study emphasises the need for integration of real-time genomic data in public health surveillance to enhance source attribution and guide interventions.
Collapse
Affiliation(s)
| | - Andrew Smith
- University of Glasgow, Glasgow, Scotland, UK; Scottish Microbiology Reference Laboratories, Glasgow, Scotland, UK
| | | | | | | | - Roisin Ure
- Scottish Microbiology Reference Laboratories, Glasgow, Scotland, UK
| | | |
Collapse
|
2
|
Hankins JD, Johnson CL, Sanchez BC, Serrano AV, Runge JK, Spinler JK, Powell JW, Luna RA, Dunn JJ, Niles DT. Increased Incidence and Severity of Group A Streptococcal Infections in Children in Southeast Texas From June 2022 to May 2023. Pediatr Infect Dis J 2025; 44:118-124. [PMID: 39886927 DOI: 10.1097/inf.0000000000004577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
BACKGROUND Group A Streptococcus (GAS) infections can cause a range of disease manifestations and severity, including invasive infections that can lead to death. In 2022-2023, there was an increased number of cases of invasive GAS in the United States following a decline in 2020-2022. METHODS We investigated this surge at a 3-hospital system of children's hospitals in Southeast Texas. Cases of invasive GAS (n = 252) were retrospectively reviewed from peak periods of infection, beginning June 2019-May 2020 and continuing each successive year until May 2023. Cases were analyzed based on patient demographics, disease manifestations, coinfections, and hospital course. Isolates grown in culture were sequenced, and the emm types and genes associated with virulence were analyzed. RESULTS Compared with previous years, June 2022-May 2023 had the largest number of invasive GAS cases (n = 154, 2022-2023; 34, 2021-2022; 12, 2020-2021; 52, 2019-2020). Compared with the previous 3 years, patients from 2022 to 2023 were more likely to present with complicated pneumonia (23.4% vs. 7.1%; P = 0.0009), require respiratory support (34.4% vs. 14.3%; P < 0.001), be admitted to the intensive care unit (29.2% vs. 16.3; P = 0.0235), and be infected with emm type 12 isolates (40.6% vs. 10.3%; P = 0.0030). CONCLUSIONS In June 2022-May 2023, there was a 5-fold surge of invasive GAS infection cases in children at Texas Children's Hospital compared with the previous 3 years. These cases required greater intensive care unit hospitalization and respiratory support requirements due to higher rates of complicated pneumonia.
Collapse
Affiliation(s)
- Julia D Hankins
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
- Department of Pathology, University of Kansas Health System, Kansas City, Kansas
| | - Coreen L Johnson
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Belkys C Sanchez
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Angela V Serrano
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Jessica K Runge
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Jennifer K Spinler
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - John W Powell
- From the Department of Pathology and Immunology, Baylor College of Medicine
| | - Ruth Ann Luna
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - James J Dunn
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Denver T Niles
- From the Department of Pathology and Immunology, Baylor College of Medicine
- Department of Pathology, Texas Children's Hospital, Houston, Texas
- Department of Pediatrics-Infectious Disease, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Kodama D, Onogi A, Watanabe N, Tanaka T. An Autopsy Case of Rapidly Fulminant Group A Streptococcus Infection in a Previously Healthy 67-Year-Old Woman. Cureus 2024; 16:e73648. [PMID: 39677113 PMCID: PMC11645481 DOI: 10.7759/cureus.73648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is responsible for various conditions, such as pharyngitis, tonsillitis, necrotizing fasciitis, and streptococcal toxic shock syndrome (STSS). STSS, a rapidly progressing infection involving shock and multi-organ failure, was first reported in Japan in 1992, and since then, the number of cases has been steadily increasing. We herein report an autopsy case of STSS that resulted in sudden death. The patient was a 67-year-old woman who died 100 minutes after walking to the emergency department on her own. This case was characterized by multiple organ failure, septic shock, and a lack of polymorphonuclear leukocyte infiltration in necrotic/infected tissues, which are typical features of STSS. Necrotizing fasciitis of the left lower leg was also identified as a potential cause of STSS in this case. Awareness of this condition is critical, and careful screening and a timely diagnosis are essential to ensure the best possible outcomes for the affected patients. In addition, future vaccination strategies are needed.
Collapse
Affiliation(s)
- Daichi Kodama
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, JPN
| | - Akane Onogi
- Department of Pathology, Takayama Red Cross Hospital, Takayama, JPN
| | - Naoki Watanabe
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, JPN
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu, JPN
| |
Collapse
|
4
|
Inada M, Iwamoto N, Nomoto H, Tsuzuki S, Takemoto N, Fuwa N, Moriya A, Ohmagari N. Characteristics of Streptococcal Toxic Shock Syndrome Caused by Different Beta-hemolytic Streptococci Species: A Single-center Retrospective Study. Open Forum Infect Dis 2024; 11:ofae486. [PMID: 39296344 PMCID: PMC11409875 DOI: 10.1093/ofid/ofae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Streptococcal toxic shock syndrome (STSS) is a life-threatening condition caused by beta-hemolytic streptococci (BHS). Streptococcus pyogenes is the main causative agent of this disease; other BHS such as Streptococcus agalactiae or Streptococcus dysgalactiae could also cause STSS. However, the clinical characteristics of STSS caused by other types of BHS remain poorly understood. In this study, we evaluated the likelihood of STSS development in various streptococcal species. Methods We conducted a retrospective observational study using adult medical records of patients with invasive BHS in a tertiary care institution from 2002 to 2022 and classified them into STSS or non-STSS groups. Multivariable analysis of bacterial species adjusted for age and diabetes mellitus was conducted. S pyogenes cases were propensity-matched (1:4) to non-pyogenes BHS cases. Results A total of 43 STSS and 285 non-STSS cases were identified. S pyogenes, S agalactiae, and S dysgalactiae accounted for 17, 13, and 13 STSS cases, respectively. The crude mortality of STSS was approximately 35% in all groups. A multivariable analysis suggested that STSS was less frequent in S agalactiae and S dysgalactiae cases with odds ratio 0.24 (95% confidence interval [CI], 0.10-0.54; P < .001) and 0.23 (95% CI, .10-.55; P < .001), respectively. Propensity score matching showed that S pyogenes caused STSS more frequently than other BHS cases with an odds ratio of 3.28 (95% CI 1.21-8.77; P = .010). Conclusions This study described and compared the clinical characteristics of STSS caused by different BHS. We demonstrated that S pyogenes caused STSS more often than other BHS.
Collapse
Affiliation(s)
- Makoto Inada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidetoshi Nomoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiko Takemoto
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Fuwa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ataru Moriya
- Laboratory Testing Department, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Sanford TC, Tweten RK, Abrahamsen HL. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response. Curr Opin Infect Dis 2024; 37:164-169. [PMID: 38527455 PMCID: PMC11042984 DOI: 10.1097/qco.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Many cholesterol-dependent cytolysin (CDC)-producing pathogens pose a significant threat to human health. Herein, we review the pore-dependent and -independent properties CDCs possess to assist pathogens in evading the host immune response. RECENT FINDINGS Within the last 5 years, exciting new research suggests CDCs can act to inhibit important immune functions, disrupt critical cell signaling pathways, and have tissue-specific effects. Additionally, recent studies have identified a key region of CDCs that generates robust immunity, providing resources for the development of CDC-based vaccines. SUMMARY This review provides new information on how CDCs alter host immune responses to aid bacteria in pathogenesis. These studies can assist in the design of more efficient vaccines and therapeutics against CDCs that will enhance the immune response to CDC-producing pathogens while mitigating the dampening effects CDCs have on the host immune response.
Collapse
Affiliation(s)
- Tristan C. Sanford
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Rodney K. Tweten
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| | - Hunter L. Abrahamsen
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, Oklahoma City, OK 73104
| |
Collapse
|
6
|
Tölken LA, Paulikat AD, Jachmann LH, Reder A, Salazar MG, Medina LMP, Michalik S, Völker U, Svensson M, Norrby-Teglund A, Hoff KJ, Lammers M, Siemens N. Reduced interleukin-18 secretion by human monocytic cells in response to infections with hyper-virulent Streptococcus pyogenes. J Biomed Sci 2024; 31:26. [PMID: 38408992 PMCID: PMC10898077 DOI: 10.1186/s12929-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Streptococcus pyogenes (group A streptococcus, GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections, such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections. METHODS Human primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle, cytokine release by human primary monocytes and macrophages was determined. RESULTS In vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast, moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates, 28 harbored mutations resulting in dysfunctional CovR/S. However, analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations. CONCLUSIONS Our data demonstrate that strains, which harbor covR/S mutations, interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.
Collapse
Affiliation(s)
- Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Antje D Paulikat
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Lana H Jachmann
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Alexander Reder
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Laura M Palma Medina
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Stephan Michalik
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
7
|
Chiang-Ni C, Chiang CY, Chen YW, Shi YA, Chao YT, Wang S, Tsai PJ, Chiu CH. RopB-regulated SpeB cysteine protease degrades extracellular vesicles-associated streptolysin O and bacterial proteins from group A Streptococcus. Virulence 2023; 14:2249784. [PMID: 37621107 PMCID: PMC10461520 DOI: 10.1080/21505594.2023.2249784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) can be released from gram-positive bacteria and would participate in the delivery of bacterial toxins. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common pathogens of monomicrobial necrotizing fasciitis. Spontaneous inactivating mutation in the CovR/CovS two-component regulatory system is related to the increase of EVs production via an unknown mechanism. This study aimed to investigate whether the CovR/CovS-regulated RopB, the transcriptional regulator of GAS exoproteins, would participate in regulating EVs production. Results showed that the size, morphology, and number of EVs released from the wild-type strain and the ropB mutant were similar, suggesting RopB is not involved in controlling EVs production. Nonetheless, RopB-regulated SpeB protease degrades streptolysin O and bacterial proteins in EVs. Although SpeB has crucial roles in modulating protein composition in EVs, the SpeB-positive EVs failed to trigger HaCaT keratinocytes pyroptosis, suggesting that EVs did not deliver SpeB into keratinocytes or the amount of SpeB in EVs was not sufficient to trigger cell pyroptosis. Finally, we identified that EV-associated enolase was resistant to SpeB degradation, and therefore could be utilized as the internal control protein for verifying SLO degradation. This study revealed that RopB would participate in modulating protein composition in EVs via SpeB-dependent protein degradation and suggested that enolase is a potential internal marker for studying GAS EVs.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chien-Yi Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Tzu Chao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
8
|
Hirose Y, Poudel S, Sastry AV, Rychel K, Lamoureux CR, Szubin R, Zielinski DC, Lim HG, Menon ND, Bergsten H, Uchiyama S, Hanada T, Kawabata S, Palsson BO, Nizet V. Elucidation of independently modulated genes in Streptococcus pyogenes reveals carbon sources that control its expression of hemolytic toxins. mSystems 2023; 8:e0024723. [PMID: 37278526 PMCID: PMC10308926 DOI: 10.1128/msystems.00247-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Streptococcus pyogenes can cause a wide variety of acute infections throughout the body of its human host. An underlying transcriptional regulatory network (TRN) is responsible for altering the physiological state of the bacterium to adapt to each unique host environment. Consequently, an in-depth understanding of the comprehensive dynamics of the S. pyogenes TRN could inform new therapeutic strategies. Here, we compiled 116 existing high-quality RNA sequencing data sets of invasive S. pyogenes serotype M1 and estimated the TRN structure in a top-down fashion by performing independent component analysis (ICA). The algorithm computed 42 independently modulated sets of genes (iModulons). Four iModulons contained the nga-ifs-slo virulence-related operon, which allowed us to identify carbon sources that control its expression. In particular, dextrin utilization upregulated the nga-ifs-slo operon by activation of two-component regulatory system CovRS-related iModulons, altering bacterial hemolytic activity compared to glucose or maltose utilization. Finally, we show that the iModulon-based TRN structure can be used to simplify the interpretation of noisy bacterial transcriptome data at the infection site. IMPORTANCE S. pyogenes is a pre-eminent human bacterial pathogen that causes a wide variety of acute infections throughout the body of its host. Understanding the comprehensive dynamics of its TRN could inform new therapeutic strategies. Since at least 43 S. pyogenes transcriptional regulators are known, it is often difficult to interpret transcriptomic data from regulon annotations. This study shows the novel ICA-based framework to elucidate the underlying regulatory structure of S. pyogenes allows us to interpret the transcriptome profile using data-driven regulons (iModulons). Additionally, the observations of the iModulon architecture lead us to identify the multiple regulatory inputs governing the expression of a virulence-related operon. The iModulons identified in this study serve as a powerful guidepost to further our understanding of S. pyogenes TRN structure and dynamics.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Biological Engineering, Inha University, Michuhol-gu, Incheon, South Korea
| | - Nitasha D. Menon
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Helena Bergsten
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Tomoki Hanada
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Chiang-Ni C, Chen YW, Chen KL, Jiang JX, Shi YA, Hsu CY, Chen YYM, Lai CH, Chiu CH. RopB represses the transcription of speB in the absence of SIP in group A Streptococcus. Life Sci Alliance 2023; 6:e202201809. [PMID: 37001914 PMCID: PMC10071013 DOI: 10.26508/lsa.202201809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
RopB is a quorum-sensing regulator that binds to the SpeB-inducing peptide (SIP) under acidic conditions. SIP is known to be degraded by the endopeptidase PepO, whose transcription is repressed by the CovR/CovS two-component regulatory system. Both SIP-bound RopB (RopB-SIP) and SIP-free RopB (apo-RopB) can bind to the speB promoter; however, only RopB-SIP activates speB transcription. In this study, we found that the SpeB expression was higher in the ropB mutant than in the SIP-inactivated (SIP*) mutant. Furthermore, the deletion of ropB in the SIP* mutant derepressed speB expression, suggesting that apo-RopB is a transcriptional repressor of speB Up-regulation of PepO in the covS mutant degraded SIP, resulting in the down-regulation of speB We demonstrate that deleting ropB in the covS mutant derepressed the speB expression, suggesting that the speB repression in this mutant was mediated not only by PepO-dependent SIP degradation but also by apo-RopB. These findings reveal a crosstalk between the CovR/CovS and RopB-SIP systems and redefine the role of RopB in regulating speB expression in group A Streptococcus.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wen Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Lin Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jian-Xian Jiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
10
|
Plainvert C, Rosinski-Chupin I, Weckel A, Lambert C, Touak G, Sauvage E, Poyart C, Glaser P, Fouet A. A Novel CovS Variant Harbored by a Colonization Strain Reduces Streptococcus pyogenes Virulence. J Bacteriol 2023; 205:e0003923. [PMID: 36920220 PMCID: PMC10127592 DOI: 10.1128/jb.00039-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus, causes a wide variety of diseases ranging from mild noninvasive to severe invasive infections. To identify possible causes of colonization-to-invasive switches, we determined the genomic sequences of 10 isolates from five pairs each composed of an invasive strain and a carriage strain originating from five infectious clusters. Among them, one pair displayed a single-nucleotide difference in covS, encoding the sensor histidine kinase of the two-component CovRS system that controls the expression of 15% of the genome. In contrast to previously described cases where the invasive strains harbor nonfunctional CovS proteins, the carriage strain possessed the mutation covST115C, leading to the replacement of the tyrosine at position 39 by a histidine. The CovSY39H mutation affected the expression of the genes from the CovR regulon in a unique fashion. Genes usually overexpressed in covS mutant strains were underexpressed and vice versa. Furthermore, the covS mutant strain barely responded to the addition of the CovS-signaling compounds Mg2+ and LL-37. The variations in the accumulation of two virulence factors paralleled the transcription modifications. In addition, the covST115C mutant strain showed less survival than its wild-type counterpart in murine macrophages. Finally, in two murine models of infection, the covS mutant strain was less virulent than the wild-type strain. Our study suggests that the CovSY39H protein compromises CovS phosphatase activity and that this yields a noninvasive strain. IMPORTANCE Streptococcus pyogenes, also known as group A Streptococcus, causes a wide variety of diseases, leading to 517,000 deaths yearly. The two-component CovRS system, which responds to MgCl2 and the antimicrobial peptide LL-37, controls the expression of 15% of the genome. Invasive strains may harbor nonfunctional CovS sensor proteins that lead to the derepression of most virulence genes. We isolated a colonization strain that harbors a novel covS mutation. This mutant strain harbored a transcriptome profile opposite that of other covS mutant strains, barely responded to environmental signals, and was less virulent than the wild-type strain. This supports the importance of the derepression of the expression of most virulence genes, via mutations that impact the phosphorylation of the regulator CovR, for favoring S. pyogenes invasive infections.
Collapse
Affiliation(s)
- Céline Plainvert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Service de Bactériologie, CNR des Streptocoques, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Isabelle Rosinski-Chupin
- Institut Pasteur, Ecologie et Evolution de la Résistance aux Antibiotiques, UMR3525, Paris, France
| | - Antonin Weckel
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Gérald Touak
- Service de Bactériologie, CNR des Streptocoques, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Elisabeth Sauvage
- Institut Pasteur, Ecologie et Evolution de la Résistance aux Antibiotiques, UMR3525, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Service de Bactériologie, CNR des Streptocoques, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Ecologie et Evolution de la Résistance aux Antibiotiques, UMR3525, Paris, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Service de Bactériologie, CNR des Streptocoques, Hôpitaux Universitaires Paris Centre, Paris, France
| |
Collapse
|
11
|
Langshaw EL, Reynolds S, Ozberk V, Dooley J, Calcutt A, Zaman M, Walker MJ, Batzloff MR, Davies MR, Good MF, Pandey M. Streptolysin O Deficiency in Streptococcus pyogenes M1T1 covR/S Mutant Strain Attenuates Virulence in In Vitro and In Vivo Infection Models. mBio 2023; 14:e0348822. [PMID: 36744883 PMCID: PMC9972915 DOI: 10.1128/mbio.03488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Mutation within the Streptococcus pyogenes (Streptococcus group A; Strep A) covR/S regulatory system has been associated with a hypervirulent phenotype resulting from the upregulation of several virulence factors, including the pore-forming toxin, streptolysin O (SLO). In this study, we utilized a range of covR/S mutants, including M1T1 clonal strains (5448 and a covS mutant generated through mouse passage designated 5448AP), to investigate the contribution of SLO to the pathogenesis of covR/S mutant Strep A disease. Up-regulation of slo in 5448AP resulted in increased SLO-mediated hemolysis, decreased dendritic cell (DC) viability post coculture with Strep A, and increased production of tumor necrosis factor (TNF) and monocyte chemoattractant protein 1 (MCP-1) by DCs. Mouse passage of an isogenic 5448 slo-deletion mutant resulted in recovery of several covR/S mutants within the 5448Δslo background. Passage also introduced mutations in non-covR/S genes, but these were considered to have no impact on virulence. Although slo-deficient mutants exhibited the characteristic covR/S-controlled virulence factor upregulation, these mutants caused increased DC viability with reduced inflammatory cytokine production by infected DCs. In vivo, slo expression correlated with decreased DC numbers in infected murine skin and significant bacteremia by 3 days postinfection, with severe pathology at the infection site. Conversely, the absence of slo in the infecting strain (covR/S mutant or wild-type) resulted in detection of DCs in the skin and attenuated virulence in a murine model of pyoderma. slo-sufficient and -deficient covR/S mutants were susceptible to immune clearance mediated by a combination vaccine consisting of a conserved M protein peptide and a peptide from the CXC chemokine protease SpyCEP. IMPORTANCE Streptococcus pyogenes is responsible for significant numbers of invasive and noninvasive infections which cause significant morbidity and mortality globally. Strep A isolates with mutations in the covR/S system display greater propensity to cause severe invasive diseases, which are responsible for more than 163,000 deaths each year. This is due to the upregulation of virulence factors, including the pore-forming toxin streptolysin O. Utilizing covR/S and slo-knockout mutants, we investigated the role of SLO in virulence. We found that SLO alters interactions with host cell populations and increases Strep A viability at sterile sites of the host, such as the blood, and that its absence results in significantly less virulence. This work underscores the importance of SLO in Strep A virulence while highlighting the complex nature of Strep A pathogenesis. This improved insight into host-pathogen interactions will enable a better understanding of host immune evasion mechanisms and inform streptococcal vaccine development programs.
Collapse
Affiliation(s)
- Emma L. Langshaw
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Simone Reynolds
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Jessica Dooley
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Queensland, Australia
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
12
|
Abstract
Necrotizing fasciitis is a severe infectious disease that results in significant mortality. Streptococcus pyogenes (group A Streptococcus, GAS) is one of the most common bacterial pathogens of monomicrobial necrotizing fasciitis. The early diagnosis of necrotizing fasciitis is crucial; however, the typical cutaneous manifestations are not always presented in patients with GAS necrotizing fasciitis, which would lead to miss- or delayed diagnosis. GAS with spontaneous inactivating mutations in the CovR/CovS two-component regulatory system is significantly associated with destructive diseases such as necrotizing fasciitis and toxic shock syndrome; however, no specific marker has been used to identify these invasive clinical isolates. This study evaluated the sensitivity and specificity of using CovR/CovS-controlled phenotypes to identify CovR/CovS-inactivated isolates. Results showed that the increase of hyaluronic acid capsule production and streptolysin O expression were not consistently presented in CovS-inactivated clinical isolates. The repression of SpeB is the phenotype with 100% sensitivity of identifying in CovS-inactivated isolates among 61 clinical isolates. Nonetheless, this phenotype failed to distinguish RopB-inactivated isolates from CovS-inactivated isolates and cannot be utilized to identify CovR-inactivated mutant and RocA (Regulator of Cov)-inactivated isolates. In this study, we identified and verified that PepO, the endopeptidase which regulates SpeB expression through degrading SpeB-inducing quorum-sensing peptide, was a bacterial marker to identify isolates with defects in the CovR/CovS pathway. These results also inform the potential strategy of developing rapid detection methods to identify invasive GAS variants during infection. IMPORTANCE Necrotizing fasciitis is rapidly progressive and life-threatening; if the initial diagnosis is delayed, deep soft tissue infection can progress to massive tissue destruction and toxic shock syndrome. Group A Streptococcus (GAS) with inactivated mutations in the CovR/CovS two-component regulatory system are related to necrotizing fasciitis and toxic shock syndrome; however, no bacterial marker is available to identify these invasive clinical isolates. Inactivation of CovR/CovS resulted in the increased expression of endopeptidase PepO. Our study showed that the upregulation of PepO mediates a decrease in SpeB-inducing peptide (SIP) in the covR mutant, indicating that CovR/CovS modulates SIP-dependent quorum-sensing activity through PepO. Importantly, the sensitivity and specificity of utilizing PepO to identify clinical isolates with defects in the CovR/CovS pathway, including its upstream RocA regulator, were 100%. Our results suggest that identification of invasive GAS by PepO may be a strategy for preventing severe manifestation or poor prognosis after GAS infection.
Collapse
|
13
|
Ikebe T, Otsuka H, Chiba K, Kazawa Y, Yamaguchi T, Okuno R, Date Y, Sasaki M, Isobe J, Ohnishi M, Akeda Y. Natural mutation in the regulatory gene (srrG) influences virulence-associated genes and enhances invasiveness in Streptococcus dysgalactiae subsp. equisimilis strains isolated from cases of streptococcal toxic shock syndrome. EBioMedicine 2022; 81:104133. [PMID: 35779495 PMCID: PMC9244731 DOI: 10.1016/j.ebiom.2022.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Streptococcus dysgalactiae subspecies equisimilis (SDSE) has emerged as an important cause of severe invasive infections including streptococcal toxic shock syndrome (STSS). The present study aimed to identify genes involved in differences in invasiveness between STSS and non-invasive SDSE isolates. Methods STSS and non-invasive SDSE isolates were analysed to identify csrS/csrR mutations, followed by a comparative analysis of genomic sequences to identify mutations in other genes. Mutant strains were generated to examine changes in gene expression profiles and altered pathogenicity in mice. Findings Of the 79 STSS-SDSE clinical isolates, 15 (19.0%) harboured csrS/csrR mutations, while none were found in the non-invasive SDSE isolates. We identified a small RNA (sRNA) that comprised three direct repeats along with an inverted repeat and was transcribed in the same direction as the sagA gene. The sRNA was referred to as srrG (streptolysin S regulatory RNA in GGS). srrG mutations were identified in the STSS-SDSE strains and were found to be associated with elevated expression of the streptolysin S (SLS) gene cluster and enhanced pathogenicity in mice. Interpretation The csrS/csrR and srrG mutations that increased virulence gene expression in STSS-SDSE isolates were identified, and strains carrying these mutations caused increased lethality in mice. A significantly higher frequency of mutations was observed in STSS-SDSE isolates, thereby highlighting their importance in STSS. Funding Japan Agency for Medical Research and Development, the Japan Society for the Promotion of Science (JSPS), and the Ministry of Health, Labor, and Welfare of Japan.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Hitoshi Otsuka
- Department of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Kazuki Chiba
- Division of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Yu Kazawa
- Division of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yoshimi Date
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Mari Sasaki
- Laboratory of Microbiology, Oita Prefectural Institute of Health and Environment, Oita, Japan
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, Toyama, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
14
|
Horstmann N, Myers KS, Tran CN, Flores AR, Shelburne III SA. CovS inactivation reduces CovR promoter binding at diverse virulence factor encoding genes in group A Streptococcus. PLoS Pathog 2022; 18:e1010341. [PMID: 35180278 PMCID: PMC8893699 DOI: 10.1371/journal.ppat.1010341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
The control of virulence gene regulator (CovR), also called caspsule synthesis regulator (CsrR), is critical to how the major human pathogen group A Streptococcus fine-tunes virulence factor production. CovR phosphorylation (CovR~P) levels are determined by its cognate sensor kinase CovS, and functional abrogating mutations in CovS can occur in invasive GAS isolates leading to hypervirulence. Presently, the mechanism of CovR-DNA binding specificity is unclear, and the impact of CovS inactivation on global CovR binding has not been assessed. Thus, we performed CovR chromatin immunoprecipitation sequencing (ChIP-seq) analysis in the emm1 strain MGAS2221 and its CovS kinase deficient derivative strain 2221-CovS-E281A. We identified that CovR bound in the promoter regions of nearly all virulence factor encoding genes in the CovR regulon. Additionally, direct CovR binding was observed for numerous genes encoding proteins involved in amino acid metabolism, but we found limited direct CovR binding to genes encoding other transcriptional regulators. The consensus sequence AATRANAAAARVABTAAA was present in the promoters of genes directly regulated by CovR, and mutations of highly conserved positions within this motif relieved CovR repression of the hasA and MGAS2221_0187 promoters. Analysis of strain 2221-CovS-E281A revealed that binding of CovR at repressed, but not activated, promoters is highly dependent on CovR~P state. CovR repressed virulence factor encoding genes could be grouped dependent on how CovR~P dependent variation in DNA binding correlated with gene transcript levels. Taken together, the data show that CovR repression of virulence factor encoding genes is primarily direct in nature, involves binding to a newly-identified DNA binding motif, and is relieved by CovS inactivation. These data provide new mechanistic insights into one of the most important bacterial virulence regulators and allow for subsequent focused investigations into how CovR-DNA interaction at directly controlled promoters impacts GAS pathogenesis. Tight regulation of virulence factor production is a critical, but poorly understood aspect of bacterial pathogenesis. The OmpR/PhoB family member control of virulence regulator (CovR) is the master virulence factor controller in group A Streptococcus (GAS), a bacterium which commonly causes a diverse array of human infections. Mutations in the cognate kinase of CovR, CovS, are commonly observed among invasive GAS isolates, but the functional impact of CovS on global CovR function is unknown. Herein, we defined CovR global DNA binding locations, identified a consensus CovR binding motif, and determined how inactivation of the CovR cognate sensor kinase, CovS, impacts CovR-DNA interaction. Our findings show that CovR-repressed virulence factor encoding genes are directly regulated by CovR and that CovS inactivation markedly reduces CovR binding at CovR-repressed promoters. Given the widespread nature of CovR homologues in streptococci and other Gram-positive pathogens, these findings extend understanding of mechanisms by which OmpR/PhoB family members impact the ability of bacteria to cause serious infections.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Samuel A. Shelburne III
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Oliveira LT, Alves LA, Harth-Chu EN, Nomura R, Nakano K, Mattos-Graner RO. VicRK and CovR polymorphisms in Streptococcus mutans strains associated with cardiovascular infections. J Med Microbiol 2021; 70. [PMID: 34939562 DOI: 10.1099/jmm.0.001457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Collapse
Affiliation(s)
- Letícia T Oliveira
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University, Graduate School of Dentistry, Osaka, Japan
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
16
|
Li Y, Dominguez S, Nanduri SA, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Van Beneden CA, Beall B, Miller L. Genomic Characterization of Group A Streptococci Causing Pharyngitis and Invasive Disease in Colorado, USA, June 2016 - April 2017. J Infect Dis 2021; 225:1841-1851. [PMID: 34788828 PMCID: PMC9125432 DOI: 10.1093/infdis/jiab565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The genomic features and transmission link of circulating Group A streptococcus (GAS) strains causing different disease types, such as pharyngitis and invasive disease, are not well understood. METHODS We used whole-genome sequencing (WGS) to characterize GAS isolates recovered from persons with pharyngitis and invasive disease in the Denver metropolitan area from June 2016 to April 2017. RESULTS GAS isolates were cultured from 236 invasive and 417 pharyngitis infections. WGS identified 34 emm types. Compared to pharyngitis isolates, invasive isolates were more likely to carry the erm family genes (23% vs. 7.4%, p<0.001), which confer resistance to erythromycin and clindamycin (including inducible resistance), and covS gene inactivation (7% vs. 0.5%, p<0.001). WGS identified 97 genomic clusters (433 isolates; 2-65 isolates per cluster) that consisted of genomically closely related isolates (median SNP (IQR) = 3 (1-4) within cluster). Thirty genomic clusters (200 isolates; 31% of all isolates) contained both pharyngitis and invasive isolates and were found in 11 emm types. CONCLUSIONS In the Denver metropolitan population, mixed disease types were commonly seen in clusters of closely related isolates, indicative of overlapping transmission networks. Antibiotic-resistance and covS inactivation was disproportionally associated with invasive disease.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Dominguez
- University of Colorado School of Medicine Aurora, CO, USA; Children's Hospital Colorado Aurora, CO, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chris A Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa Miller
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Yamaba Y, Takakuwa O, Ida C, Saito M, Kawae D, Yoshihara M, Kunii E, Imaeda K, Tatsuno I, Hasegawa T, Akita K. Streptococcal Toxic Shock Syndrome Induced by Group A Streptococcus with the emm28 Genotype That Developed after a Uterine Cancer Test. Intern Med 2021; 60:3481-3483. [PMID: 33994434 PMCID: PMC8627819 DOI: 10.2169/internalmedicine.6290-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 69-year-old woman without pre-existing disease visited our hospital due to general malaise, diarrhea, and arthralgia 3 days after a uterine cancer test. We diagnosed her with sepsis of unknown focus and started treatment immediately, but she died 20 hours after the first visit due to multi-organ failure and septic shock. Later, group A streptococcus was detected from the blood culture, and streptococcal toxic shock syndrome (STSS) was diagnosed. The strain had the emm28 genotype and a mutation in csrR with increased NADase activity. These virulence factors were considered to be related to STSS development in this patient.
Collapse
Affiliation(s)
- Yusuke Yamaba
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| | - Osamu Takakuwa
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
- Department of Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Chiaki Ida
- Nagoya City University Medical School, Japan
| | - Manami Saito
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| | - Daisuke Kawae
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| | - Misuzu Yoshihara
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| | - Eiji Kunii
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| | - Kenro Imaeda
- Department of Endocrinology and Diabetes, Nagoya City University West Medical Center, Japan
| | - Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Science, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Science, Japan
| | - Kenji Akita
- Department of Respiratory Medicine, Nagoya City University West Medical Center, Japan
| |
Collapse
|
18
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Population Genomics of emm4 Group A Streptococcus Reveals Progressive Replacement with a Hypervirulent Clone in North America. mSystems 2021; 6:e0049521. [PMID: 34374563 PMCID: PMC8409732 DOI: 10.1128/msystems.00495-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Clonal replacement is a major driver for changes in bacterial disease epidemiology. Recently, it has been proposed that episodic emergence of novel, hypervirulent clones of group A Streptococcus (GAS) results from acquisition of a 36-kb DNA region leading to increased expression of the cytotoxins Nga (NADase) and SLO (streptolysin O). We previously described a gene fusion event involving the gene encoding the GAS M protein (emm) and an adjacent M-like protein (enn) in the emm4 GAS population, a GAS emm type that lacks the hyaluronic acid capsule. Using whole-genome sequencing of a temporally and geographically diverse set of 1,126 isolates, we discovered that the North American emm4 GAS population has undergone clonal replacement with emergent GAS strains completely replacing historical isolates by 2017. Emergent emm4 GAS strains contained a handful of small genetic variations, including the emm-enn gene fusion, and showed a marked in vitro growth defect compared to historical strains. In contrast to other previously described GAS clonal replacement events, emergent emm4 GAS strains were not defined by acquisition of exogenous DNA and had no significant increase in transcript levels of nga and slo toxin genes via RNA sequencing and quantitative real-time PCR analysis relative to historic strains. Despite the in vitro growth differences, emergent emm4 GAS strains were hypervirulent in mice and ex vivo growth in human blood compared to historical strains. Thus, these data detail the emergence and dissemination of a hypervirulent acapsular GAS clone defined by small, endogenous genetic variation, thereby defining a novel model for GAS strain replacement. IMPORTANCE Severe invasive infections caused by group A Streptococcus (GAS) result in substantial morbidity and mortality in children and adults worldwide. Previously, GAS clonal strain replacement has been attributed to acquisition of exogenous DNA leading to novel virulence gene acquisition or increased virulence gene expression. Our study of type emm4 GAS identified emergence of a hypervirulent GAS clade defined by variation in endogenous DNA content and lacking augmented toxin gene expression relative to replaced strains. These findings expand our understanding of the molecular mechanisms underlying bacterial clonal emergence.
Collapse
|
20
|
Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators. mBio 2021; 12:e0164221. [PMID: 34253064 PMCID: PMC8406183 DOI: 10.1128/mbio.01642-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptation of group A Streptococcus (GAS) to its human host is mediated by two-component systems that transduce external stimuli to regulate bacterial physiology. Among such systems, CsrRS (also known as CovRS) is the most extensively characterized for its role in regulating ∼10% of the GAS genome, including several virulence genes. Here, we show that extracellular magnesium and the human antimicrobial peptide LL-37 have opposing effects on the phosphorylation of the response regulator CsrR by the receptor kinase CsrS. Genetic inactivation of CsrS phosphatase or kinase activity, respectively, had similar but more pronounced effects on CsrR phosphorylation compared to growth in magnesium or LL-37. These changes in CsrR phosphorylation were correlated with the repression or activation of CsrR-regulated genes as assessed by NanoString analysis. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) revealed CsrR occupancy at CsrRS-regulated promoters and lower-affinity associations at many other locations on the GAS chromosome. Because ChIP-seq did not detect CsrR occupancy at promoters associated with some CsrR-regulated genes, we investigated whether these genes might be controlled indirectly by intermediate regulators whose expression is modulated by CsrR. Transcriptional profiling of mutant strains deficient in the expression of either of two previously uncharacterized transcription regulators in the CsrR regulon indicated that one or both proteins participated in the regulation of 22 of the 42 CsrR-regulated promoters for which no CsrR association was detected by ChIP-seq. Taken together, these results illuminate CsrRS-mediated regulation of GAS gene expression through modulation of CsrR phosphorylation, CsrR association with regulated promoters, and the control of intermediate transcription regulators. IMPORTANCE Group A Streptococcus (GAS) is an important public health threat as a cause of sore throat, skin infections, life-threatening invasive infections, and the postinfectious complications of acute rheumatic fever, a leading cause of acquired heart disease. This work characterizes CsrRS, a GAS system for the detection of environmental signals that enables adaptation of the bacteria for survival in the human throat by regulating the production of products that allow the bacteria to resist clearance by the human immune system. CsrRS consists of two proteins: CsrS, which is on the bacterial surface to detect specific stimuli, and CsrR, which receives signals from CsrS and, in response, represses or activates the expression of genes coding for proteins that enhance bacterial survival. Some of the genes regulated by CsrR encode proteins that are themselves regulators of gene expression, thereby creating a regulatory cascade.
Collapse
|
21
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Chiang-Ni C, Liu YS, Lin CY, Hsu CY, Shi YA, Chen YYM, Lai CH, Chiu CH. Incidence and Effects of Acquisition of the Phage-Encoded ssa Superantigen Gene in Invasive Group A Streptococcus. Front Microbiol 2021; 12:685343. [PMID: 34149675 PMCID: PMC8212969 DOI: 10.3389/fmicb.2021.685343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The acquisition of the phage-encoded superantigen ssa by scarlet fever-associated group A Streptococcus (Streptococcus pyogenes, GAS) is found in North Asia. Nonetheless, the impact of acquiring ssa by GAS in invasive infections is unclear. This study initially analyzed the prevalence of ssa+ GAS among isolates from sterile tissues and blood. Among 220 isolates in northern Taiwan, the prevalence of ssa+ isolates increased from 1.5% in 2008–2010 to 40% in 2017–2019. Spontaneous mutations in covR/covS, which result in the functional loss of capacity to phosphorylate CovR, are frequently recovered from GAS invasive infection cases. Consistent with this, Phostag western blot results indicated that among the invasive infection isolates studied, 10% of the ssa+ isolates lacked detectable phosphorylated CovR. Transcription of ssa is upregulated in the covS mutant. Furthermore, in emm1 and emm12 covS mutants, ssa deletion significantly reduced their capacity to grow in human whole blood. Finally, this study showed that the ssa gene could be transferred from emm12-type isolates to the emm1-type wild-type strain and covS mutants through phage infection and lysogenic conversion. As the prevalence of ssa+ isolates increased significantly, the role of streptococcal superantigen in GAS pathogenesis, particularly in invasive covR/covS mutants, should be further analyzed.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yen-Shan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chieh-Yu Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yun Hsu
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
23
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
24
|
Intracellular Group A Streptococcus Induces Golgi Fragmentation To Impair Host Defenses through Streptolysin O and NAD-Glycohydrolase. mBio 2021; 12:mBio.01974-20. [PMID: 33563838 PMCID: PMC7885101 DOI: 10.1128/mbio.01974-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and is thus essential for the integrity of the epithelial barrier and for the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated with GAS pathogenesis.IMPORTANCE Two prominent virulence factors of group A Streptococcus (GAS), streptolysin O (SLO) and NAD-glycohydrolase (Nga), are linked to enhanced pathogenicity of the prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupts the Golgi complex in host cells through SLO and Nga. We show that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation results in the impairment of the epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.
Collapse
|
25
|
Primary Peritonitis Secondary to Streptococcus pyogenes in a Young Female Adult-A Case Report and Literature Review. Infect Dis Rep 2021; 13:26-32. [PMID: 33401399 PMCID: PMC7838986 DOI: 10.3390/idr13010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022] Open
Abstract
Primary spontaneous bacterial peritonitis (SBP) is a rare cause of acute abdomen in previously healthy patients, even more unusually caused by a group A Streptococcus (GAS) (also known as Streptococcus pyogenes) infection. We report a young, otherwise healthy female who presented with generalized abdominal pain that was initially managed conservatively as gastroenteritis, with a computed tomography (CT) scan showing a ruptured corpus luteal cyst. Upon subsequent readmission with worsened pain and symptoms, a repeat CT scan showed worsened free fluid with signs of peritonitis. A diagnostic laparoscopy confirmed primary peritonitis with an unknown infection source and causative pathology, as the appendix, ovaries and bowels were healthy-looking. Fluid cultures returned positive for GAS Pyogenes, while blood and urine cultures were negative. The discussion reviews the challenges in diagnosis and treatment of GAS primary peritonitis, highlighting the need for clinical suspicion, early diagnosis via laparoscopy or laparotomy and prompt antibiotic therapy as the current standard for treatment.
Collapse
|
26
|
Yoshida H, Takahashi T, Matsui H. A naturally occurring point mutation in the rocA gene of Streptococcus pyogenes confers the highly virulent phenotype. J Infect Chemother 2020; 27:578-584. [PMID: 33309630 DOI: 10.1016/j.jiac.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Mucoid (MTB313) and nonmucoid (MTB314) strains of group A streptococcus (GAS) emm (antiphagocytic M protein) type 1 were simultaneously isolated from a single patient suffering from streptococcal meningitis. In a CD46-expressing transgenic (CD46 Tg) mouse model of subcutaneous infection into both hind footpads with MTB313 or MTB314, MTB313 showed considerably higher virulence than MTB314. METHODS The comparative genomic analysis based on the whole-genome sequencing revealed that MTB313 possessed an amber codon within rocA (sensory transduction protein kinase), but MTB314 did not carry this stop codon. Thereafter, MAT101 was generated from MTB313 by introducing pRocA, which contained the full-length rocA from MTB314, into the cloning plasmid pLZ12-Km2. MAT100 was also generated by introducing pLZ12-Km2 into MTB313. RESULTS Although MTB313 and MAT100 showed large quantities of cell-associated hyaluronic acid (HA) in the culture pellets, MTB314 and MAT101 showed small quantities of HA production. Finally, higher mortalities were observed in the MTB313- or MAT100-infected CD46 Tg mice than the MTB314- or MAT101-infected CD46 Tg mice. CONCLUSIONS These data indicate the possibility that a spontaneous point mutation in the rocA gene led to the highly virulent phenotype of M1 GAS.
Collapse
Affiliation(s)
- Haruno Yoshida
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Takahashi
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hidenori Matsui
- Department of Infection Control and Immunology, Omura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
27
|
Hirose Y, Yamaguchi M, Takemoto N, Miyoshi-Akiyama T, Sumitomo T, Nakata M, Ikebe T, Hanada T, Yamaguchi T, Kawahara R, Okuno R, Otsuka H, Matsumoto Y, Terashima Y, Kazawa Y, Nakanishi N, Uchida K, Akiyama Y, Iwabuchi K, Nakagawa C, Yamamoto K, Nizet V, Kawabata S. Genetic Characterization of Streptococcus pyogenes emm89 Strains Isolated in Japan From 2011 to 2019. INFECTIOUS MICROBES & DISEASES 2020; 2:160-166. [PMID: 38630060 PMCID: PMC7769053 DOI: 10.1097/im9.0000000000000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 04/19/2024]
Abstract
Invasive infection caused by Streptococcus pyogenes emm89 strains has been increasing in several countries linked to a recently emergent clade of emm89 strains, designated clade 3. In Japan, the features of emm89 S. pyogenes strains, such as clade classification, remains unknown. In this study, we collected emm89 strains isolated from both streptococcal toxic shock syndrome (STSS) (89 STSS isolates) and noninvasive infections (72 non-STSS isolates) in Japan from 2011 to 2019, and conducted whole-genome sequencing and comparative analysis, which resulted in classification of a large majority into clade 3 regardless of disease severity. In addition, invasive disease-associated factors were found among emm89 strains, including mutations of control of virulence sensor, and absence of the hylP1 gene encoding hyaluronidase. These findings provide new insights into genetic features of emm89 strains.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Norihiko Takemoto
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Hanada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka City, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology, Osaka Institute of Public Health, Osaka City, Osaka, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hitoshi Otsuka
- Department of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment Yamaguchi City, Yamaguchi, Japan
| | - Yuko Matsumoto
- Microbiological Testing and Research Division, Yokohama City Institute of Public Health, Yokohama, Kanagawa, Japan
| | - Yuji Terashima
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima City, Fukushima, Japan
| | - Yu Kazawa
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima City, Fukushima, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
| | - Kaoru Uchida
- Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
| | - Yumi Akiyama
- Infectious Disease Research Division, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
| | - Kaori Iwabuchi
- Department of Health Science, Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Iwate, Japan
| | - Chikara Nakagawa
- Division of Microbiology, Kyoto City Institute of Health and Environmental Sciences, Kyoto City, Kyoto, Japan
| | - Kazunari Yamamoto
- Niigata City Institute of Public Health and the Environment, Niigata City, Niigata, Japan
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
28
|
LaRock DL, Russell R, Johnson AF, Wilde S, LaRock CN. Group A Streptococcus Infection of the Nasopharynx Requires Proinflammatory Signaling through the Interleukin-1 Receptor. Infect Immun 2020; 88:e00356-20. [PMID: 32719155 PMCID: PMC7504964 DOI: 10.1128/iai.00356-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Group A Streptococcus (GAS) is the etiologic agent of numerous high-morbidity and high-mortality diseases. Infections are typically highly proinflammatory. During the invasive infection necrotizing fasciitis, this is in part due to the GAS protease SpeB directly activating interleukin-1β (IL-1β) independent of the canonical inflammasome pathway. The upper respiratory tract is the primary site for GAS colonization, infection, and transmission, but the host-pathogen interactions at this site are still largely unknown. We found that in the murine nasopharynx, SpeB enhanced IL-1β-mediated inflammation and the chemotaxis of neutrophils. However, neutrophilic inflammation did not restrict infection and instead promoted GAS replication and disease. Inhibiting IL-1β or depleting neutrophils, which both promote invasive infection, prevented GAS infection of the nasopharynx. Mice pretreated with penicillin became more susceptible to GAS challenge, and this reversed the attenuation from neutralization or depletion of IL-1β, neutrophils, or SpeB. Collectively, our results suggest that SpeB is essential to activate an IL-1β-driven neutrophil response. Unlike during invasive tissue infections, this is beneficial in the upper respiratory tract because it disrupts colonization resistance mediated by the microbiota. This provides experimental evidence that the notable inflammation of strep throat, which presents with significant swelling, pain, and neutrophil influx, is not an ineffectual immune response but rather is a GAS-directed remodeling of this niche for its pathogenic benefit.
Collapse
Affiliation(s)
- Doris L LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Raedeen Russell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA
- Antimicrobial Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Matsumura T, Nishiyama A, Aiko M, Ainai A, Ikebe T, Chiba J, Ato M, Takahashi Y. An anti-perfringolysin O monoclonal antibody cross-reactive with streptolysin O protects against streptococcal toxic shock syndrome. BMC Res Notes 2020; 13:419. [PMID: 32891180 PMCID: PMC7487723 DOI: 10.1186/s13104-020-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Streptococcus pyogenes (Group A Streptococcus; GAS) causes a variety of infections that include life-threatening, severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS), with > 30% mortality rate, despite effective antibiotics and treatment options. STSS clinical isolates highly express streptolysin O (SLO), a member of a large family of pore-forming toxins called cholesterol-dependent cytolysins (CDCs). SLO is an important toxic factor for GAS and may be an effective therapeutic target for the treatment of STSS. Our aim was to identify a monoclonal antibody (mAb) that reacts with SLO and has therapeutic potential for STSS treatment. Results We focused on mAbs that had originally been established as neutralizing reagents to perfringolysin O (PFO), another member of the CDC family, as some cross-reactivity with SLO had been reported. Here, we confirmed cross-reactivity of an anti-PFO mAb named HS1 with SLO. In vitro analysis revealed that HS1 mAb sufficiently prevented human neutrophils from being killed by STSS clinical isolates. Furthermore, prophylactic and therapeutic injection of HS1 mAb into C57BL/6 mice significantly improved the survival rate following lethal infection with an STSS clinical isolate. These results highlight the therapeutic potential of HS1 mAb for STSS treatment.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ayae Nishiyama
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Michio Aiko
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Joe Chiba
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayamashi, Tokyo, 189-0002, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
30
|
Matsumura T, Takahashi Y. The role of myeloid cells in prevention and control of group A streptococcal infections. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Matsumura T, Ikebe T, Arikawa K, Hosokawa M, Aiko M, Iguchi A, Togashi I, Kai S, Ohara S, Ohara N, Ohnishi M, Watanabe H, Kobayashi K, Takeyama H, Yamasaki S, Takahashi Y, Ato M. Sequential Sensing by TLR2 and Mincle Directs Immature Myeloid Cells to Protect against Invasive Group A Streptococcal Infection in Mice. Cell Rep 2020; 27:561-571.e6. [PMID: 30970258 DOI: 10.1016/j.celrep.2019.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 01/27/2023] Open
Abstract
Severe invasive group A Streptococcus (GAS) infection evades anti-bacterial immunity by attenuating the cellular components of innate immune responses. However, this loss of protection is compensated for by interferon (IFN)-γ-producing immature myeloid cells (γIMCs), which are selectively recruited upon severe invasive GAS infection in mice. Here, we demonstrate that γIMCs provide this IFN-γ-mediated protection by sequentially sensing GAS through two distinct pattern recognition receptors. In a mouse model, GAS is initially recognized by Toll-like receptor 2 (TLR2), which promptly induces interleukin (IL)-6 production in γIMCs. γIMC-derived IL-6 promotes the upregulation of a recently identified GAS-sensing receptor, macrophage-inducible C-type lectin (Mincle), in an autocrine or paracrine manner. Notably, blockade of γIMC-derived IL-6 abrogates Mincle expression, downstream IFN-γ production, and γIMC-mediated protection against severe invasive GAS infection. Thus, γIMCs regulate host protective immunity against severe invasive GAS infection via a TLR2-IL-6-Mincle axis.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Michio Aiko
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Aoi Iguchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Tokyo College of Biotechnology, 1-3-14 Kita-Kojiya, Ota-ku, Tokyo 144-0032, Japan
| | - Ikuko Togashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Tokyo College of Biotechnology, 1-3-14 Kita-Kojiya, Ota-ku, Tokyo 144-0032, Japan
| | - Sayaka Kai
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Sakiko Ohara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Naoya Ohara
- Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita-shi, Chiba 286-8686, Japan
| | - Kazuo Kobayashi
- Division of Public Health, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka-shi, Osaka 537-0025, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Division of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, Tokyo 189-0002, Japan
| |
Collapse
|
32
|
Dissecting Streptococcus pyogenes interaction with human. Arch Microbiol 2020; 202:2023-2032. [PMID: 32504132 DOI: 10.1007/s00203-020-01932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus pyogenes is a species of Gram-positive bacteria. It is also known as Group A Streptococcus (GAS) that causes pathogenesis to humans only. The GAS infection has several manifestations including invasive illness. Current research has linked the molecular modes of GAS virulence with substantial sequencing determinations for the isolation of genomes. These advances help to comprehend the molecular evolution resulting in the pandemic strains. Thus, it is indispensable to reconsider the philosophy that involves GAS pathogenesis. The recent investigations involve studying GAS in the nasopharynx and its capability to cause infection or asymptomatically reside in the host. These advances have been discussed in this article with an emphasis on the natural history of GAS and the evolutionary change in the pandemic strains. In addition, this review describes the unique functions for major pathogenicity determinants to comprehend their physiological effects.
Collapse
|
33
|
Otsuji K, Fukuda K, Maruoka T, Ogawa M, Saito M. Acquisition of genetic mutations in Group A Streptococci at infection site and subsequent systemic dissemination of the mutants with lethal mutations in a streptococcal toxic shock syndrome mouse model. Microb Pathog 2020; 143:104116. [PMID: 32135223 DOI: 10.1016/j.micpath.2020.104116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Streptococcal toxic shock syndrome (STSS) is caused mainly by Streptococcus pyogenes (Group A Streptococci, GAS), and it has a fatality rate of 25%. Mutations in CsrRS and RopB, which suppress the transcription of many virulence factors, were recently found in clinical isolates from STSS patients, but it is not fully understood when and where GAS acquires the mutations in the host. To resolve this question, we used our mouse model of human STSS to recover GAS strains from injections sites, spleens and blood of moribund mice with STSS-like symptoms, and analyzed the sequence of the covR/covS genes and ropB gene that encode CsrRS and RopB. Fifteen out of twenty mice that were inoculated transdermally into muscles with GAS organisms became moribund with STSS-like symptoms after more than 20 days after inoculation. We found that all the disseminated GAS strains recovered from the blood and spleens of the moribund mice had mutations in either the covR genes or the covS genes. The mutation sites in the GAS strains recovered from the blood and spleen were identical in each mouse, whereas the strains recovered from the muscles included a mix of disseminated strains, other mutant strains, and the parent strain. The mutant strains killed mice significantly earlier than the parent strain. Our data indicated that GAS organisms remained at the injection site, and various mutants appeared there, among which the strain that acquires the mutation in the covR/S gene is expected to overexpress various virulence factors simultaneously and cause systemic infection such as STSS.
Collapse
Affiliation(s)
- Ken Otsuji
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan; Department of Critical Care Medicine, Hospital of the University of Occupational and Environmental Health, Japan.
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Tsukasa Maruoka
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
34
|
Molecular Characterization of Streptococcus pyogenes Causing Invasive Disease in Pediatric Population in Spain A 12-year Study. Pediatr Infect Dis J 2019; 38:1168-1172. [PMID: 31738331 DOI: 10.1097/inf.0000000000002471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To perform a comprehensive description of the epidemiology of Streptococcus pyogenes invasive disease in the pediatric population in 2 regions of Spain (Catalonia and Gipuzkoa) through 12 years. METHODS All S. pyogenes isolates causing invasive disease in pediatric patients between 2005 and 2016 were included. The emm-type and the presence of 13 exotoxin genes (speA, speB, speC, speF, speG, speH, speI, speJ, speK, speL, speM, smeZ, ssa and slo) were determined in all 93 available isolates and the Multi Locus Sequece Typing in 10% of isolates of each different emm-type. RESULTS Overall, 103 cases of S. pyogenes invasive infections were detected: 77 in Catalonia and 26 in Gipuzkoa, being 50.5% females. The incidence rate per 100,000 children was 2.5 for Gipuzkoa and 2.6 for Catalonia, with no significant temporal trends. The median age was 30 months. The most frequent clinical presentations were: pneumonia (26.2%), bacteremia/sepsis (23.3%), septic arthritis/osteomyelitis (22.3%), cellulitis/mastoiditis (12.6%) and meningitis (6.8%). Eight children developed streptococcal toxic shock syndrome. Nine cases were preceded by varicella infection. The associated mortality rate was 3.9%. Three isolates were resistant to erythromycin, being one of them also resistant to clindamycin and 4 isolates were resistant to levofloxacine. Forteen different emm-types were detected being emm1/ST28 (40.9%) the most frequent clone in both regions followed by emm12/ST36-ST242, emm6/ST382, emm3/ST15, emm75/ST150 and emm4/ST38-39. speA gene was only detected in emm1 and emm3 isolates. Eight exotoxins were enough to assign an emm-type with a very high degree of accuracy (95%). The 30-valent vaccine would include 96.8% of isolates.
Collapse
|
35
|
Siemens N, Oehmcke-Hecht S, Hoßmann J, Skorka SB, Nijhuis RHT, Ruppen C, Skrede S, Rohde M, Schultz D, Lalk M, Itzek A, Pieper DH, van den Bout CJ, Claas ECJ, Kuijper EJ, Mauritz R, Sendi P, Wunderink HF, Norrby-Teglund A. Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment. J Innate Immun 2019; 12:291-303. [PMID: 31743913 DOI: 10.1159/000504002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/06/2019] [Indexed: 12/29/2022] Open
Abstract
A prominent feature of severe streptococcal infections is the profound inflammatory response that contributes to systemic toxicity. In sepsis the dysregulated host response involves both immunological and nonimmunological pathways. Here, we report a fatal case of an immunocompetent healthy female presenting with toxic shock and purpura fulminans caused by group B streptococcus (GBS; serotype III, CC19). The strain (LUMC16) was pigmented and hyperhemolytic. Stimulation of human primary cells with hyperhemolytic LUMC16 and STSS/NF-HH strains and pigment toxin resulted in a release of proinflammatory mediators, including tumor necrosis factor, interleukin (IL)-1β, and IL-6. In addition, LUMC16 induced blood clotting and showed factor XII activity on its surface, which was linked to the presence of the pigment. The expression of pigment was not linked to a mutation within the CovR/S region. In conclusion, our study shows that the hemolytic lipid toxin contributes to the ability of GBS to cause systemic hyperinflammation and interferes with the coagulation system.
Collapse
Affiliation(s)
- Nikolai Siemens
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden, .,Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany,
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology, and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Jörn Hoßmann
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Sebastian B Skorka
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Roel H T Nijhuis
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Microbiology and Medical Immunology, Meander Medical Center, Amersfoort, The Netherlands
| | - Corinne Ruppen
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Andreas Itzek
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | | | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Mauritz
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
36
|
Ikebe T, Okuno R, Uchitani Y, Kanda Y, Sasaki M, Uchida K, Chiba K, Yamaguchi T, Otsuka H, Suzuki M, Ohya H, Watanabe H, Ohnishi M. T serotyping of group a streptococcus isolated from patients with pharyngitis or streptococcal toxic shock syndrome in Japan between 2005 and 2017. J Infect Chemother 2019; 26:157-161. [PMID: 31735631 DOI: 10.1016/j.jiac.2019.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) is an important gram-positive human pathogen capable of causing diseases ranging from mild superficial skin and pharyngeal infections to more severe invasive diseases, including streptococcal toxic shock syndrome (STSS). GAS produces a T protein, and T serotyping has considerable discriminatory power for epidemiological characterization of GAS. To clarify the relationship between STSS and pharyngitis in Japan, we examined the T serotypes of GAS strains isolated from clinical specimens of streptococcal infections (STSS, 951 isolates; pharyngitis, 16268 isolates) from 2005 to 2017. The most prevalent T serotype from pharyngitis isolates was T12, followed by T1, T4, and TB3264. The most prevalent T serotype from STSS isolates was T1, followed by TB3264. Trend of increase and decrease in the frequency of T1 or TB3264 isolation from pharyngitis was correlated with that of STSS patients. The increase of T1 or TB3264 strain-infection in pharyngitis patients may increase the probability of causing STSS, indicating that careful monitoring of GAS serotypes is essential for the prediction of rapid increase of STSS in time to develop effective management strategies.
Collapse
Affiliation(s)
- Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yoshiko Kanda
- Laboratory of Microbiology, Oita Prefectural Institute of Health and Environment, 2-8 Takae-Nishi, Oita, 870-1117, Japan
| | - Mari Sasaki
- Laboratory of Microbiology, Oita Prefectural Institute of Health and Environment, 2-8 Takae-Nishi, Oita, 870-1117, Japan
| | - Kaoru Uchida
- Department of Bacteriology, Toyama Institute of Health, 17-1 Naka-Taikouyama, Imizu, Toyama, 939-0363, Japan
| | - Kazuki Chiba
- Department of Microbiology, Fukushima Prefectural Institute of Public Health, 16-6 Mitouchi, Hokida, Fukushima, 960-8560, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan
| | - Hitoshi Otsuka
- Department of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment, 2-5-67 Aoi, Yamaguchi 753-0821, Japan
| | - Miyuki Suzuki
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Hitomi Ohya
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, Kanagawa, 253-0087, Japan
| | - Haruo Watanabe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
37
|
Jain I, Danger JL, Burgess C, Uppal T, Sumby P. The group A Streptococcus accessory protein RocA: regulatory activity, interacting partners and influence on disease potential. Mol Microbiol 2019; 113:190-207. [PMID: 31660653 PMCID: PMC7028121 DOI: 10.1111/mmi.14410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
Abstract
The group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.g. necrotizing fasciitis). Strain‐ and serotype‐specific differences influence the ability of isolates to cause individual diseases. At the center of this variability is the CovR/S two‐component system and the accessory protein RocA. Through incompletely defined mechanisms, CovR/S and RocA repress the expression of more than a dozen immunomodulatory virulence factors. Alleviation of this repression is selected for during invasive infections, leading to the recovery of covR, covS or rocA mutant strains. Here, we investigated how RocA promotes CovR/S activity, identifying that RocA is a pseudokinase that interacts with CovS. Disruption of CovS kinase or phosphatase activities abolishes RocA function, consistent with RocA acting through the modulation of CovS activity. We also identified, in conflict with a previous study, that the RocA regulon includes the secreted protease‐encoding gene speB. Finally, we discovered an inverse correlation between the virulence of wild‐type, rocA mutant, covS mutant and covR mutant strains during invasive infection and their fitness in an ex vivo upper respiratory tract model. Our data inform on mechanisms that control GAS disease potential and provide an explanation for observed strain‐ and serotype‐specific variability in RocA function.
Collapse
Affiliation(s)
- Ira Jain
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Jessica L Danger
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Cameron Burgess
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Timsy Uppal
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Paul Sumby
- Department of Microbiology & Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
38
|
Tissue Tropism in Streptococcal Infection: Wild-Type M1T1 Group A Streptococcus Is Efficiently Cleared by Neutrophils Using an NADPH Oxidase-Dependent Mechanism in the Lung but Not in the Skin. Infect Immun 2019; 87:IAI.00527-19. [PMID: 31331954 DOI: 10.1128/iai.00527-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagA were full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagA infection was not cleared. Gp91phox knockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA-) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.
Collapse
|
39
|
Brouwer S, Walker MJ. The Serotype-Specific Role of Regulator of Cov Polymorphisms in the Pathogenesis of Invasive Group A Streptococcal Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1913-1915. [PMID: 31421073 DOI: 10.1016/j.ajpath.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 02/02/2023]
Abstract
This commentary highlights the article by Bernard et al that reports the role of rocA polymorphisms in the pathogenesis of Group A Streptococcus.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
40
|
Lynskey NN, Velarde JJ, Finn MB, Dove SL, Wessels MR. RocA Binds CsrS To Modulate CsrRS-Mediated Gene Regulation in Group A Streptococcus. mBio 2019; 10:e01495-19. [PMID: 31311885 PMCID: PMC6635533 DOI: 10.1128/mbio.01495-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
The orphan regulator RocA plays a critical role in the colonization and pathogenesis of the obligate human pathogen group A Streptococcus Despite multiple lines of evidence supporting a role for RocA as an auxiliary regulator of the control of virulence two-component regulatory system CsrRS (or CovRS), the mechanism of action of RocA remains unknown. Using a combination of in vitro and in vivo techniques, we now find that RocA interacts with CsrS in the streptococcal membrane via its N-terminal region, which contains seven transmembrane domains. This interaction is essential for RocA-mediated regulation of CsrRS function. Furthermore, we demonstrate that RocA forms homodimers via its cytoplasmic domain. The serotype-specific RocA truncation in M3 isolates alters this homotypic interaction, resulting in protein aggregation and impairment of RocA-mediated regulation. Taken together, our findings provide insight into the molecular requirements for functional interaction of RocA with CsrS to modulate CsrRS-mediated gene regulation.IMPORTANCE Bacterial two-component regulatory systems, comprising a membrane-bound sensor kinase and cytosolic response regulator, are critical in coordinating the bacterial response to changing environmental conditions. More recently, auxiliary regulators which act to modulate the activity of two-component systems, allowing integration of multiple signals and fine-tuning of bacterial responses, have been identified. RocA is a regulatory protein encoded by all serotypes of the important human pathogen group A Streptococcus Although RocA is known to exert its regulatory activity via the streptococcal two-component regulatory system CsrRS, the mechanism by which it functions was unknown. Based on new experimental evidence, we propose a model whereby RocA interacts with CsrS in the streptococcal cell membrane to enhance CsrS autokinase activity and subsequent phosphotransfer to the response regulator CsrR, which mediates transcriptional repression of target genes.
Collapse
Affiliation(s)
- Nicola N Lynskey
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge J Velarde
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meredith B Finn
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Complete Genome Sequence of
emm
1 Streptococcus pyogenes 10-85, a Strain Isolated from a Patient with Streptococcal Toxic Shock Syndrome in Japan. Microbiol Resour Announc 2019; 8:8/24/e00453-19. [PMID: 31196924 PMCID: PMC6588041 DOI: 10.1128/mra.00453-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Here, we announce the complete genome sequence of Streptococcus pyogenes strain 10-85 (type emm1), isolated from a patient with streptococcal toxic shock syndrome (STSS). The strain lacks the genomic regions encoding SalR-SalK, a two‐component regulatory system, and the adjacent type I restriction modification system. Here, we announce the complete genome sequence of Streptococcus pyogenes strain 10-85 (type emm1), isolated from a patient with streptococcal toxic shock syndrome (STSS). The strain lacks the genomic regions encoding SalR-SalK, a two‐component regulatory system, and the adjacent type I restriction modification system.
Collapse
|
42
|
Walker LW, Montoya L, Chochua S, Beall B, Green M. Increase in Invasive Group A Streptococcal Disease and Emergence of Mucoid Strains in a Pediatric Population: February-June 2017. Open Forum Infect Dis 2019; 6:ofz275. [PMID: 31281869 PMCID: PMC6602792 DOI: 10.1093/ofid/ofz275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/07/2019] [Indexed: 01/27/2023] Open
Abstract
Background Infection with group A Streptococcus (GAS) can cause severe systemic and locally invasive disease. Invasive group A streptococcal (iGAS) disease incidence varies both seasonally and year-to-year, and it may exhibit clustered outbreaks. We observed an upswing in iGAS cases at a tertiary care Children’s Hospital, prompting further characterization of local iGAS disease. Methods Cases of iGAS disease were abstracted from the medical record by manual chart review of all positive screening tests and cultures for GAS over a 4-year span. Incidence rates per 1000 hospital admissions and per 100 positive GAS tests were calculated and compared. Selected isolates were further characterized by whole-genome sequencing. Results Significant year-to-year differences in per-admission iGAS incidence rate were observed in February and June, although per-positive test incidence rates were not significantly different. Whole-genome sequencing revealed 2 dominant serotypes—emm3 and emm6—with high rates of mucoid phenotype and systemic bacteremia. Conclusions We document a significant but transient increase in iGAS disease incidence in 2 months of 2017. Genome sequencing revealed 2 dominant serotypes associated with mucoid phenotypes and severe disease, highlighting the dynamic nature of iGAS disease pattern.
Collapse
Affiliation(s)
| | - Lindsay Montoya
- Quality Services, UPMC Children's Hospital of Pittsburgh, Pennsylvania
| | - Sopio Chochua
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Bernard Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael Green
- Division of Infectious Diseases, Pennsylvania.,Department of Pediatrics and Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
43
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
44
|
Inoue M, Kako E, Kinugasa R, Sano F, Iguchi H, Sobue K. Necrotizing fasciitis following primary peritonitis caused by Streptococcus pyogenes with covS mutation in a healthy woman: a case report. JA Clin Rep 2019; 5:29. [PMID: 32025929 PMCID: PMC6966751 DOI: 10.1186/s40981-019-0249-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022] Open
Abstract
Background Primary peritonitis due to Streptococcus pyogenes (S. pyogenes) is uncommon in patients without comorbid conditions such as immunosuppression, nephritic disease, or liver cirrhosis. Furthermore, it does not cause another infection at the same time in a healthy person. However, several S. pyogenes mutants have been reported, and some of them exhibit strong virulence. Mutation of the control of virulence (cov) S gene of Streptococcus enhances bacterium survival by repressing negative regulators of virulence, which causes bacterial invasion of aseptic tissues, such as the parenteral space. We report a case of primary peritonitis and subsequent necrotizing fasciitis by the same S. pyogenes species with mutated covS in a previously healthy woman. Case presentation We present the case of a 55-year-old woman admitted to the hospital due to abdominal pain and nausea. She was treated for peritonitis. A few days later, she became hypotensive and tachycardic and was transferred to the intensive care unit (ICU) for the treatment of septic shock with primary peritonitis. On the second day of her ICU stay, both of her forearms developed swelling and redness around the peripheral injection site. The patient had developed necrotizing fasciitis. Since her skin symptoms spread rapidly, urgent debridement was performed. Her condition improved with antibiotic treatment and multiple episodes of debridement. S. pyogenes was detected in cultures of the patient’s blood, ascites, and skin. The identified strain was emm89 genotype and had a genetic mutation of covS. Conclusions S. pyogenes with covS mutation may spread from a portal, such as the upper respiratory tract or digestive system, to all organs immediately, causing septic shock. Infection with S. pyogenes with mutated genes should be considered in the differential diagnosis of gastrointestinal symptoms, even in a previously healthy patient.
Collapse
Affiliation(s)
- Masashi Inoue
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Rie Kinugasa
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Fumiaki Sano
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hironobu Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kazuya Sobue
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
45
|
Hasegawa T, Matsumoto M, Hata N, Yano H, Isaka M, Tatsuno I. Homologous role of CovRS two-component regulatory system in NAD+-glycohydrolase activity inStreptococcus dysgalactiaesubsp.equisimilisas inStreptococcus pyogenes. APMIS 2019; 127:87-92. [DOI: 10.1111/apm.12914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Tadao Hasegawa
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Masakado Matsumoto
- Department of Microbiology and Medical Zoology; Aichi Prefectural Institute of Public Health; Nagoya Japan
| | - Nanako Hata
- Department of Microbiology; Nagoya City University Hospital; Nagoya Japan
| | - Hisako Yano
- Department of Infection Control and Prevention Nursing; Nagoya City University Graduate School of Nursing; Nagoya Japan
| | - Masanori Isaka
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Ichiro Tatsuno
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| |
Collapse
|
46
|
Phosphorylation at the D53 but Not the T65 Residue of CovR Determines the Repression of rgg and speB Transcription in emm1- and emm49-Type Group A Streptococci. J Bacteriol 2019; 201:JB.00681-18. [PMID: 30478086 DOI: 10.1128/jb.00681-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023] Open
Abstract
CovR/CovS is a two-component regulatory system in group A Streptococcus and primarily acts as a transcriptional repressor. The D53 residue of CovR (CovRD53) is phosphorylated by the sensor kinase CovS, and the phosphorylated CovRD53 protein binds to the intergenic region of rgg-speB to inhibit speB transcription. Nonetheless, the transcription of rgg and speB is suppressed in covS mutants. The T65 residue of CovR is phosphorylated in a CovS-independent manner, and phosphorylation at the D53 and T65 residues of CovR is mutually exclusive. Therefore, how phosphorylation at the D53 and T65 residues of CovR contributes to the regulation of rgg and speB expression was elucidated. The transcription of rgg and speB was suppressed in the strain that cannot phosphorylate the D53 residue of CovR (CovRD53A mutant) but restored to levels similar to those of the wild-type strain in the CovRT65A mutant. Nonetheless, inactivation of the T65 residue phosphorylation in the CovRD53A mutant cannot derepress the rgg and speB transcription, indicating that phosphorylation at the T65 residue of CovR is not required for repressing rgg and speB transcription. Furthermore, trans complementation of the CovRD53A protein in the strain that expresses the phosphorylated CovRD53 resulted in the repression of rgg and speB transcription. Unlike the direct binding of the phosphorylated CovRD53 protein and its inhibition of speB transcription demonstrated previously, the present study showed that inactivation of phosphorylation at the D53 residue of CovR contributes dominantly in suppressing rgg and speB transcription.IMPORTANCE CovR/CovS is a two-component regulatory system in group A Streptococcus (GAS). The D53 residue of CovR is phosphorylated by CovS, and the phosphorylated CovRD53 binds to the rgg-speB intergenic region and acts as the transcriptional repressor. Nonetheless, the transcription of rgg and Rgg-controlled speB is upregulated in the covR mutant but inhibited in the covS mutant. The present study showed that nonphosphorylated CovRD53 protein inhibits rgg and speB transcription in the presence of the phosphorylated CovRD53 in vivo, indicating that nonphosphorylated CovRD53 has a dominant role in suppressing rgg transcription. These results reveal the roles of nonphosphorylated CovRD53 in regulating rgg transcription, which could contribute significantly to invasive phenotypes of covS mutants.
Collapse
|
47
|
Wessels MR. Capsular Polysaccharide of Group A Streptococcus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0050-2018. [PMID: 30632480 PMCID: PMC6342470 DOI: 10.1128/microbiolspec.gpp3-0050-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
Most clinical isolates of Streptococcus pyogenes elaborate a capsular polysaccharide, which is composed of hyaluronic acid, a high-molecular-mass polymer of alternating residues of N-acetyl glucosamine and glucuronic acid. Certain strains, particularly those of the M18 serotype, produce abundant amounts of capsule, resulting in formation of large, wet-appearing, translucent or "mucoid" colonies on solid media, whereas strains of M-types 4 and 22 produce none. Studies of acapsular mutant strains have provided evidence that the capsule enhances virulence in animal models of infection, an effect attributable, at least in part, to resistance to complement-mediated opsonophagocytic killing by leukocytes. The presence of the hyaluronic acid capsule may mask adhesins on the bacterial cell wall. However, the capsule itself can mediate bacterial attachment to host cells by binding to the hyaluronic-acid binding protein, CD44. Furthermore, binding of the S. pyogenes capsule to CD44 on host epithelial cells can trigger signaling events that disrupt cell-cell junctions and facilitate bacterial invasion into deep tissues. This article summarizes the biochemistry, genetics, regulation, and role in pathogenesis of this important virulence determinant.
Collapse
Affiliation(s)
- Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
48
|
Abstract
Group A Streptococcus (GAS) causes common pharyngitis and skin infections and occasional severe invasive infections. This review describes the recent progress on the pathogenesis of hypervirulent GAS. CovRS mutations are frequent among invasive GAS isolates and lead to hypervirulence. GAS CovRS mutants can be selected in vivo by neutrophils. The role of protease SpeB in source-sink dynamics of wild-type GAS and hypervirulent variants is discussed. Streptolysin S and PAF acetylhydrolase Sse critically and synergistically contribute to the inhibition of neutrophil recruitment by GAS CovS mutants. CovS mutations in emm3 GAS lead to the vascular invasion and enhance systemic GAS dissemination.
Collapse
|
49
|
Galloway-Peña J, DebRoy S, Brumlow C, Li X, Tran TT, Horstmann N, Yao H, Chen K, Wang F, Pan BF, Hawke DH, Thompson EJ, Arias CA, Fowler VG, Bhatti MM, Kalia A, Flores AR, Shelburne SA. Hypervirulent group A Streptococcus emergence in an acaspular background is associated with marked remodeling of the bacterial cell surface. PLoS One 2018; 13:e0207897. [PMID: 30517150 PMCID: PMC6281247 DOI: 10.1371/journal.pone.0207897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Inactivating mutations in the control of virulence two-component regulatory system (covRS) often account for the hypervirulent phenotype in severe, invasive group A streptococcal (GAS) infections. As CovR represses production of the anti-phagocytic hyaluronic acid capsule, high level capsule production is generally considered critical to the hypervirulent phenotype induced by CovRS inactivation. There have recently been large outbreaks of GAS strains lacking capsule, but there are currently no data on the virulence of covRS-mutated, acapsular strains in vivo. We investigated the impact of CovRS inactivation in acapsular serotype M4 strains using a wild-type (M4-SC-1) and a naturally-occurring CovS-inactivated strain (M4-LC-1) that contains an 11bp covS insertion. M4-LC-1 was significantly more virulent in a mouse bacteremia model but caused smaller lesions in a subcutaneous mouse model. Over 10% of the genome showed significantly different transcript levels in M4-LC-1 vs. M4-SC-1 strain. Notably, the Mga regulon and multiple cell surface protein-encoding genes were strongly upregulated-a finding not observed for CovS-inactivated, encapsulated M1 or M3 GAS strains. Consistent with the transcriptomic data, transmission electron microscopy revealed markedly altered cell surface morphology of M4-LC-1 compared to M4-SC-1. Insertional inactivation of covS in M4-SC-1 recapitulated the transcriptome and cell surface morphology. Analysis of the cell surface following CovS-inactivation revealed that the upregulated proteins were part of the Mga regulon. Inactivation of mga in M4-LC-1 reduced transcript levels of multiple cell surface proteins and reversed the cell surface alterations consistent with the effect of CovS inactivation on cell surface composition being mediated by Mga. CovRS-inactivating mutations were detected in 20% of current invasive serotype M4 strains in the United States. Thus, we discovered that hypervirulent M4 GAS strains with covRS mutations can arise in an acapsular background and that such hypervirulence is associated with profound alteration of the cell surface.
Collapse
Affiliation(s)
- Jessica Galloway-Peña
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sruti DebRoy
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chelcy Brumlow
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiqi Li
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Truc T. Tran
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Nicola Horstmann
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bih-Fang Pan
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David H. Hawke
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Erika J. Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cesar A. Arias
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, United States of America
- Molecular Genetics and Antimicrobial Resistance Unit-International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Micah M. Bhatti
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Awdhesh Kalia
- Graduate Program in Diagnostic Genetics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics and Division of Infectious Diseases, UTHealth McGovern Medical School, Houston, Texas, United States of America
- Department of Pediatrics, University of Texas Health Science Center McGovern Medical School, Houston, Texas, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- The Proteomics and Metabolomics Facility, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
50
|
Horstmann N, Tran CN, Brumlow C, DebRoy S, Yao H, Nogueras Gonzalez G, Makthal N, Kumaraswami M, Shelburne SA. Phosphatase activity of the control of virulence sensor kinase CovS is critical for the pathogenesis of group A streptococcus. PLoS Pathog 2018; 14:e1007354. [PMID: 30379939 PMCID: PMC6231683 DOI: 10.1371/journal.ppat.1007354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The control of virulence regulator/sensor kinase (CovRS) two-component system is critical to the infectivity of group A streptococcus (GAS), and CovRS inactivating mutations are frequently observed in GAS strains causing severe human infections. CovS modulates the phosphorylation status and with it the regulatory effect of its cognate regulator CovR via its kinase and phosphatase activity. However, the contribution of each aspect of CovS function to GAS pathogenesis is unknown. We created isoallelic GAS strains that differ only by defined mutations which either abrogate CovR phosphorylation, CovS kinase or CovS phosphatase activity in order to test the contribution of CovR phosphorylation levels to GAS virulence, emergence of hypervirulent CovS-inactivated strains during infection, and GAS global gene expression. These sets of strains were created in both serotype M1 and M3 backgrounds, two prevalent GAS disease-causing serotypes, to ascertain whether our observations were serotype-specific. In both serotypes, GAS strains lacking CovS phosphatase activity (CovS-T284A) were profoundly impaired in their ability to cause skin infection or colonize the oropharynx in mice and to survive neutrophil killing in human blood. Further, response to the human cathelicidin LL-37 was abrogated. Hypervirulent GAS isolates harboring inactivating CovRS mutations were not recovered from mice infected with M1 strain M1-CovS-T284A and only sparsely recovered from mice infected with M3 strain M3-CovS-T284A late in the infection course. Consistent with our virulence data, transcriptome analyses revealed increased repression of a broad array of virulence genes in the CovS phosphatase deficient strains, including the genes encoding the key anti-phagocytic M protein and its positive regulator Mga, which are not typically part of the CovRS transcriptome. Taken together, these data establish a key role for CovS phosphatase activity in GAS pathogenesis and suggest that CovS phosphatase activity could be a promising therapeutic target in GAS without promoting emergence of hypervirulent CovS-inactivated strains. Group A streptococcus (GAS), also known as Streptococcus pyogenes, causes a broad array of human infections of varying severity. Tight control of production of virulence factors is critical to GAS pathogenesis, and the control of virulence two-component signaling system (CovRS) is central to this process. The activity of the bifunctional histidine kinase CovS determines the phosphorylation status and thereby the activity of its cognate response regulator CovR. Herein, we sought to determine how varying CovR phosphorylation level (CovR~P) impacts GAS pathophysiology. Using three infection models, we discovered that GAS strains lacking CovS phosphatase activity resulting in high CovR~P levels had markedly impaired infectivity. Transcriptome analysis revealed that the hypovirulent phenotype of CovS phosphatase deficient strains is due to down-regulation of numerous genes encoding GAS virulence factors. We identified repression of additional virulence genes that are typically not controlled by CovR, thus expanding the CovR regulon at high CovR~P concentrations. Our data indicate that phosphatase activity of CovS sensor kinase is crucial for spatiotemporal regulation of GAS virulence gene expression. Thus, we propose that targeting the phosphatase activity of CovS sensor kinase could be a promising novel therapeutic approach to combat GAS disease.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chelcy Brumlow
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Sruti DebRoy
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Graciela Nogueras Gonzalez
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston TX, United States of America
- * E-mail:
| |
Collapse
|