1
|
Kozubowski L, Berman J. The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance. FEMS Microbiol Rev 2025; 49:fuaf001. [PMID: 39809571 PMCID: PMC11756289 DOI: 10.1093/femsre/fuaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025] Open
Abstract
Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Chen M, Huang Y, Ma L, Liu JJ, Cao Y, Zhao PJ, Mo MH. Cis-3-Indoleacrylic Acid: A Nematicidal Compound from Streptomyces youssoufiensis YMF3.862 as V-ATPase Inhibitor on Meloidogyne incognita. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24347-24358. [PMID: 39453611 DOI: 10.1021/acs.jafc.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The application of the bionematicides derived from microorganisms and their secondary metabolites represents a promising strategy for managing root-knot nematodes. In this study, a nematicidal compound, cis-3-indoleacrylic acid, was isolated from Streptomyces youssoufiensis YMF3.862. This compound caused Meloidogyne incognita juveniles to have swollen bodies with apparent cracks on the cuticle surface. The LC50 value of cis-3-indoleacrylic acid against juveniles was 16.31 μg/mL 24 h of post-treatment. Cis-3-indoleacrylic acid at 20 μg/mL significantly inhibited V-ATPase expression and remarkably decreased enzyme activity by 84.41%. As an inhibitor of V-ATPase, cis-3-indoleacrylic acid caused significant H+ accumulation in nematode bodies, resulting in lower intracellular pH values and higher extracellular pH values of M. incognita. Application of 50 μg/mL cis-3-indoleacrylic acid generated a 71.06% control efficiency against M. incognita on tomatoes. The combination results of this study indicated that cis-3-indoleacrylic acid can be developed as a natural nematicide for controlling M. incognita.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ying Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Jian-Jin Liu
- Puer Corporation of Yunnan Tobacco Corporation, Puer 665000, P. R. China
| | - Yi Cao
- Guizhou Academy of Tobacco Agricultural Sciences, Guiyang 550081, P. R. China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| | - Ming-He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Koren V, Ben-Zeev E, Voronov I, Fridman M. Chiral Fluorescent Antifungal Azole Probes Detect Resistance, Uptake Dynamics, and Subcellular Distribution in Candida Species. JACS AU 2024; 4:3157-3169. [PMID: 39211628 PMCID: PMC11350599 DOI: 10.1021/jacsau.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Azoles are essential for fungal infection treatment, yet the increasing resistance highlights the need for innovative diagnostic tools and strategies to revitalize this class of antifungals. We developed two enantiomers of a fluorescent antifungal azole probe (1 S and 1 R ), analyzing 60 Candida strains via live-cell microscopy. A database of azole distribution images in strains of Candida albicans, Candida glabrata, and Candida parapsilosis, among the most important pathogenic Candida species, was established and analyzed. This analysis revealed distinct populations of yeast cells based on the correlation between fluorescent probe uptake and cell diameter. Varied uptake levels and subcellular distribution patterns were observed in C. albicans, C. glabrata, and C. parapsilosis, with the latter displaying increased localization to lipid droplets. Comparison of the more potent fluorescent antifungal azole probe enantiomer 1 S with the moderately potent enantiomer 1 R highlighted time-dependent differences in the uptake profiles. The former displayed a marked elevation in uptake after approximately 150 min, indicating the time required for significant cell permeabilization to occur and its association with the azole's antifungal activity potency. Divergent uptake levels between susceptible and high efflux-based azole-resistant strains were detected, offering a rapid diagnostic approach for identifying azole resistance. This study highlights unique insights achievable through fluorescent antifungal azole probes, unraveling the complexities of azole resistance, subcellular dynamics, and uptake within fungal pathogens.
Collapse
Affiliation(s)
- Vlad Koren
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Ben-Zeev
- Ilana
and Pascal Mantoux Institute for Bioinformatics and Nancy and Stephen
Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ivan Voronov
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School
of Chemistry, Raymond and Beverley Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Choi JY, Gihaz S, Munshi M, Singh P, Vydyam P, Hamel P, Adams EM, Sun X, Khalimonchuk O, Fuller K, Ben Mamoun C. Vitamin B5 metabolism is essential for vacuolar and mitochondrial functions and drug detoxification in fungi. Commun Biol 2024; 7:894. [PMID: 39043829 PMCID: PMC11266677 DOI: 10.1038/s42003-024-06595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Fungal infections, a leading cause of mortality among eukaryotic pathogens, pose a growing global health threat due to the rise of drug-resistant strains. New therapeutic strategies are urgently needed to combat this challenge. The PCA pathway for biosynthesis of Co-enzyme A (CoA) and Acetyl-CoA (AcCoA) from vitamin B5 (pantothenic acid) has been validated as an excellent target for the development of new antimicrobials against fungi and protozoa. The pathway regulates key cellular processes including metabolism of fatty acids, amino acids, sterols, and heme. In this study, we provide genetic evidence that disruption of the PCA pathway in Saccharomyces cerevisiae results in a significant alteration in the susceptibility of fungi to a wide range of xenobiotics, including clinically approved antifungal drugs through alteration of vacuolar morphology and drug detoxification. The drug potentiation mediated by genetic regulation of genes in the PCA pathway could be recapitulated using the pantazine analog PZ-2891 as well as the celecoxib derivative, AR-12 through inhibition of fungal AcCoA synthase activity. Collectively, the data validate the PCA pathway as a suitable target for enhancing the efficacy and safety of current antifungal therapies.
Collapse
Affiliation(s)
- Jae-Yeon Choi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pallavi Singh
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Pratap Vydyam
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Patrice Hamel
- Departments of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Emily M Adams
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Redox Biology Center, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Kevin Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Medicine, Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Coupland CE, Karimi R, Bueler SA, Liang Y, Courbon GM, Di Trani JM, Wong CJ, Saghian R, Youn JY, Wang LY, Rubinstein JL. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024; 385:168-174. [PMID: 38900912 DOI: 10.1126/science.adp5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.
Collapse
Affiliation(s)
- Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Yingke Liang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gautier M Courbon
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Justin M Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON M5G 1X5, Canada
| | - Rayan Saghian
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Young Youn
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lu-Yang Wang
- Neuroscience and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X1, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Schuster M, Kilaru S, Steinberg G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat Commun 2024; 15:4357. [PMID: 38821954 PMCID: PMC11143370 DOI: 10.1038/s41467-024-48157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.
Collapse
|
7
|
Kim Y. Fisetin-Mediated Perturbations of Membrane Permeability and Intracellular pH in Candida albicans. J Microbiol Biotechnol 2024; 34:783-794. [PMID: 38213272 PMCID: PMC11091701 DOI: 10.4014/jmb.2311.11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The antifungal activity of fisetin against Candida albicans is explored, elucidating a mechanism centered on membrane permeabilization and ensuing disruption of pH homeostasis. The Minimum Inhibitory Concentration (MIC) of fisetin, indicative of its interaction with the fungal membrane, increases in the presence of ergosterol. Hoechst 33342 and propidium-iodide staining reveal substantial propidium-iodide accumulation in fisetin-treated C. albicans cells at their MIC, with crystal violet uptake assays confirming fisetin-induced membrane permeabilization. Leakage analysis demonstrates a significant release of DNA and proteins in fisetin-treated cells compared to controls, underscoring the antifungal effect through membrane disruption. Green fluorescence, evident in both the cytoplasm and vacuoles of fisetin-treated cells under BCECF, AM staining, stands in contrast to controls where only acidic vacuoles exhibit staining. Ratiometric pH measurements using BCECF, AM reveal a noteworthy reduction in intracellular pH in fisetin-treated cells, emphasizing its impact on pH homeostasis. DiBAC4(3) uptake assays demonstrate membrane hyperpolarization in fisetin-treated cells, suggesting potential disruptions in ion flux and cellular homeostasis. These results provide comprehensive insights into the antifungal mechanisms of fisetin, positioning it as a promising therapeutic agent against Candida infections.
Collapse
Affiliation(s)
- Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon 27136, Republic of Korea
| |
Collapse
|
8
|
Edrich ESM, Duvenage L, Gourlay CW. Alternative Oxidase - Aid or obstacle to combat the rise of fungal pathogens? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149031. [PMID: 38195037 DOI: 10.1016/j.bbabio.2024.149031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Fungal pathogens present a growing threat to both humans and global health security alike. Increasing evidence of antifungal resistance in fungal populations that infect both humans and plant species has increased reliance on combination therapies and shown the need for new antifungal therapeutic targets to be investigated. Here, we review the roles of mitochondria and fungal respiration in pathogenesis and discuss the role of the Alternative Oxidase enzyme (Aox) in both human fungal pathogens and phytopathogens. Increasing evidence exists for Aox within mechanisms that underpin fungal virulence. Aox also plays important roles in adaptability that may prove useful within dual targeted fungal-specific therapeutic approaches. As improved fungal specific mitochondrial and Aox inhibitors are under development we may see this as an emerging target for future approaches to tackling the growing challenge of fungal infection.
Collapse
Affiliation(s)
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Kent CT2 9HY, UK.
| |
Collapse
|
9
|
Bento-Oliveira A, Starosta R, de Almeida RFM. Interaction of the antifungal ketoconazole and its diphenylphosphine derivatives with lipid bilayers: Insights into their antifungal action. Arch Biochem Biophys 2024; 753:109919. [PMID: 38307316 DOI: 10.1016/j.abb.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ketoconazole (Ke) is an important antifungal drug, and two of its diphenylphosphinemethyl derivatives (KeP: Ph2PCH2-Ke and KeOP: Ph2P(O)CH2-Ke) have shown improved antifungal activity, namely against a yeast strain lacking ergosterol, suggesting alternative modes of action for azole compounds. In this context, the interactions of these compounds with a model of the cell membrane were investigated, using POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) large unilamellar vesicles and taking advantage of the intrinsic fluorescence of Ke, KeP and KeOP. Steady-state fluorescence spectra and anisotropy, including partition and aggregation studies, as well as fluorescence lifetime measurements, were carried out. In addition, the ability of the compounds to increase membrane permeability was assessed through carboxyfluorescein leakage. The membrane/water mole fraction partition coefficients (Kp,x): (3.31 ± 0.36) x105, (8.31 ± 1.60) x105 and (4.66 ± 0.72) x106, for Ke, KeP and KeOP, respectively, show that all three compounds have moderate to high affinity for the lipid bilayer. Moreover, KeP, and particularly KeOP interact more efficiently with POPC bilayers than Ke, which correlates well with their in vitro antifungal activity. Furthermore, although the three compounds disturb the lipid bilayer, KeOP is the quickest and most efficient one. Hence, the higher affinity and ability to permeabilize the membrane of KeOP when compared to that of KeP, despite the higher lipophilicity of the latter, points to an important role of Ph2P(O)CH2- oxygen. Overall, this work suggests that membrane interactions are important for the antifungal activity of these azoles and should be considered in the design of new therapeutic agents.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
10
|
Gao L, Xia X, Gong X, Zhang H, Sun Y. In vitro interactions of proton pump inhibitors and azoles against pathogenic fungi. Front Cell Infect Microbiol 2024; 14:1296151. [PMID: 38304196 PMCID: PMC10831725 DOI: 10.3389/fcimb.2024.1296151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction Azole resistance has been increasingly reported and become an issue for clinical managements of invasive mycoses. New strategy with combination therapy arises as a valuable and promising alternative option. The aim of the present study is to investigate the in vitro combinational effect of proton pump inhibitors (PPIs) and azoles against pathogenic fungi. Methods In vitro interactions of PPIs including omeprazole (OME), lansoprazole (LAN), pantoprazole (PAN), and rabeprazole (RAB), and commonly used azoles including itraconazole (ITC), posaconazole (POS), voriconazole (VRC) and fluconazole (FLC), were investigated via broth microdilution chequerboard procedure adapted from the CLSI M27-A3 and M38-A2. A total of 67 clinically isolated strains, namely 27 strains of Aspergillus spp., 16 strains of Candida spp., and 24 strains of dematiaceous fungi, were studied. C. parapsilosis (ATCC 22019) and A. flavus (ATCC 204304) was included to ensure quality control. Results PPIs individually did not exert any significant antifungal activity. The combination of OME with ITC, POS, or VRC showed synergism against 77.6%, 86.6%, and 4% strains of tested pathogenic fungi, respectively, while synergism of OME/FLC was observed in 50% strains of Candida spp. Synergism between PAN and ITC, POS, or VRC was observed against 47.8%, 77.6% and 1.5% strains of tested fungi, respectively, while synergism of PNA/FLC was observed in 50% strains of Candida spp. Synergism of LAN with ITC, POS, or VRC was observed against 86.6%, 86.6%, and 3% of tested strains, respectively, while synergism of LAN/FLC was observed in 31.3% strains of Candida spp. Synergy of the combination of RAB with ITC, POS, or VRC was observed against 25.4%, 64.2%, and 4.5% of tested strains, respectively, while synergism of RAB/FLC was observed in 12.5% of Candida spp.. Among PPIs, synergism was least observed between RAB and triazoles, while among triazoles, synergism was least observed between VRC and PPIs. Among species, synergy was much more frequently observed in Aspergillus spp. and dematiaceous fungi as compared to Candida spp. Antagonism between PPIs with ITC or VRC was occasionally observed in Aspergillus spp. and dematiaceous fungi. It is notable that PPIs combined with azoles showed synergy against azole resistant A. fumigatus, and resulted in category change of susceptibility of ITC and POS against Candida spp. Discussion The results suggested that PPIs combined with azoles has the potential to enhance the susceptibilities of azoles against multiple pathogenic fungi and could be a promising strategy to overcome azole resistance issues. However, further investigations are warranted to study the combinational efficacy in more isolates and more species, to investigate the underlying mechanism of interaction and to evaluate the potential for concomitant use of these agents in human.
Collapse
Affiliation(s)
- Lujuan Gao
- Department of Dermatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqiong Xia
- Department of Dermatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gong
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Heng Zhang
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
12
|
Khan F, Jeong GJ, Javaid A, Thuy Nguyen Pham D, Tabassum N, Kim YM. Surface adherence and vacuolar internalization of bacterial pathogens to the Candida spp. cells: Mechanism of persistence and propagation. J Adv Res 2023; 53:115-136. [PMID: 36572338 PMCID: PMC10658324 DOI: 10.1016/j.jare.2022.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The co-existence of Candida albicans with the bacteria in the host tissues and organs displays interactions at competitive, antagonistic, and synergistic levels. Several pathogenic bacteria take advantage of such types of interaction for their survival and proliferation. The chemical interaction involves the signaling molecules produced by the bacteria or Candida spp., whereas the physical attachment occurs by involving the surface proteins of the bacteria and Candida. In addition, bacterial pathogens have emerged to internalize inside the C. albicans vacuole, which is one of the inherent properties of the endosymbiotic relationship between the bacteria and the eukaryotic host. AIM OF REVIEW The interaction occurring by the involvement of surface protein from diverse bacterial species with Candida species has been discussed in detail in this paper. An in silico molecular docking study was performed between the surface proteins of different bacterial species and Als3P of C. albicans to explain the molecular mechanism involved in the Als3P-dependent interaction. Furthermore, in order to understand the specificity of C. albicans interaction with Als3P, the evolutionary relatedness of several bacterial surface proteins has been investigated. Furthermore, the environmental factors that influence bacterial pathogen internalization into the Candida vacuole have been addressed. Moreover, the review presented future perspectives for disrupting the cross-kingdom interaction and eradicating the endosymbiotic bacterial pathogens. KEY SCIENTIFIC CONCEPTS OF REVIEW With the involvement of cross-kingdom interactions and endosymbiotic relationships, the bacterial pathogens escape from the environmental stresses and the antimicrobial activity of the host immune system. Thus, the study of interactions between Candida and bacterial pathogens is of high clinical significance.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Aydinoglu F, Kuloglu A. Nicotiana benthamiana as a model plant host for Fusarium verticillioides to investigate RNA interference, cross-kingdom RNA exchange, and competitive endogenous RNA (ceRNA) network. Mol Biol Rep 2023; 50:8061-8072. [PMID: 37540455 DOI: 10.1007/s11033-023-08698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Fusarium verticillioides is among the most devastating fungal pathogen of cereals. Therefore, it is crucial to employ effective and long-term strategies for managing F. verticillioides for sustainable agriculture. RNA interference (RNAi) being a natural defense mechanism of plants via regulation of gene expression, has emerged as a promising tool for eradicating pathogens. RNAi also operates between the host and pathogen through RNA exchange. RNAi interacts with competitive endogenous RNAs (ceRNAs) including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA. Due to the lack of an elaborate model to investigate all these mechanisms, this study aimed to establish a Nicotiana benthamiana (Nb)-F. verticillioides (Fv) phyto-pathosystem as an experimental model. METHODS AND RESULTS Nb seedlings were inoculated with Fv, and the pathogenicity was monitored morphologically, microscopically, biochemically, and transcriptionally. To observe the role of RNAi and RNA-exchange in pathogenicity, Nb-miR172 and Nb-miR399 targeting Nb-lncRNA-IPS (Induced by Phosphate Starvation1) and Nb-AP2 (Apetala2) and Nb-PHO2 (phosphate over-accumulator) ceRNA network and Fv-V-ATPase (Vesicle-fusing ATPase) targeted by Nb-miR172 were investigated. As a result, epidermal cell density, leaf area, petiole length, and chlorophyll content were reduced while the density of stomata and trichome and phenolic content and the activity of ascorbate peroxidase (APX) and glutathione reductase (GR) were increased in response to Fv infection in Nb. The expression of AP2 and PHO2 were downregulated against Fv but no significant changes were detected in IPS, miR172, and miR399 expression. CONCLUSION These findings suggested the Fv-Nb phyto-pathosystem as a useful experimental model to reveal genetic regulations.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| | - Aslihan Kuloglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
14
|
Ouyang Q, Shi S, Liu Y, Yang Y, Zhang Y, Yuan X, Tao N, Li L. Inhibitory Mechanisms of trans-2-Hexenal on the Growth of Geotrichum citri- aurantii. J Fungi (Basel) 2023; 9:930. [PMID: 37755038 PMCID: PMC10532542 DOI: 10.3390/jof9090930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Geotrichum citri-aurantii (G. citri-aurantii) is one of the most important postharvest pathogens leading to a postharvest loss of citrus by causing sour rot. In this study, the antifungal activity of trans-2-hexenal, a natural component of essential oil, against G. citri-aurantii was evaluated. Trans-2-hexenal treatment inhibited the mycelia growth of G. citri-aurantii with a minimum inhibitory concentration and minimum fungicidal concentration of trans-2-hexenal at 0.50 and 1.00 μL/mL, respectively. Moreover, trans-2-hexenal efficiently reduced the incidence of sour rot of Satsuma fruit inoculated with G. citri-aurantii. Ultrastructural observations and Fourier transform infrared (FT-IR) results showed that trans-2-hexenal treatment affected the cell wall and cell membrane instructions of G. citri-aurantii. The content of β-1,3-glucan was significantly decreased after trans-2-hexenal treatment, but the cell wall permeability was not changed. The decrease in lipid and ergosterol contents might be responsible for this antifungal activity. Several important genes, FKS1, ERG1, ERG7, and ERG11, showed decreasing expression levels after trans-2-hexenal treatment. Molecule-docking results also indicated that trans-2-hexenal could join with the protein of FKS1, ERG1, ERG7, and ERG11 to impact enzyme activities. These results demonstrated that trans-2-hexenal is a promising fungicide for controlling sour rot of harvested citrus fruit by damaging the membrane integrity of G. citri-aurantii.
Collapse
Affiliation(s)
- Qiuli Ouyang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China (L.L.)
| | | | | | | | | | | | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China (L.L.)
| | | |
Collapse
|
15
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
16
|
Ergüden B, Lüleci HB, Ünver Y. Chalcone Schiff bases disrupt cell membrane integrity of Saccharomyces cerevisiae and Candida albicans cells. Arch Microbiol 2023; 205:246. [PMID: 37209304 DOI: 10.1007/s00203-023-03584-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Chalcones have a variety of cellular protective and regulatory functions that may have therapeutic potential in many diseases. In addition, they are considered to affect key metabolic processes in pathogens. Nevertheless, our current knowledge of the action of these compounds against fungal cell is scarce. Therefore, in this study, various substituted chalcone Schiff bases were investigated to reveal their cellular targets within the yeasts Saccharomyces cerevisiae and Candida albicans. First, their antifungal activities were determined via minimum inhibitory concentration method. Surprisingly, parent chalcone Schiff bases showed little or no antifungal activity, while the nitro-substituted derivatives were found to be highly active against yeast cells. Next, we set out to determine the cellular target of active compounds and tested the involvement of the cell wall and cell membrane in this process. Our conductivity assay confirmed that the yeast cell membrane was compromised, and that ion leakage occurred upon treatment with nitro-substituted chalcone Schiff bases. Therefore, the cell membrane came to the fore as a possible target for the active chalcone derivatives. We also showed that exogenous ergosterol added to the growth medium reduced the inhibitory effect of chalcones. Our findings open up new possibilities for the design of future antimicrobial agents based on this appealing backbone structure.
Collapse
Affiliation(s)
- Bengü Ergüden
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey.
| | - Hatice Büşra Lüleci
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Yasemin Ünver
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
17
|
Han S, Sheng B, Zhu D, Chen J, Cai H, Zhang S, Guo C. Role of FoERG3 in Ergosterol Biosynthesis by Fusarium oxysporum and the Associated Regulation by Bacillus subtilis HSY21. PLANT DISEASE 2023:PDIS05221010RE. [PMID: 36320138 DOI: 10.1094/pdis-05-22-1010-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ergosterol is an important component of the fungal cell membrane and represents an effective target of chemical pesticides. However, the current understanding of ergosterol biosynthesis in the soybean root rot pathogen Fusarium oxysporum remains limited. In addition, the regular use of fungicides that inhibit ergosterol synthesis will seriously harm the ecological environment and human health. Bacillus subtilis is gradually replacing chemical control as a safe and effective biological agent; to investigate its effect on ergosterol synthesis of F. oxysporum, we verified the biological function of the FoERG3 gene of F. oxysporum by constructing knockout mutants. The results showed that knocking out FoERG3 blocked ergosterol biosynthesis, restricted mycelial growth, and increased the sensitivity to external stressors (NaCl, D-sorbitol, Congo Red, and H2O2). The increased permeability of the cell membrane promoted increased extracellular K+ levels and decreased mitochondrial cytochrome C contents. Treatment with suspension of B. subtilis HSY21 cells resulted in similar damage as observed when treating FoERG3-knockout F. oxysporum cells with ergosterol, which was characterised by deformity and swelling of the mycelium surface; increased membrane permeability; decreased pathogenicity to soybeans; and significantly decreased activities of cellulase, β-glucosidase, amylase, and pectin-methyl galactosylase. Notably, deleting FoERG3 resulted in a significant lag in the defense-response time of soybeans. Our results suggest that FoERG3 strongly influences the virulence of F. oxysporum and may be used as a potential antimicrobial target by B. subtilis HSY21 to inhibit ergosterol synthesis, which supports the use of B. subtilis as a biological control agent for protecting against F. oxysporum infection.
Collapse
Affiliation(s)
- Songyang Han
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Boxiang Sheng
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Dan Zhu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute of Northeast Agricultural University, Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150030, China
| |
Collapse
|
18
|
Deschamps A, Thines L, Colinet AS, Stribny J, Morsomme P. The yeast Gdt1 protein mediates the exchange of H + for Ca 2+ and Mn 2+ influencing the Golgi pH. J Biol Chem 2023; 299:104628. [PMID: 36963491 PMCID: PMC10148156 DOI: 10.1016/j.jbc.2023.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
The GDT1 family is broadly spread and highly conserved among living organisms. GDT1 members have functions in key processes like glycosylation in humans and yeasts, and photosynthesis in plants. These functions are mediated by their ability to transport ions. While transport of Ca2+ or Mn2+ is well established for several GDT1 members, their transport mechanism is poorly understood. Here, we demonstrate that H+ ions are transported in exchange for Ca2+ and Mn2+ cations by the Golgi-localized yeast Gdt1 protein. We performed direct transport measurement across a biological membrane by expressing Gdt1p in Lactococcus lactis bacterial cells and by recording either the extracellular pH or the intracellular pH during the application of Ca2+, Mn2+ or H+ gradients. Besides, in vivo cytosolic and Golgi pH measurements were performed in Saccharomyces cerevisiae with genetically encoded pH probes targeted to those subcellular compartments. These data point out that the flow of H+ ions carried by Gdt1p could be reversed according to the physiological conditions. Together, our experiments unravel the influence of the relative concentration gradients for Gdt1p-mediated H+ transport and pave the way to decipher the regulatory mechanisms driving the activity of GDT1 orthologs in various biological contexts.
Collapse
Affiliation(s)
- Antoine Deschamps
- UCLouvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Louise Thines
- UCLouvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Anne-Sophie Colinet
- UCLouvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Jiri Stribny
- UCLouvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
19
|
Yang J, Park S, Kim HJ, Lee SJ, Jung WH. The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia. J Microbiol Biotechnol 2023; 33:180-187. [PMID: 36575858 PMCID: PMC9998211 DOI: 10.4014/jmb.2210.10039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.
Collapse
Affiliation(s)
- Juan Yang
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sungmin Park
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
20
|
Sun C, Li X, Zhang Y, Lu L. Subunit C of V-ATPase-VmaC Is Required for Hyphal Growth and Conidiation in A. fumigatus by Affecting Vacuolar Calcium Homeostasis and Cell Wall Integration. J Fungi (Basel) 2022; 8:1219. [PMID: 36422040 PMCID: PMC9699406 DOI: 10.3390/jof8111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/21/2023] Open
Abstract
Aspergillus fumigatus is a widespread airborne fungal pathogen in humans. However, the functional genes in A. fumigatus that may contribute to its pathogenesis have not yet been fully identified. Vacuolar H+-ATPase is universal in eukaryotic organisms but exhibits specific roles in various species. Here, we identified VmaC as a putative subunit of vacuolar H+-ATPase in A. fumigatus that is widely conserved through evolution. The C-terminal hydrophobic domain of VmaC plays a critical role in its vacuolar localization and growth and conidiation. Deletion or turn-off of VmaC encoding gene-AfvmaC expression is not lethal but leads to a very sick and tiny colony phenotype, which is different from that of yeast with conditional ScvmaC defects. Furthermore, we found that AfvmaC not only participates in maintaining calcium homeostasis and vacuolar acidity but is also involved in cell wall integration pathway regulation, highlighting the importance of the vacuole as a storage organelle associated with many aspects of cellular homeostasis. This study indicates that fungal VmaC is relatively conserved. When compared to that in model yeasts, VmaC in A. fumigatus is required for hyphal growth and conidiation, suggesting that specific motifs in VmaC might be functioned in Aspergilli.
Collapse
Affiliation(s)
| | | | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
21
|
Golestannejad Z, Khozeimeh F, Dehghan P, Najafizade N, Faghihian E, Kheirkhah M, Sadeghalbanaei L, Jamshidi M, Chermahini AA. Comparison of the antifungal effect of voriconazole and fluconazole on oral candidiasis before and during radiotherapy. Dent Res J (Isfahan) 2022; 19:99. [PMID: 36605149 PMCID: PMC9807927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023] Open
Abstract
Background Head-and-neck radiotherapy can change oral Candida species and cause candidiasis resistance to common antifungals by making the changes to the oral cavity environment. Voriconazole is a synthetic azole with extensive antifungal activity. The current study aimed at comparing the antifungal activity of fluconazole and voriconazole on Candida species isolated from the oral cavity of patients undergoing head-and-neck radiotherapy. Materials and Methods The present in vitro study was performed on samples isolated from patients undergoing head-and-neck radiotherapy, before and during radiotherapy. After the identification of the species, the antifungal effect of fluconazole and voriconazole was determined by the microdilution method, and the minimum inhibitory concentration (MIC), the minimum fungicidal concentration, and the antifungal susceptibility of the isolated strains were also measured. The data were analyzed by the Chi-squared and then two-sided Fisher's exact tests. P < 0.05 was considered statistically significant. Results The study findings showed no significant difference in the susceptibility of Candida albicans to voriconazole and fluconazole before and during radiotherapy. Before radiotherapy, both voriconazole and fluconazole had similar effects on Candida tropicalis, but after radiotherapy, voriconazole was less effective. However, both before and during radiotherapy, fluconazole had a greater antifungal effect than voriconazole on Candida glabrata strains. The MICs of voriconazole and fluconazole for both Candida parapsilosis and Candida krusei isolates were within the susceptible or dose-dependent range. Conclusion The current study results showed that voriconazole was not more effective than fluconazole in the treatment of oral candidiasis in patients undergoing head-and-neck radiotherapy.
Collapse
Affiliation(s)
- Zahra Golestannejad
- Dental Research Center, Department of Oral and Maxillofacial Medicine, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Khozeimeh
- Dental Research Center, Department of Oral and Maxillofacial Medicine, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Dehghan
- Department of Mycology and Parasitology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nadia Najafizade
- Department of Radiation Oncology, Isfahan Medical Science University, Isfahan, Iran
| | - Elham Faghihian
- Dental Research Center, Department of Oral and Maxillofacial Medicine, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Kheirkhah
- Department of Mycology and Parasitology, School of Medicine, Isfahan university of Medical Sciences, Isfahan, Iran
| | - Leila Sadeghalbanaei
- Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Leila Sadeghalbanaei, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Mina Jamshidi
- Department of Periodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
22
|
Liu NN, Zhou J, Jiang T, Tarsio M, Yu F, Zheng X, Qi W, Liu L, Tan JC, Wei L, Ding J, Li J, Zeng L, Ren B, Huang X, Peng Y, Cao YB, Zhao Y, Zhang XY, Kane PM, Chen C, Wang H. A dual action small molecule enhances azoles and overcomes resistance through co-targeting Pdr5 and Vma1. Transl Res 2022; 247:39-57. [PMID: 35452875 DOI: 10.1016/j.trsl.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Fungal infection threatens human health worldwide due to the limited arsenal of antifungals and the rapid emergence of resistance. Epidermal growth factor receptor (EGFR) is demonstrated to mediate epithelial cell endocytosis of the leading human fungal pathogen, Candida albicans. However, whether EGFR inhibitors act on fungal cells remains unknown. Here, we discovered that the specific EGFR inhibitor osimertinib mesylate (OSI) potentiates azole efficacy against diverse fungal pathogens and overcomes azole resistance. Mechanistic investigation revealed a conserved activity of OSI by promoting intracellular fluconazole accumulation via inhibiting Pdr5 and disrupting V-ATPase function via targeting Vma1 at serine 274, eventually leading to inactivation of the global regulator TOR. Evaluation of the in vivo efficacy and toxicity of OSI demonstrated its potential clinical application in impeding fluconazole resistance. Thus, the identification of OSI as a dual action antifungal with co-targeting activity proposes a potentially effective therapeutic strategy to treat life-threatening fungal infection and overcome antifungal resistance.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Feifei Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xuehan Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Lin Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ding
- Computational biology department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, Sichuan, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yibing Peng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Bing Cao
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xin-Yu Zhang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Changbin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
23
|
Mijaljica D, Spada F, Harrison IP. Emerging Trends in the Use of Topical Antifungal-Corticosteroid Combinations. J Fungi (Basel) 2022; 8:812. [PMID: 36012800 PMCID: PMC9409645 DOI: 10.3390/jof8080812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
A broad range of topical antifungal formulations containing miconazole or terbinafine as actives are commonly used as efficacious choices for combating fungal skin infections. Their many benefits, owing to their specific mechanism of action, include their ability to target the site of infection, enhance treatment efficacy and reduce the risk of systemic side effects. Their proven efficacy, and positioning in the treatment of fungal skin infections, is enhanced by high patient compliance, especially when appropriate vehicles such as creams, ointments and gels are used. However, inflammation as a result of fungal infection can often impede treatment, especially when combined with pruritus (itch), an unpleasant sensation that elicits an urge to scratch. The scratching that occurs in response to pruritus frequently accelerates skin damage, ultimately aggravating and spreading the fungal infection. To help overcome this issue, a topical antifungal-corticosteroid combination consisting of miconazole or terbinafine and corticosteroids of varying potencies should be used. Due to their inherent benefits, these topical antifungal-corticosteroid combinations can concomitantly and competently attenuate inflammation, relieve pruritus and treat fungal infection.
Collapse
Affiliation(s)
| | | | - Ian P. Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd., 21–31 Malcolm Road, Braeside, VIC 3195, Australia; (D.M.); (F.S.)
| |
Collapse
|
24
|
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, Gaur NA, Singh A, Prasad R. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J Fungi (Basel) 2022; 8:jof8070651. [PMID: 35887407 PMCID: PMC9322651 DOI: 10.3390/jof8070651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Mohit Kumar
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Brooke D. Esquivel
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Theodore C. White
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Naseem A. Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Correspondence: (A.S.); (R.P.)
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Correspondence: (A.S.); (R.P.)
| |
Collapse
|
25
|
High-throughput functional characterization of protein phosphorylation sites in yeast. Nat Biotechnol 2022; 40:382-390. [PMID: 34663920 PMCID: PMC7612524 DOI: 10.1038/s41587-021-01051-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Phosphorylation is a critical post-translational modification involved in the regulation of almost all cellular processes. However, fewer than 5% of thousands of recently discovered phosphosites have been functionally annotated. In this study, we devised a chemical genetic approach to study the functional relevance of phosphosites in Saccharomyces cerevisiae. We generated 474 yeast strains with mutations in specific phosphosites that were screened for fitness in 102 conditions, along with a gene deletion library. Of these phosphosites, 42% exhibited growth phenotypes, suggesting that these are more likely functional. We inferred their function based on the similarity of their growth profiles with that of gene deletions and validated a subset by thermal proteome profiling and lipidomics. A high fraction exhibited phenotypes not seen in the corresponding gene deletion, suggestive of a gain-of-function effect. For phosphosites conserved in humans, the severity of the yeast phenotypes is indicative of their human functional relevance. This high-throughput approach allows for functionally characterizing individual phosphosites at scale.
Collapse
|
26
|
Gaonkar R, Singh J, Chauhan A, Avti PK, Hegde G. Geraniol and Citral as potential therapeutic agents targeting the HSP90 activity: An in silico and experimental approach. PHYTOCHEMISTRY 2022; 195:113058. [PMID: 34942558 DOI: 10.1016/j.phytochem.2021.113058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Lemongrass essential oil has antifungal and anti-cancerous properties. Heat-shock protein (HSP90), an ATP-dependent molecular chaperone found in eukaryotes, is involved in protein folding, stability, and disease, making it a promising research topic. Both in silico and in vitro approaches were used to provide a clear insight into the HSP90-ATPase 3D structures, activity, and their interaction with the essential oil constituents among various species such as fungi (S. cerevisiae), parasites (P. falciparum), and humans. For in silico studies, sequence alignment, docking (AutoDock), and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to obtain hit compounds specifically against each HSP90-ATPase. The hit compounds obtained were evaluated for their efficacy in the in vitro studies of S. cerevisiae. In vitro studies were carried out targeting HSP90-ATPases via lemongrass essential oil components individually and in combination as a function of concentration and various salt concentrations. Results suggest that sequence alignment exists of over 75% among these three species. The best docking score was possessed by Geraniol and its constituent (geldanamycin ≥ -4.93 kcal/mol) (a known antifungal and antitumor against HSP90) in all the above species. Lemongrass oil and the combination of Geraniol and Citral at concentrations of 80 μg/mL showed the maximum inhibition of ATPase and HSP90-ATPase activity compared to their individual treatment. Therefore, both in silico and in vitro studies provide clear evidence of specific inhibitory action of lemongrass oil, Geraniol, and Citral against the ATPase and HSP90-ATPase activities and might show potential as antifungal and antitumor drugs.
Collapse
Affiliation(s)
- Roopa Gaonkar
- Department of Biotechnology, BMS College of Engineering, Bangalore, Karnataka, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Gurumurthy Hegde
- Centre for Advanced Research and Development (CARD), CHRIST (Deemed to be University), Hosur Rd, Bangalore, 560029, India.
| |
Collapse
|
27
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
28
|
Yakobov N, Mahmoudi N, Grob G, Yokokawa D, Saga Y, Kushiro T, Worrell D, Roy H, Schaller H, Senger B, Huck L, Riera Gascon G, Becker HD, Fischer F. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids. J Biol Chem 2022; 298:101657. [PMID: 35131263 PMCID: PMC8913301 DOI: 10.1016/j.jbc.2022.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
|
29
|
Duanis‐Assaf D, Galsurker O, Davydov O, Maurer D, Feygenberg O, Sagi M, Poverenov E, Fluhr R, Alkan N. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:226-237. [PMID: 34520611 PMCID: PMC8710829 DOI: 10.1111/pbi.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 06/01/2023]
Abstract
Pathogenic fungi cause major postharvest losses. During storage and ripening, fruit becomes highly susceptible to fungi that cause postharvest disease. Fungicides are effective treatments to limit disease. However, due to increased public concern for their possible side effects, there is a need to develop new strategies to control postharvest fungal pathogens. Botrytis cinerea, a common postharvest pathogen, was shown to uptake small double-stranded RNA (dsRNA) molecules from the host plant. Such dsRNA can regulate gene expression through the RNA interference system. This work aimed to develop a synthetic dsRNA simultaneously targeting three essential transcripts active in the fungal ergosterol biosynthesis pathway (dsRNA-ERG). Our results show initial uptake of dsRNA in the emergence zone of the germination tube that spreads throughout the fungus and results in down-regulation of all three targeted transcripts. Application of dsRNA-ERG decreased B. cinerea germination and growth in in vitro conditions and various fruits, leading to reduce grey-mould decay. The inhibition of growth or decay was reversed by the addition of ergosterol. While dual treatment with dsRNA-ERG and ergosterol-inhibitor fungicide reduced by 100-fold the required amount of fungicide to achieve the same protection rate. The application of dsRNA-ERG induced systemic protection as shown by decreased decay development at inoculation points distant from the treatment point in tomato and pepper fruits. Overall, this study suggests that dsRNA-ERG can effectively control B. cinerea growth and grey-mould development suggesting its efficacy as a future method for postharvest control of fungal pathogens.
Collapse
Affiliation(s)
- Danielle Duanis‐Assaf
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
- Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Ortal Galsurker
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Olga Davydov
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Dalia Maurer
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Oleg Feygenberg
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Moshe Sagi
- French Associates Institute for Agricultural and Biotechnology of DrylandsBlaustein Institutes for Desert ResearchBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Elena Poverenov
- Department of Food Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| | - Robert Fluhr
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Noam Alkan
- Department of Postharvest Science of Fresh ProduceAgricultural Research Organization (ARO)Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
30
|
Ergosterol depletion under bifonazole treatment induces cell membrane damage and triggers a ROS-mediated mitochondrial apoptosis in Penicillium expansum. Fungal Biol 2021; 126:1-10. [PMID: 34930554 DOI: 10.1016/j.funbio.2021.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
Penicillium expansum is the causal agent of blue mold in harvested fruits and vegetables during storage and distribution, causing serious economic loss. In this study we seek the action modes of bifonazole against this pathogen. Bifonazole exhibited strong antifungal activity against P. expansum by inhibiting ergosterol synthesis. The ergosterol depletion caused damage to the cell structure and especially cell membrane integrity as observed by SEM and TEM. With increased unsaturated fatty acids contents, the cell membrane viscosity decreases and can no longer effectively maintain the cytoplasm, which ultimately decreases extracellular conductivity, changes intracellular pH and ion homeostasis. Exposure of hyphal cells to bifonazole shows that mitochondrial respiration is inhibited and reactive oxygen species (ROS) levels-including H2O2 and malondialdehyde (MDA) - are significantly increased. The functional impairment of mitochondria and cell membrane eventually cause cell death through intrinsic apoptosis and necroptosis.
Collapse
|
31
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
32
|
Coordinated glucose-induced Ca 2+ and pH responses in yeast Saccharomyces cerevisiae. Cell Calcium 2021; 100:102479. [PMID: 34610487 DOI: 10.1016/j.ceca.2021.102479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Ca2+ and pH homeostasis are closely intertwined and this interrelationship is crucial in the cells' ability to adapt to varying environmental conditions. To further understand this Ca2+-pH link, cytosolic Ca2+ was monitored using the aequorin-based bioluminescent assay in parallel with fluorescence reporter-based assays to monitor plasma membrane potentials and intracellular (cytosolic and vacuolar) pH in yeast Saccharomyces cerevisiae. At external pH 5, starved yeast cells displayed depolarized membrane potentials and responded to glucose re-addition with small Ca2+ transients accompanied by cytosolic alkalinization and profound vacuolar acidification. In contrast, starved cells at external pH 7 were hyperpolarized and glucose re-addition induced large Ca2+ transients and vacuolar alkalinization. In external Ca2+-free medium, glucose-induced pH responses were not affected but Ca2+ transients were abolished, indicating that the intracellular [Ca2+] increase was not prerequisite for activation of the two primary proton pumps, being Pma1 at the plasma membrane and the vacuolar and Golgi localized V-ATPases. A reduction in Pma1 expression resulted in membrane depolarization and reduced Ca2+ transients, indicating that the membrane hyperpolarization generated by Pma1 activation governed the Ca2+ influx that is associated with glucose-induced Ca2+ transients. Loss of V-ATPase activity through concanamycin A inhibition did not alter glucose-induced cytosolic pH responses but affected vacuolar pH changes and Ca2+ transients, indicating that the V-ATPase established vacuolar proton gradient is substantial for organelle H+/Ca2+ exchange. Finally, a systematic analysis of yeast deletion strains allowed us to reveal an essential role for both the vacuolar H+/Ca2+ exchanger Vcx1 and the Golgi exchanger Gdt1 in the dissipation of intracellular Ca2+.
Collapse
|
33
|
Xu Y, Lu H, Zhu S, Li WQ, Jiang YY, Berman J, Yang F. Multifactorial Mechanisms of Tolerance to Ketoconazole in Candida albicans. Microbiol Spectr 2021; 9:e0032121. [PMID: 34160280 PMCID: PMC8552639 DOI: 10.1128/spectrum.00321-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a prevalent opportunistic human fungal pathogen for which treatment is limited to only four main classes of antifungal drugs, with the azole and echinocandin classes being used most frequently. Drug tolerance, the ability of some cells to grow slowly in supra-MIC drug concentrations, decreases the number of available treatment options. Here, we investigated factors affecting tolerance and resistance to ketoconazole in C. albicans. We found both temperature and the composition of growth medium significantly affected tolerance with little effect on resistance. In deletion analysis of known efflux pump genes, CDR1 was partially required for azole tolerance, while CDR2 and MDR1 were dispensable. Tolerance also required Hsp90 and calcineurin components; CRZ1, which encodes a transcription factor downstream of calcineurin, was required only partially. Deletion of VMA11, which encodes a vacuolar ATPase subunit, and concanamycin A, a V-ATPase inhibitor, abolished tolerance, indicating the importance of vacuolar energy transactions in tolerance. Thus, tolerance to ketoconazole is regulated by multiple factors, including physiological and genetic mechanisms. IMPORTANCE Due to the ever-expanding range of invasive medical procedures and treatments, invasive fungal infections now pose a serious global threat to many people living in an immunocompromised status. Like humans, fungi are eukaryotic, which significantly limits the number of unique antifungal targets; the current arsenal of antifungal agents is limited to just three frontline drug classes. Additional treatment complexities result from the development of drug tolerance and resistance, which further narrows therapeutic options; however, the difference between tolerance and resistance remains largely unknown. This study demonstrates that tolerance and resistance are regulated by multiple genetic and physiological factors. It is prudent to note that some factors affect tolerance only, while other factors affect both tolerance and resistance. The complex underlying mechanisms of these drug responses are highlighted by the fact that there are both shared and distinct mechanisms that regulate tolerance and resistance.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacy, The 960 Hospital of PLA, Jinan, China
| | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Zhu
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wan-Qian Li
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Feng Yang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
34
|
The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms 2021; 9:microorganisms9091871. [PMID: 34576766 PMCID: PMC8472237 DOI: 10.3390/microorganisms9091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies with Saccharomyces cerevisiae indicated that non-physiologically high levels of acetic acid promote cellular acidification, chronological aging, and programmed cell death. In the current study, we compared the cellular lipid composition, acetic acid uptake, intracellular pH, growth, and chronological lifespan of wild-type cells and mutants lacking the protein kinase Sch9 and/or a functional V-ATPase when grown in medium supplemented with different acetic acid concentrations. Our data show that strains lacking the V-ATPase are especially more susceptible to growth arrest in the presence of high acetic acid concentrations, which is due to a slower adaptation to the acid stress. These V-ATPase mutants also displayed changes in lipid homeostasis, including alterations in their membrane lipid composition that influences the acetic acid diffusion rate and changes in sphingolipid metabolism and the sphingolipid rheostat, which is known to regulate stress tolerance and longevity of yeast cells. However, we provide evidence that the supplementation of 20 mM acetic acid has a cytoprotective and presumable hormesis effect that extends the longevity of all strains tested, including the V-ATPase compromised mutants. We also demonstrate that the long-lived sch9Δ strain itself secretes significant amounts of acetic acid during stationary phase, which in addition to its enhanced accumulation of storage lipids may underlie its increased lifespan.
Collapse
|
35
|
van Riel SJJM, Lardenoije CMJG, Oudhuis GJ, Cremers NAJ. Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 2021; 7:jof7080664. [PMID: 34436203 PMCID: PMC8400673 DOI: 10.3390/jof7080664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a relapsing vaginal fungal infection caused by Candida species. The prevalence varies among age populations and can be as high as 9%. Treatment options are limited, and in 57% of the cases, relapses occur within six months after fluconazole maintenance therapy, which is the current standard of care. The pathogenesis of RVVC is multifactorial, and recent studies have demonstrated that the vaginal microenvironment and activity of the immune system have a strong influence on the disease. Medical-grade honey (MGH) has protective, antimicrobial, and immunomodulatory activity and forms a putative alternative treatment. Clinical trials have demonstrated that honey can benefit the treatment of bacterial and Candida-mediated vaginal infections. We postulate that MGH will actively fight ongoing infections; eradicate biofilms; and modulate the vaginal microenvironment by its anti-inflammatory, antioxidative, and immunomodulatory properties, and subsequently may decrease the number of relapses when compared to fluconazole. The MGH formulation L-Mesitran Soft has stronger antimicrobial activity against various Candida species than its raw honey. In advance of a planned randomized controlled clinical trial, we present the setup of a study comparing L-Mesitran Soft with fluconazole and its practical considerations.
Collapse
Affiliation(s)
- Senna J. J. M. van Riel
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Celine M. J. G. Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Guy J. Oudhuis
- Department of Medical Microbiology, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Niels A. J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222 NK Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-325-1773
| |
Collapse
|
36
|
Bosch C, Toplis B, Vreulink JM, Volschenk H, Botha A. Nitrogen concentration affects amphotericin B and fluconazole tolerance of pathogenic cryptococci. FEMS Yeast Res 2021; 20:5740677. [PMID: 32073632 DOI: 10.1093/femsyr/foaa010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/17/2020] [Indexed: 01/19/2023] Open
Abstract
Environmental stress often causes phenotypic changes among pathogenic cryptococci, such as altered antifungal susceptibility, changes in capsule and melanin formation, as well as altered levels of the membrane sterol and antifungal target, ergosterol. We therefore hypothesised that nitrogen limitation, a prevalent environmental stress in the natural habitat of these yeasts, might affect virulence and antifungal susceptibility. We tested the effect of different nitrogen concentrations on capsule, melanin and ergosterol biosynthesis, as well as amphotericin B (AmB) and fluconazole (FLU) susceptibility. This was achieved by culturing cryptococcal strains representing Cryptococcus neoformans and Cryptococcus gattii in media with high (0.53 g/l), control (0.42 g/l) and low (0.21 g/l) NH4Cl concentrations. India ink staining was used to determine capsule thickness microscopically, while melanin and ergosterol content were determined spectrophotometrically. We found that lower nitrogen concentrations enhanced both ergosterol and capsule biosynthesis, while a variable effect was observed on melanisation. Evaluation of drug tolerance using time-kill methodology, as well as tests for FLU heteroresistance, revealed that the low nitrogen cultures had the highest survival percentages in the presence of both AmB and FLU, and showed the highest frequency of FLU heteroresistance, suggesting that nitrogen concentration may indeed influence drug tolerance.
Collapse
Affiliation(s)
- Caylin Bosch
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Barbra Toplis
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Jo-Marie Vreulink
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Heinrich Volschenk
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| |
Collapse
|
37
|
Nassiri Toosi Z, Su X, Austin R, Choudhury S, Li W, Pang YT, Gumbart JC, Torres MP. Combinatorial phosphorylation modulates the structure and function of the G protein γ subunit in yeast. Sci Signal 2021; 14:14/688/eabd2464. [PMID: 34158397 DOI: 10.1126/scisignal.abd2464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered regions (IDRs) in proteins are often targets of combinatorial posttranslational modifications, which serve to regulate protein structure and function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits, which are essential components of heterotrimeric G proteins, are intrinsically disordered, phosphorylation-dependent determinants of G protein signaling. Here, we found that the yeast Gγ subunit Ste18 underwent combinatorial, multisite phosphorylation events within its N-terminal IDR. G protein-coupled receptor (GPCR) activation and osmotic stress induced phosphorylation at Ser7, whereas glucose and acid stress induced phosphorylation at Ser3, which was a quantitative indicator of intracellular pH. Each site was phosphorylated by a distinct set of kinases, and phosphorylation of one site affected phosphorylation of the other, as determined through exposure to serial stimuli and through phosphosite mutagenesis. Last, we showed that phosphorylation resulted in changes in IDR structure and that different combinations of phosphorylation events modulated the activation rate and amplitude of the downstream mitogen-activated protein kinase Fus3. These data place Gγ subunits among intrinsically disordered proteins that undergo combinatorial posttranslational modifications that govern signaling pathway output.
Collapse
Affiliation(s)
- Zahra Nassiri Toosi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ruth Austin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shilpa Choudhury
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Southeast Center for Mathematics and Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yui Tik Pang
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. .,Southeast Center for Mathematics and Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
38
|
Aequorin as a Useful Calcium-Sensing Reporter in Candida albicans. J Fungi (Basel) 2021; 7:jof7040319. [PMID: 33924126 PMCID: PMC8074299 DOI: 10.3390/jof7040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
In Candida albicans, calcium ions (Ca2+) regulate the activity of several signaling pathways, especially the calcineurin signaling pathway. Ca2+ homeostasis is also important for cell polarization, hyphal extension, and plays a role in contact sensing. It is therefore important to obtain accurate tools with which Ca2+ homeostasis can be addressed in this fungal pathogen. Aequorin from Aequorea victoria has been used in eukaryotic cells for detecting intracellular Ca2+. A codon-adapted aequorin Ca2+-sensing expression system was therefore designed for probing cytosolic Ca2+ flux in C. albicans. The availability of a novel water-soluble formulation of coelenterazine, which is required as a co-factor, made it possible to measure bioluminescence as a readout of intracellular Ca2+ levels in C. albicans. Alkaline stress resulted in an immediate influx of Ca2+ from the extracellular medium. This increase was exacerbated in a mutant lacking the vacuolar Ca2+ transporter VCX1, thus confirming its role in Ca2+ homeostasis. Using mutants in components of a principal Ca2+ channel (MID1, CCH1), the alkaline-dependent Ca2+ spike was greatly reduced, thus highlighting the crucial role of this channel complex in Ca2+ uptake and homeostasis. Exposure to the antiarrhythmic drug amiodarone, known to perturb Ca2+ trafficking, resulted in increased cytoplasmic Ca2+ within seconds that was abrogated by the chelation of Ca2+ in the external medium. Ca2+ import was also dependent on the Cch1/Mid1 Ca2+ channel in amiodarone-exposed cells. In conclusion, the aequorin Ca2+ sensing reporter developed here is an adequate tool with which Ca2+ homeostasis can be investigated in C. albicans.
Collapse
|
39
|
Sixty years of Amphotericin B: An Overview of the Main Antifungal Agent Used to Treat Invasive Fungal Infections. Infect Dis Ther 2021; 10:115-147. [PMID: 33523419 PMCID: PMC7954977 DOI: 10.1007/s40121-020-00382-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/04/2020] [Indexed: 12/29/2022] Open
Abstract
Introduced in the late 1950s, polyenes represent the oldest family of antifungal drugs. The discovery of amphotericin B and its therapeutic uses is considered one of the most important scientific milestones of the twentieth century . Despite its toxic potential, it remains useful in the treatment of invasive fungal diseases owing to its broad spectrum of activity, low resistance rate, and excellent clinical and pharmacological action. The well-reported and defined toxicity of the conventional drug has meant that much attention has been paid to the development of new products that could minimize this effect. As a result, lipid-based formulations of amphotericin B have emerged and, even keeping the active principle in common, present distinct characteristics that may influence therapeutic results. This study presents an overview of the pharmacological properties of the different formulations for systemic use of amphotericin B available for the treatment of invasive fungal infections, highlighting the characteristics related to their chemical, pharmacokinetic structures, drug–target interactions, stability, and others, and points out the most relevant aspects for clinical practice.
Collapse
|
40
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
41
|
Li Y, Dai M, Zhang Y, Lu L. The sterol C-14 reductase Erg24 is responsible for ergosterol biosynthesis and ion homeostasis in Aspergillus fumigatus. Appl Microbiol Biotechnol 2021; 105:1253-1268. [PMID: 33475797 DOI: 10.1007/s00253-021-11104-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Ergosterol, a major lipid present in the fungal cell membrane, is considered as an effective antifungal drug target. A rational strategy for increasing drug reservoir relies on functionally validation of essential enzymes involved in fungal key biological pathway. Current knowledge regarding the essential genes in the ergosterol biosynthesis pathway is still limited in the opportunistic human pathogen Aspergillus fumigatus. In this study, we characterized two endoplasmic reticulum-localized sterol C-14 reductases encoded by both erg24A and erg24B homologs that are essential for the viability of A. fumigatus despite the fact that neither paralog is essential individually. Loss of one homolog of Erg24 impairs hyphal growth, conidiation, and virulence but has no effect on ergosterol biosynthesis. To investigate the functional significance of erg24, a conditional double mutant (Δerg24B niiA::erg24A) was constructed in the Δerg24B background. Strikingly, the conditional erg24 double mutant exhibited severe growth defects and accumulation of sterol intermediate. Moreover, the addition of metal ions and the overexpression of the corresponding ion transporters could rescue the growth defects of the erg24 double mutant in A. fumigatus, implying that the defective phenotype of the erg24 double mutant is tightly associated with dysregulation of ion homeostasis. Taken together, our results demonstrate the critical role of Erg24 in ergosterol biosynthesis and ion homeostasis in A. fumigatus, which may have important implications for antifungal discovery. KEY POINTS: • We characterized two endoplasmic reticulum-localized sterol C-14 reductases Erg24A and Erg24B in A. fumigatus. • Erg24A and Erg24B in combination, but not individually, are required for the viability of A. fumigatus. • Inactivation of Erg24 leads to the disruption of ion homeostasis and affects ergosterol biosynthesis.
Collapse
Affiliation(s)
- Yeqi Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Centre for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
42
|
Santos-Pereira C, Andrés MT, Chaves SR, Fierro JF, Gerós H, Manon S, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Int J Biol Macromol 2021; 171:343-357. [PMID: 33421469 DOI: 10.1016/j.ijbiomac.2020.12.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein. Results showed that bovine Lf (bLf) perturbs ergosterol-rich lipid rafts organization by inducing intracellular accumulation of ergosterol. Using yeast mutant strains lacking lipid rafts-associated proteins or enzymes involved in the synthesis of ergosterol and sphingolipids, we found that perturbations in the composition of these membrane domains increase resistance to bLf-induced yeast cell death. Also, when Pma1p-lipid rafts association is compromised in the Pma1-10 mutant and in the absence of the Pma1p-binding protein Ast1p, the bLf killing activity is impaired. Altogether, results showed that the perturbation of lipid rafts and the inhibition of both Pma1p and V-ATPase activities mediate the antifungal activity of bLf. Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - María T Andrés
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - José F Fierro
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
43
|
Insights into the modulatory effect of magnesium on efflux mechanisms of Candida albicans reveal inhibition of ATP binding cassette multidrug transporters and dysfunctional mitochondria. Biometals 2021; 34:329-339. [PMID: 33394279 DOI: 10.1007/s10534-020-00282-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Candida infections pose a serious hazard to public health followed by widespread and prolonged deployment of antifungal drugs has which has led multidrug resistance (MDR) progress in prevalent human fungal pathogen, Candida albicans. Despite the fact that MDR is multifactorial phenomenon govern by several mechanisms in C. albicans, overexpression of drug efflux transporters by far remains the leading cause of MDR govern by ATP Binding Cassette (ABC) or major facilitator superfamily (MFS) transporters. Hence searching for strategies to target efflux pumps transporter still signifies a promising approach. In this study we analyzed the effect of magnesium (Mg) deprivation, on efflux pump action of C. albicans. We explored that Mg deprivation specially inhibits efflux of transporters (CaCdr1p and CaCdr2p) belonging to ABC superfamily as revealed by rhodamine 6G and Nile red accumulation. Furthermore, Mg deprivation causes mislocalization of CaCdr1p and CaCdr2p and reduced transcripts of CDR1 and CDR2 with no effect on CaMdr1p. Additionally, Mg deprivation causes depletion of ergosterol content in azole sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and F2/F5 of C. albicans. Lastly, we observed that Mg deprivation impairs mitochondrial potential which could be the causal reason for abrogated efflux activity. With growing appreciation of manipulating metal homeostasis to combat MDR, inhibition of efflux activity under Mg deprivation warrants further studies to be utilized as an effective antifungal strategy.
Collapse
|
44
|
Sun L, Liao K. The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans. J Microbiol Biotechnol 2020; 30:1835-1842. [PMID: 33263334 PMCID: PMC9728367 DOI: 10.4014/jmb.2008.08019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.
Collapse
Affiliation(s)
- Lingmei Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing 20009, P.R. China,Corresponding authors L.Sun Phone: +86-25-83272525 E-mail:
| | - Kai Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing 10009, P.R. China,K.Liao E-mail:
| |
Collapse
|
45
|
Gutierrez-Armijos R, Sussmann RAC, Silber AM, Cortez M, Hernandez A. Abnormal sterol-induced cell wall glucan deficiency in yeast is due to impaired glucan synthase transport to the plasma membrane. Biochem J 2020; 477:BCJ20200663. [PMID: 33094814 DOI: 10.1042/bcj20200663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
Abnormal sterols disrupt cellular functions through yet unclear mechanisms. In Saccharomyces cerevisiae, accumulation of Δ8-sterols, the same type of sterols observed in patients of Conradi-Hünermann-Happle syndrome or in fungi after amine fungicide treatment, leads to cell wall weakness. We have studied the influence of Δ8-sterols on the activity of glucan synthase I, the protein synthetizing the main polymer in fungal cell walls, its regulation by the Cell Wall Integrity (CWI) pathway, and its transport from the endoplasmic reticulum to the plasma membrane. We ascertained that the catalytic characteristics were mostly unaffected by the presence of abnormal sterols but the enzyme was partially retained in the endoplasmic reticulum, leading to glucan deficit at the cell wall. Furthermore, we observed that glucan synthase I traveled through an unconventional exocytic route to the plasma membrane that is associated with low density intracellular membranes. Also, we found out that the CWI pathway remained inactive despite low glucan levels at the cell wall. Taken together, these data suggest that Δ8-sterols affect cell walls by inhibiting unconventional secretion of proteins leading to retention and degradation of glucan synthase I, while the compensatory CWI pathway is unable to activate. These results could be instrumental to understand defects of bone development in cholesterol biosynthesis disorders and fungicide mechanisms of action.
Collapse
|
46
|
Abstract
The ability for cells to maintain homeostasis in the presence of extracellular stress is essential for their survival. Stress adaptations are especially important for microbial pathogens to respond to rapidly changing conditions, such as those encountered during the transition from the environment to the infected host. Many fungal pathogens have acquired the ability to quickly adapt to changes in extracellular pH to promote their survival in the various microenvironments encountered during a host infection. For example, the fungus-specific Rim/Pal alkaline response pathway has been well characterized in many fungal pathogens, including Cryptococcus neoformans However, alternative mechanisms for sensing and responding to host pH have yet to be extensively studied. Recent observations from a genetic screen suggest that the C. neoformans sterol homeostasis pathway is required for growth at elevated pH. This work explores interactions among mechanisms of membrane homeostasis, alkaline pH tolerance, and Rim pathway activation. We find that the sterol homeostasis pathway is necessary for growth in an alkaline environment and that an elevated pH is sufficient to induce Sre1 activation. This pH-mediated activation of the Sre1 transcription factor is linked to the biosynthesis of ergosterol but is not dependent on Rim pathway signaling, suggesting that these two pathways are responding to alkaline pH independently. Furthermore, we discover that C. neoformans is more susceptible to membrane-targeting antifungals under alkaline conditions, highlighting the impact of microenvironmental pH on the treatment of invasive fungal infections. Together, these findings further connect membrane integrity and composition with the fungal pH response and pathogenesis.IMPORTANCE The work described here further elucidates how microorganisms sense and adapt to changes in their environment to establish infections in the human host. Specifically, we uncover a novel mechanism by which an opportunistic human fungal pathogen, Cryptococcus neoformans, responds to increases in extracellular pH in order to survive and thrive within the relatively alkaline environment of the human lung. This mechanism, which is intimately linked with fungal membrane sterol homeostasis, is independent of the previously well-studied alkaline response Rim pathway. Furthermore, this ergosterol-dependent alkaline pH response is present in Candida albicans, indicating that this mechanism spans diverse fungal species. These results are also relevant for novel antimicrobial drug development as we show that currently used ergosterol-targeting antifungals are more active in alkaline environments.
Collapse
|
47
|
Abstract
Bacteria are known to add amino acids (aa) to membrane lipids to resist antimicrobials and escape immune responses. This surface lipid aminoacylation process requires diverting aminoacyl-tRNAs from protein synthesis. While widespread in bacteria, no analogous lipid remodeling system had thus far been evidenced in eukaryotes. We uncovered that most fungi tRNA-dependently add aspartate onto ergosterol (ergosteryl-3β-O-l-aspartate [Erg-Asp]), the major sterol found in fungal membranes. Asp addition is catalyzed by an ergosteryl-3β-O-l-aspartate synthase (ErdS) and its removal by a dedicated hydrolase (ErdH). This pathway is conserved across “higher” fungi, including pathogens. Given the central roles of sterols and derivatives in fungi, we propose that the Erg-Asp homeostasis system might impact membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity. Diverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes. We report here the discovery of ergosteryl-3β-O-l-aspartate (Erg-Asp), a conjugated sterol that is produced by the tRNA-dependent addition of aspartate to the 3β-OH group of ergosterol, the major sterol found in fungal membranes. In fact, Erg-Asp exists in the majority of “higher” fungi, including species of biotechnological interest, and, more importantly, in human pathogens like Aspergillus fumigatus. We show that a bifunctional enzyme, ergosteryl-3β-O-l-aspartate synthase (ErdS), is responsible for Erg-Asp synthesis. ErdS corresponds to a unique fusion of an aspartyl-tRNA synthetase—that produces aspartyl-tRNAAsp (Asp-tRNAAsp)—and of a Domain of Unknown Function 2156, which actually transfers aspartate from Asp-tRNAAsp onto ergosterol. We also uncovered that removal of the Asp modifier from Erg-Asp is catalyzed by a second enzyme, ErdH, that is a genuine Erg-Asp hydrolase participating in the turnover of the conjugated sterol in vivo. Phylogenomics highlights that the entire Erg-Asp synthesis/degradation pathway is conserved across “higher” fungi. Given the central roles of sterols and conjugated sterols in fungi, we propose that this tRNA-dependent ergosterol modification and homeostasis system might have broader implications in membrane remodeling, trafficking, antimicrobial resistance, or pathogenicity.
Collapse
|
48
|
Li T, Zhang Y, Xu M, Liu Y, Zhang C, Zhang Y, Peng X, Li Z, Qin S, Xing K. Novel antifungal mechanism of oligochitosan by triggering apoptosis through a metacaspase-dependent mitochondrial pathway in Ceratocystis fimbriata. Carbohydr Polym 2020; 245:116574. [PMID: 32718651 DOI: 10.1016/j.carbpol.2020.116574] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
The antifungal effects of oligochitosan (OCS) against Ceratocystis fimbriata that causes black rot disease in sweet potato and its apoptosis mechanism were evaluated. OCS restrained the mycelial growth and spores germination of C. fimbriata, and decreased the ergosterol content of cell membrane. Transmission electron microscopy observation and flow cytometry analysis revealed that OCS induced morphology changes with smaller size and increased granularity of C. fimbriata, which was the typical feature of apoptosis. To clarify the apoptosis mechanism induced by OCS, a series of apoptosis-related parameters were analyzed. Results showed that OCS induced reactive oxygen species accumulation, Ca2+ homeostasis dysregulation, mitochondrial dysfunction and metacaspase activation, coupled with hallmarks of apoptosis including phosphatidylserine externalization, DNA fragmentation, and nuclear condensation. In summary, OCS triggered apoptosis through a metacaspase-dependent mitochondrial pathway in C. fimbriata. These findings have important implications for the application of OCS to control pathogens in food and agriculture.
Collapse
Affiliation(s)
- Tengjie Li
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yu Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Mingjie Xu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yuanfang Liu
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China; Caoqiao Middle School of Suzhou, Suzhou, 215008, Jiangsu, PR China.
| | - Chunmei Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Yanhua Zhang
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Xue Peng
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Zongyun Li
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Sheng Qin
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Ke Xing
- School of Life Science, The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| |
Collapse
|
49
|
Peng W, Casey AK, Fernandez J, Carpinone EM, Servage KA, Chen Z, Li Y, Tomchick DR, Starai VJ, Orth K. A distinct inhibitory mechanism of the V-ATPase by Vibrio VopQ revealed by cryo-EM. Nat Struct Mol Biol 2020; 27:589-597. [PMID: 32424347 DOI: 10.1038/s41594-020-0429-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 12/18/2022]
Abstract
The Vibrio parahaemolyticus T3SS effector VopQ targets host-cell V-ATPase, resulting in blockage of autophagic flux and neutralization of acidic compartments. Here, we report the cryo-EM structure of VopQ bound to the Vo subcomplex of the V-ATPase. VopQ inserts into membranes and forms an unconventional pore while binding directly to subunit c of the V-ATPase membrane-embedded subcomplex Vo. We show that VopQ arrests yeast growth in vivo by targeting the immature Vo subcomplex in the endoplasmic reticulum (ER), thus providing insight into the observation that VopQ kills cells in the absence of a functional V-ATPase. VopQ is a bacterial effector that has been discovered to inhibit a host-membrane megadalton complex by coincidentally binding its target, inserting into a membrane and disrupting membrane potential. Collectively, our results reveal a mechanism by which bacterial effectors modulate host cell biology and provide an invaluable tool for future studies on V-ATPase-mediated membrane fusion and autophagy.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessie Fernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Wilcox A, Murphy M, Tucker D, Laprade D, Roussel B, Chin C, Hallisey V, Kozub N, Brass A, Austriaco N. Sulforaphane alters the acidification of the yeast vacuole. MICROBIAL CELL 2020; 7:129-138. [PMID: 32391394 PMCID: PMC7199281 DOI: 10.15698/mic2020.05.716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a compound [1-isothiocyanato-4-(methylsulfinyl)-butane] found in broccoli and other cruciferous vegetables that is currently of interest because of its potential as a chemopreventive and a chemotherapeutic drug. Recent studies in a diverse range of cellular and animal models have shown that SFN is involved in multiple intracellular pathways that regulate xenobiotic metabolism, inflammation, cell death, cell cycle progression, and epigenetic regulation. In order to better understand the mechanisms of action behind SFN-induced cell death, we undertook an unbiased genome wide screen with the yeast knockout (YKO) library to identify SFN sensitive (SFNS) mutants. The mutants were enriched with knockouts in genes linked to vacuolar function suggesting a link between this organelle and SFN's mechanism of action in yeast. Our subsequent work revealed that SFN increases the vacuolar pH of yeast cells and that varying the vacuolar pH can alter the sensitivity of yeast cells to the drug. In fact, several mutations that lower the vacuolar pH in yeast actually made the cells resistant to SFN (SFNR). Finally, we show that human lung cancer cells with more acidic compartments are also SFNR suggesting that SFN's mechanism of action identified in yeast may carry over to higher eukaryotic cells.
Collapse
Affiliation(s)
- Alexander Wilcox
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - Michael Murphy
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - Douglass Tucker
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA.,These authors contributed equally to the manuscript
| | - David Laprade
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Breton Roussel
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Christopher Chin
- Department of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, 368 Plantation St., ASC 1001, Worcester, MA 01605, USA
| | - Victoria Hallisey
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Noah Kozub
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| | - Abraham Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts School of Medicine, 368 Plantation St., ASC 1001, Worcester, MA 01605, USA
| | - Nicanor Austriaco
- Department of Biology, Providence College, 1 Cunningham Square, Providence, RI 02918, USA
| |
Collapse
|