1
|
Moradkasani S, Esmaeili S, Asadi Karam MR, Mostafavi E, Shahbazi B, Salek Farrokhi A, Chiani M, Badmasti F. Development of a multi-epitope vaccine from outer membrane proteins and identification of novel drug targets against Francisella tularensis: an In Silico approach. Front Immunol 2025; 16:1479862. [PMID: 40248715 PMCID: PMC12003292 DOI: 10.3389/fimmu.2025.1479862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Francisella tularensis is a category A potential thread agent, making the development of vaccines and countermeasures a high priority. Therefore, identifying new vaccine candidates and novel drug targets is essential for addressing this significant public health concern. Methods This study presents an in silico analysis of two strategies against F. tularensis infection: the development of a multi-epitope vaccine (MEV) and the identification of novel drug targets. Outer membrane proteins (OMPs) were predicted using subcellular localization tools and immunogenicity was evaluated using a reverse vaccinology pipeline. Epitopes from these OMPs were combined to create candidate MEV for prophylactic protection. Concurrently, cytoplasmic proteins were subjected to rigorous analysis to identify potential novel drug targets. Results Of 1,921 proteins, we identified 12 promising protein vaccine candidates from F. tularensis OMPs and proposed a multi-epitope vaccine (MEV) designed using seven immunodominant epitopes derived from four of these OMPs, including two hypothetical proteins (WP_003026145.1 and WP_003029346.1), an OmpA family protein (WP_003020808.1), and PD40 (WP_003021546.1). In addition, we proposed 10 novel drug targets for F. tularensis: Asp-tRNA (Asn)/Glu-tRNA (Gln) amidotransferase subunit GatC (WP_003017413.1), NAD(P)-binding protein (WP_042522581.1), 30S ribosomal protein S16 (WP_003023081.1), Class I SAM-dependent methyltransferase (WP_003022345.1), haloacid dehalogenase (WP_003014157.1), uroporphyrinogen-III synthase (WP_003022220.1), and four hypothetical proteins (WP_003017784.1, WP_003020080.1, WP_003020066.1, and WP_003022350.1). Conclusion This study designed an MEV and proposed novel drug targets to address tularemia, offering broad protection against various F. tularensis strains. MEV, with favorable physicochemical properties, showed strong potential through molecular docking and dynamic simulations. Immune simulations suggest that it may elicit robust responses against pathogens. The identification of novel drug targets can lead to the discovery of new antimicrobial agents. However, further in vitro and in vivo studies are required to validate their efficacy and capability.
Collapse
Affiliation(s)
- Safoura Moradkasani
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Saber Esmaeili
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | | | - Ehsan Mostafavi
- WHO Collaborating Centre for Vector-Borne Diseases, Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mohsen Chiani
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Mukherjee F, Prasad A, Bahekar VS, Rana SK, Rajendra L, Sharma GK, Srinivasan VA. Evaluation of immunogenicity and protective efficacy of a liposome containing Brucella abortus S19 outer membrane protein in BALB/c mice. IRANIAN JOURNAL OF VETERINARY RESEARCH 2016; 17:1-7. [PMID: 27656221 PMCID: PMC4898012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/22/2015] [Accepted: 10/10/2015] [Indexed: 06/06/2023]
Abstract
The use of liposome as an adjuvant and a vaccine carrier has been cited previously in the literature. It has also been shown to be effective in enhancing the immunogenicity of vaccine candidates. BALB/c mice immunized subcutaneously with outer membrane protein (OMP) of Brucella abortus S19 vaccine strain entrapped in a commercial cationic liposome (S19-OMP-liposome) for vaccine delivery, showed enhanced protection (P<0.05) compared to groups of mice inoculated with S19 OMP alone, S19 live B. abortus vaccine and liposome alone, when challenged intra-peritoneally with virulent B. abortus strain 544 at 30 days post-immunization (DPI). The S19-OMP-liposome preparation was found to be safer compared to the live B. abortus S19 vaccine at 15 days post challenge (DPC), as evidenced by the significant difference in spleen weight between S19-OMP-liposome, S19 OMP and S19 live as well as the liposome control groups (P<0.01). Antibody isotype response profiles of the experimental groups indicated that the immune response was Th1 cell mediated. The protective advantage conferred to mice immunized with S19-OMP entrapped in liposome over those immunized with the live B. abortus S19 version, could probably be related to the significantly different response of IgG2b at 30 DPI (P<0.01), IgG2a (P<0.01), IgG2b (P<0.01) and IgG3 (P<0.05) at the DPC stages, respectively.
Collapse
Affiliation(s)
- F. Mukherjee
- Research & Development Laboratory, National Dairy Development Board, Gachibowli, Hyderabad 500032, Telangana, India
- Authors contributed equally
| | - A. Prasad
- Research & Development Laboratory, National Dairy Development Board, Gachibowli, Hyderabad 500032, Telangana, India
- Department of Bio-Technology, Jawaharlal Nehru Technological University, Hyderabad 500032, Telangana, India
- Authors contributed equally
| | - V. S. Bahekar
- Research & Development Laboratory, National Dairy Development Board, Gachibowli, Hyderabad 500032, Telangana, India
| | - S. K. Rana
- Research & Development Laboratory, National Dairy Development Board, Gachibowli, Hyderabad 500032, Telangana, India
| | - L. Rajendra
- Research and Development, Santha Biotechnniques (AS Sanofi Company), Athivelly PlotNo. 4, Medchal, Ranga Reddy District, Hyderabad-501401, India
| | - G. K. Sharma
- Animal Health, National Dairy Development Board, Anand, 388001, Gujarat, India
| | - V. A. Srinivasan
- Animal Health, National Dairy Development Board, 33 Telecom Nagar, Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
3
|
Guo C, Peng B, Song M, Wu CW, Yang MJ, Zhang JY, Li H. Live Edwardsiella tarda vaccine enhances innate immunity by metabolic modulation in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2015; 47:664-673. [PMID: 26394266 DOI: 10.1016/j.fsi.2015.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Control of bacterial infection resides in the core of human health and sustainable animal breeding. Vaccines as an economic and efficient immunoprophylaxis have been widely accepted, but mechanisms for vaccines do not fully understand. Information regarding to metabolome in response to vaccines is not available. Here we explore the metabolic features by using GC/MS based metabolic profile and trace metabolic mechanisms in zebrafish (Dario rerio) in response to live Edwardsiella tarda vaccine. Pathway enrichment analysis shows that live vaccine activates biosynthesis of unsaturated fatty acids and the TCA cycle and reduces aminoacyl-tRNA biosynthesis, suggesting a metabolic characteristic feature in response to the live vaccine. We further demonstrate that hydroxyl radical is limited during stimulation. Finally, we reveal oleate induces effective protection against E. tarda infection. These results have implications for immunity study that metabolic regulation contributes to immune protection. Our findings enable us to propose novel therapeutic strategies on metabolism against bacterial infections.
Collapse
Affiliation(s)
- Chang Guo
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Bo Peng
- Department of Biological Sciences, The University of Texas, El Paso, TX 79968, USA
| | - Ming Song
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Chang-wen Wu
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Man-jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas, El Paso, TX 79968, USA
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Chandler JC, Sutherland MD, Harton MR, Molins CR, Anderson RV, Heaslip DG, Bosio CM, Belisle JT. Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J Proteome Res 2014; 14:664-75. [PMID: 25494920 PMCID: PMC4324441 DOI: 10.1021/pr500628k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Francisella tularensis causes disease (tularemia)
in a large number of mammals, including man. We previously demonstrated
enhanced efficacy of conventional antibiotic therapy for tularemia
by postexposure passive transfer of immune sera developed against
a F. tularensis LVS membrane protein fraction (MPF).
However, the protein composition of this immunogenic fraction was
not defined. Proteomic approaches were applied to define the protein
composition and identify the immunogens of MPF. MPF consisted of at
least 299 proteins and 2-D Western blot analyses using sera from MPF-immunized
and F. tularensis LVS-vaccinated mice coupled to
liquid chromatography–tandem mass spectrometry identified 24
immunoreactive protein spots containing 45 proteins. A reverse vaccinology
approach that applied labeling of F. tularensis LVS
surface proteins and bioinformatics was used to reduce the complexity
of potential target immunogens. Bioinformatics analyses of the immunoreactive
proteins reduced the number of immunogen targets to 32. Direct surface
labeling of F. tularensis LVS resulted in the identification
of 31 surface proteins. However, only 13 of these were reactive with
MPF and/or F. tularensis LVS immune sera. Collectively,
this use of orthogonal proteomic approaches reduced the complexity
of potential immunogens in MPF by 96% and allowed for prioritization
of target immunogens for antibody-based immunotherapies against tularemia.
Collapse
Affiliation(s)
- Jeffrey C Chandler
- Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Department of Microbiology, Immunology, and Pathology, Colorado State University , Campus Delivery 0922, Fort Collins 80523, Colorado, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Control of intracellular Francisella tularensis by different cell types and the role of nitric oxide. J Immunol Res 2014; 2014:694717. [PMID: 25170518 PMCID: PMC4129157 DOI: 10.1155/2014/694717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/14/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022] Open
Abstract
Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS) with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies.
Collapse
|
6
|
Gillette DD, Tridandapani S, Butchar JP. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front Cell Infect Microbiol 2014; 4:18. [PMID: 24600590 PMCID: PMC3930869 DOI: 10.3389/fcimb.2014.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.
Collapse
Affiliation(s)
- Devyn D Gillette
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
7
|
Lipids derived from virulent Francisella tularensis broadly inhibit pulmonary inflammation via toll-like receptor 2 and peroxisome proliferator-activated receptor α. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1531-40. [PMID: 23925884 DOI: 10.1128/cvi.00319-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses.
Collapse
|
8
|
Ireland R, Wang R, Alinger JB, Small P, Bosio CM. Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8. THE JOURNAL OF IMMUNOLOGY 2013; 191:1276-86. [PMID: 23817430 DOI: 10.4049/jimmunol.1300867] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Induction of innate immunity is essential for host survival of infection. Evasion and inhibition of innate immunity constitute a strategy used by pathogens, such as the highly virulent bacterium Francisella tularensis, to ensure their replication and transmission. The mechanism and bacterial components responsible for this suppression of innate immunity by F. tularensis are not defined. In this article, we demonstrate that lipids enriched from virulent F. tularensis strain SchuS4, but not attenuated live vaccine strain, inhibit inflammatory responses in vitro and in vivo. Suppression of inflammatory responses is associated with IκBα-independent inhibition of NF-κBp65 activation and selective inhibition of activation of IFN regulatory factors. Interference with NF-κBp65 and IFN regulatory factors is also observed following infection with viable SchuS4. Together these data provide novel insight into how highly virulent bacteria selectively modulate the host to interfere with innate immune responses required for survival of infection.
Collapse
Affiliation(s)
- Robin Ireland
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Francisella tularensis is a gram-negative bacterium that causes the zoonotic disease tularemia. Francisella is highly infectious via the respiratory route (~10 CFUs) and pulmonary infections due to type A strains of F. tularensis are highly lethal in untreated patients (>30%). In addition, no vaccines are licensed to prevent tularemia in humans. Due to the high infectivity and mortality of pulmonary tularemia, F. tularensis has been weaponized, including via the introduction of antibiotic resistance, by several countries. Because of the lack of efficacious vaccines, and concerns about F. tularensis acquiring resistance to antibiotics via natural or illicit means, augmentation of host immunity, and humoral immunotherapy have been investigated as countermeasures against tularemia. This manuscript will review advances made and challenges in the field of immunotherapy against tularemia.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Veterinary Pathobiology and Laboratory for Infectious Disease Research; University of Missouri; Columbia, MO USA
| |
Collapse
|
10
|
The stimulated innate resistance event in Bordetella pertussis infection is dependent on reactive oxygen species production. Infect Immun 2013; 81:2371-8. [PMID: 23630952 DOI: 10.1128/iai.00336-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exacerbated induction of innate immune responses in airways can abrogate diverse lung infections by a phenomenon known as stimulated innate resistance (StIR). We recently demonstrated that the enhancement of innate response activation can efficiently impair Bordetella pertussis colonization in a Toll-like receptor 4 (TLR4)-dependent manner. The aim of this work was to further characterize the effect of lipopolysaccharide (LPS) on StIR and to identify the mechanisms that mediate this process. Our results showed that bacterial infection was completely abrogated in treated mice when the LPS of B. pertussis (1 μg) was added before (48 h or 24 h), after (24 h), or simultaneously with the B. pertussis challenge (10(7) CFU). Moreover, we detected that LPS completely cleared bacterial infection as soon as 2 h posttreatment. This timing suggests that the observed StIR phenomenon should be mediated by fast-acting antimicrobial mechanisms. Although neutrophil recruitment was already evident at this time point, depletion assays using an anti-GR1 antibody showed that B. pertussis clearance was achieved even in the absence of neutrophils. To evaluate the possible role of free radicals in StIR, we performed animal assays using the antioxidant N-acetyl cysteine (NAC), which is known to inactivate oxidant species. NAC administration blocked the B. pertussis clearance induced by LPS. Nitrite concentrations were also increased in the LPS-treated mice; however, the inhibition of nitric oxide synthetases did not suppress the LPS-induced bacterial clearance. Taken together, our results show that reactive oxygen species (ROS) play an essential role in the TLR4-dependent innate clearance of B. pertussis.
Collapse
|
11
|
Crane DD, Griffin AJ, Wehrly TD, Bosio CM. B1a cells enhance susceptibility to infection with virulent Francisella tularensis via modulation of NK/NKT cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2756-66. [PMID: 23378429 DOI: 10.4049/jimmunol.1202697] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B1a cells are an important source of natural Abs, Abs directed against T-independent Ags, and are a primary source of IL-10. Bruton's tyrosine kinase (btk) is a cytoplasmic kinase that is essential for mediating signals from the BCR and is critical for development of B1a cells. Consequentially, animals lacking btk have few B1a cells, minimal Ab responses, and can preferentially generate Th1-type immune responses following infection. B1a cells have been shown to aid in protection against infection with attenuated Francisella tularensis, but their role in infection mediated by fully virulent F. tularensis is not known. Therefore, we used mice with defective btk (CBA/CaHN-Btk(XID)/J [XID mice]) to determine the contribution of B1a cells in defense against the virulent F. tularensis ssp. tularensis strain SchuS4. Surprisingly, XID mice displayed increased resistance to pulmonary infection with F. tularensis. Specifically, XID mice had enhanced clearance of bacteria from the lung and spleen and significantly greater survival of infection compared with wild-type controls. We revealed that resistance to infection in XID mice was associated with decreased numbers of IL-10-producing B1a cells and concomitant increased numbers of IL-12-producing macrophages and IFN-γ-producing NK/NKT cells. Adoptive transfer of wild-type B1a cells into XID mice reversed the control of bacterial replication. Similarly, depletion of NK/NKT cells also increased bacterial burdens in XID mice. Together, our data suggest B cell-NK/NKT cell cross-talk is a critical pivot controlling survival of infection with virulent F. tularensis.
Collapse
Affiliation(s)
- Deborah D Crane
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
12
|
Sutherland MD, Goodyear AW, Troyer RM, Chandler JC, Dow SW, Belisle JT. Post-exposure immunization against Francisella tularensis membrane proteins augments protective efficacy of gentamicin in a mouse model of pneumonic tularemia. Vaccine 2012; 30:4977-82. [PMID: 22652404 DOI: 10.1016/j.vaccine.2012.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022]
Abstract
Successful treatment of pneumonic infection with Francisella tularensis, the causative agent of tularemia, requires rapid initiation of antibiotic therapy, yet even then treatment failures may occur. Consequently, new treatments are needed to enhance the effectiveness of antimicrobial therapy for acute pneumonic tularemia. In a prior study, immunization with F. tularensis membrane protein fraction (MPF) antigens 3 days prior to challenge was reported to induce significant protection from inhalational challenge. We therefore hypothesized that MPF immunization might also be effective in enhancing infection control if combined with antibiotic therapy and administered after infection as post-exposure immunotherapy. To address this question, a 24h post-exposure treatment model of acute pulmonary Schu S4 strain of F. tularensis infection in BALB/c mice was used. Following exposure, mice were immunized with MPF and treated with low-dose gentamicin, alone or in combination and the effects on survival, bacterial burden and dissemination were assessed. We found that immunization with MPF significantly increased the effectiveness of subtherapeutic gentamicin for post-exposure treatment of pneumonic tularemia, with 100% of combination-treated mice surviving long-term. Bacterial burdens in the liver and spleen were significantly reduced in combination MPF-gentamicin treated mice at 7 days after challenge. Passively transferred antibodies against MPF antigens also increased the effectiveness of gentamicin therapy. Thus, we concluded that post-exposure immunization with MPF antigens was an effective means of enhancing conventional antimicrobial therapy for pneumonic tularemia.
Collapse
Affiliation(s)
- Marjorie D Sutherland
- Department of Microbiology, Immunology and Pathology, Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
13
|
Hancock REW, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 2012; 10:243-54. [PMID: 22421877 DOI: 10.1038/nrmicro2745] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite our efforts to halt the increase and spread of antimicrobial resistance, bacteria continue to become less susceptible to antimicrobial drugs over time, and rates of discovery for new antibiotics are declining. Thus, it is essential to explore new paradigms for anti-infective therapy. One promising approach involves host-directed immunomodulatory therapies, whereby natural mechanisms in the host are exploited to enhance therapeutic benefit. The objective is to initiate or enhance protective antimicrobial immunity while limiting inflammation-induced tissue injury. A range of potential immune modulators have been proposed, including innate defence regulator peptides and agonists of innate immune components such as Toll-like receptors and NOD-like receptors.
Collapse
Affiliation(s)
- Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, Room 232, 2259 Lower Mall Research Station, University of British Columbia, Vancouver, V6T 1Z4 British Columbia, Canada.
| | | | | |
Collapse
|
14
|
Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW. Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012; 8:e1002587. [PMID: 22438809 PMCID: PMC3305411 DOI: 10.1371/journal.ppat.1002587] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/30/2012] [Indexed: 01/28/2023] Open
Abstract
Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens.
Collapse
Affiliation(s)
- Jerod A Skyberg
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Crane DD, Scott DP, Bosio CM. Generation of a convalescent model of virulent Francisella tularensis infection for assessment of host requirements for survival of tularemia. PLoS One 2012; 7:e33349. [PMID: 22428026 PMCID: PMC3299770 DOI: 10.1371/journal.pone.0033349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/12/2012] [Indexed: 01/04/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection.
Collapse
Affiliation(s)
- Deborah D. Crane
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Veterinary Pathology Section, Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 2011; 10:513-21. [PMID: 21506648 DOI: 10.1586/erv.11.17] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.
Collapse
Affiliation(s)
- Dennis Christensen
- Statens Serum Institut, Department of Infectious Disease Immunology, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
17
|
Zarrella TM, Singh A, Bitsaktsis C, Rahman T, Sahay B, Feustel PJ, Gosselin EJ, Sellati TJ, Hazlett KRO. Host-adaptation of Francisella tularensis alters the bacterium's surface-carbohydrates to hinder effectors of innate and adaptive immunity. PLoS One 2011; 6:e22335. [PMID: 21799828 PMCID: PMC3142145 DOI: 10.1371/journal.pone.0022335] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/27/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Tiffany M. Zarrella
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Anju Singh
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Constantine Bitsaktsis
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Tabassum Rahman
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Bikash Sahay
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Paul J. Feustel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Edmund J. Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Karsten R. O. Hazlett
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
18
|
Bauler TJ, Chase JC, Bosio CM. IFN-β mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2011; 187:1845-55. [PMID: 21753150 DOI: 10.4049/jimmunol.1100377] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Active suppression of inflammation is a strategy used by many viral and bacterial pathogens, including virulent strains of the bacterium Francisella tularensis, to enable colonization and infection in susceptible hosts. In this study, we demonstrated that virulent F. tularensis strain SchuS4 selectively inhibits production of IL-12p40 in primary human cells via induction of IFN-β. In contrast to the attenuated live vaccine strain, infection of human dendritic cells with virulent SchuS4 failed to induce production of many cytokines associated with inflammation (e.g., TNF-α and IL-12p40). Furthermore, SchuS4 actively suppressed secretion of these cytokines. Assessment of changes in the expression of host genes associated with suppression of inflammatory responses revealed that SchuS4, but not live vaccine strain, induced IFN-β following infection of human dendritic cells. Phagocytosis of SchuS4 and endosomal acidification were required for induction of IFN-β. Further, using a defined mutant of SchuS4, we demonstrated that the presence of bacteria in the cytosol was required, but not sufficient, for induction of IFN-β. Surprisingly, unlike previous reports, induction of IFN-β by F. tularensis was not required for activation of the inflammasome, was not associated with exacerbation of inflammatory responses, and did not control SchuS4 replication when added exogenously. Rather, IFN-β selectively suppressed the ability of SchuS4-infected dendritic cells to produce IL-12p40. Together, these data demonstrated a novel mechanism by which virulent bacteria, in contrast to attenuated strains, modulate human cells to cause disease.
Collapse
Affiliation(s)
- Timothy J Bauler
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites/Rocky Mountain Laboratories/National Institute of Allergy and Infectious Disease/National Institutes of Health, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
19
|
Bosio CM. The subversion of the immune system by francisella tularensis. Front Microbiol 2011; 2:9. [PMID: 21687406 PMCID: PMC3109352 DOI: 10.3389/fmicb.2011.00009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/17/2011] [Indexed: 12/11/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterial pathogen and the causative agent of tularemia. Perhaps the most impressive feature of this bacterium is its ability to cause lethal disease following inoculation of as few as 15 organisms. This remarkable virulence is, in part, attributed to the ability of this microorganism to evade, disrupt, and modulate host immune responses. The objective of this review is to discuss the mechanisms utilized by F. tularensis to evade and inhibit innate and adaptive immune responses. The capability of F. tularensis to interfere with developing immunity in the host was appreciated decades ago. Early studies in humans were the first to demonstrate the ability of F. tularensis to suppress innate immunity. This work noted that humans suffering from tularemia failed to respond to a secondary challenge of endotoxin isolated from unrelated bacteria. Further, anecdotal observations of individuals becoming repeatedly infected with virulent strains of F. tularensis suggests that this bacterium also interferes with the generation of adequate adaptive immunity. Recent advances utilizing the mouse model for in vivo studies and human cells for in vitro work have identified specific bacterial and host compounds that play a role in mediating ubiquitous suppression of the host immune response. Compilation of this work will undoubtedly aid in enhancing our understanding of the myriad of mechanisms utilized by virulent F. tularensis for successful infection, colonization, and pathogenesis in the mammalian host.
Collapse
Affiliation(s)
- Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| |
Collapse
|
20
|
Stundick MV, Metz M, Sampath A, Larsen JC. State-of-the-art therapeutic medical countermeasures for bacterial threat agents. Drug Dev Res 2011. [DOI: 10.1002/ddr.20462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|