1
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
2
|
Levendosky K, Janisch N, Quadri LEN. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. mBio 2023; 14:e0057323. [PMID: 37350613 PMCID: PMC10470612 DOI: 10.1128/mbio.00573-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium kansasii (Mk) is an opportunistic pathogen that is frequently isolated from urban water systems, posing a health risk to susceptible individuals. Despite its ability to cause tuberculosis-like pulmonary disease, very few studies have probed the genetics of this opportunistic pathogen. Here, we report a comprehensive essentiality analysis of the Mk genome. Deep sequencing of a high-density library of Mk Himar1 transposon mutants revealed that 86.8% of the chromosomal thymine-adenine (TA) dinucleotide target sites were permissive to insertion, leaving 13.2% TA sites unoccupied. Our analysis identified 394 of the 5,350 annotated open reading frames (ORFs) as essential. The majority of these essential ORFs (84.8%) share essential mutual orthologs with Mycobacterium tuberculosis (Mtb). A comparative genomics analysis identified 139 Mk essential ORFs that share essential orthologs in four other species of mycobacteria. Thirteen Mk essential ORFs share orthologs in all four species that were identified as being not essential, while only two Mk essential ORFs are absent in all species compared. We used the essentiality data and a comparative genomics analysis reported here to highlight differences in essentiality between candidate Mtb drug targets and the corresponding Mk orthologs. Our findings suggest that the Mk genome encodes redundant or additional pathways that may confound validation of potential Mtb drugs and drug target candidates against the opportunistic pathogen. Additionally, we identified 57 intergenic regions containing four or more consecutive unoccupied TA sites. A disproportionally large number of these regions were located upstream of pe/ppe genes. Finally, we present an essentiality and orthology analysis of the Mk pRAW-like plasmid, pMK1248. IMPORTANCE Mk is one of the most common nontuberculous mycobacterial pathogens associated with tuberculosis-like pulmonary disease. Drug resistance emergence is a threat to the control of Mk infections, which already requires long-term, multidrug courses. A comprehensive understanding of Mk biology is critical to facilitate the development of new and more efficacious therapeutics against Mk. We combined transposon-based mutagenesis with analysis of insertion site identification data to uncover genes and other genomic regions required for Mk growth. We also compared the gene essentiality data set of Mk to those available for several other mycobacteria. This analysis highlighted key similarities and differences in the biology of Mk compared to these other species. Altogether, the genome-wide essentiality information generated and the results of the cross-species comparative genomics analysis represent valuable resources to assist the process of identifying and prioritizing potential Mk drug target candidates and to guide future studies on Mk biology.
Collapse
Affiliation(s)
- Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, USA
- Biology Program, Graduate Center, Biology Program, Graduate Center, City University of New York, New York, New York, USA
- Biochemistry Program, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
3
|
Lagutkin D, Panova A, Vinokurov A, Gracheva A, Samoilova A, Vasilyeva I. Genome-Wide Study of Drug Resistant Mycobacterium tuberculosis and Its Intra-Host Evolution during Treatment. Microorganisms 2022; 10:1440. [PMID: 35889159 PMCID: PMC9318467 DOI: 10.3390/microorganisms10071440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug resistant Mycobacterium tuberculosis (MTB) strains has become a global public health problem, while, at the same time, there has been development of new antimicrobial agents. The main goals of this study were to determine new variants associated with drug resistance in MTB and to observe which polymorphisms emerge in MTB genomes after anti-tuberculosis treatment. We performed whole-genome sequencing of 152 MTB isolates including 70 isolates as 32 series of pre- and post-treatment MTB. Based on genotypes and phenotypic drug susceptibility, we conducted phylogenetic convergence-based genome-wide association study (GWAS) with streptomycin-, isoniazid-, rifampicin-, ethambutol-, fluoroquinolones-, and aminoglycosides-resistant MTB against susceptible ones. GWAS revealed statistically significant associations of SNPs within Rv2820c, cyp123 and indels in Rv1269c, Rv1907c, Rv1883c, Rv2407, Rv3785 genes with resistant MTB phenotypes. Comparisons of serial isolates showed that treatment induced different patterns of intra-host evolution. We found indels within Rv1435c and ppsA that were not lineage-specific. In addition, Beijing-specific polymorphisms within Rv0036c, Rv0678, Rv3433c, and dop genes were detected in post-treatment isolates. The appearance of Rv3785 frameshift insertion in 2 post-treatment strains compared to pre-treatment was also observed. We propose that the insertion within Rv3785, which was a GWAS hit, might affect cell wall biosynthesis and probably mediates a compensatory mechanism in response to treatment. These results may shed light on the mechanisms of MTB adaptation to chemotherapy and drug resistance formation.
Collapse
Affiliation(s)
- Denis Lagutkin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, 127994 Moscow, Russia; (A.P.); (A.V.); (A.G.); (A.S.); (I.V.)
| | | | | | | | | | | |
Collapse
|
4
|
Kuang W, Zhang H, Wang X, Yang P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B 2022; 12:3201-3214. [PMID: 35967276 PMCID: PMC9366312 DOI: 10.1016/j.apsb.2022.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) utilizes multiple mechanisms to obtain antibiotic resistance during the treatment of infections. In addition, the biofilms, secreted by MTB, can further protect the latter from the contact with drug molecules and immune cells. These self-defending mechanisms lay a formidable challenge to develop effective therapeutic agents against chronic and recurring antibiotic-tolerant MTB infections. Although several inexpensive and effective drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) have been discovered for the treatment regimen, MTB continues to cause considerable morbidity and mortality worldwide. Antibiotic resistance and tolerance remain major global issues, and innovative therapeutic strategies are urgently needed to address the challenges associated with pathogenic bacteria. Gratifyingly, the cell wall synthesis of tubercle bacilli requires the participation of many enzymes which exclusively exist in prokaryotic organisms. These enzymes, absent in human hepatocytes, are recognized as promising targets to develop anti-tuberculosis drug. In this paper, we discussed the critical roles of potential drug targets in regulating cell wall synthesis of MTB. And also, we systematically reviewed the advanced development of novel bioactive compounds or drug leads for inhibition of cell wall synthesis, including their discovery, chemical modification, in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| |
Collapse
|
5
|
Tyagi R, Srivastava M, Jain P, Pandey RP, Asthana S, Kumar D, Raj VS. Development of potential proteasome inhibitors against Mycobacterium tuberculosis. J Biomol Struct Dyn 2022; 40:2189-2203. [PMID: 33074049 DOI: 10.1080/07391102.2020.1835722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) has been recently declared as a health emergency because of sporadic increase in Multidrug-resistant Tuberculosis (MDR-TB) problem throughout the world. TB causing bacteria, Mycobacterium tuberculosis has become resistant to the first line of treatment along with second line of treatment and drugs, which are accessible to us. Thus, there is an urgent need of identification of key targets and development of potential therapeutic approach(s), which can overcome the Mycobacterium tuberculosis complications. In the present study, Mycobacterium tuberculosis proteasome has been taken as a potential target as it is one of the key regulatory proteins in Mycobacterium tuberculosis propagation. Further, a library of 400 compounds (small molecule) from Medicines for Malaria Venture (MMV) were screened against the target (proteasome) using molecular docking and simulation approach, and selected lead compounds were validated in in vitro model. In this study, we have identified two potent small molecules from the MMV Pathogen Box library, MMV019838 and MMV687146 with -9.8 kcal/mol and -8.7 kcal/mol binding energy respectively, which actively interact with the catalytic domain/active domain of Mycobacterium tuberculosis proteasome and inhibit the Mycobacterium tuberculosis growth in in vitro culture. Furthermore, the molecular docking and simulation study of MMV019838 and MMV687146 with proteasome show strong and stable interaction with Mycobacterium tuberculosis compared to human proteasome and show no cytotoxicity effect. A better understanding of proteasome inhibition in Mycobacterium tuberculosis in in vitro and in vivo model would eventually allow us to understand the molecular mechanism(s) and discover a novel and potent therapeutic agent against Tuberculosis. Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. Efflux pump activity was tested for a specific compound MMV019838 which was showing good in silico results than MIC values.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Preeti Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi, Haryana, India
| |
Collapse
|
6
|
Abstract
Proteasomes are compartmentalized, ATP-dependent, N-terminal nucleophile hydrolases that play essentials roles in intracellular protein turnover. They are present in all 3 kingdoms. Pharmacological inhibition of proteasomes is detrimental to cell viability. Proteasome inhibitor rugs revolutionize the treatment of multiple myeloma. Proteasomes in pathogenic microbes such as Mycobacterium tuberculosis (Mtb), Plasmodium falciparum (Pf), and other parasites and worms have been validated as therapeutic targets. Starting with Mtb proteasome, efforts in developing inhibitors selective for microbial proteasomes have made great progress lately. In this review, we describe the strategies and pharmacophores that have been used in developing proteasome inhibitors with potency and selectivity that spare human proteasomes and highlight the development of clinical proteasome inhibitor candidates for treatment of leishmaniasis and Chagas disease. Finally, we discuss the future challenges and therapeutical potentials of the microbial proteasome inhibitors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Zhang H, Hsu HC, Kahne SC, Hara R, Zhan W, Jiang X, Burns-Huang K, Ouellette T, Imaeda T, Okamoto R, Kawasaki M, Michino M, Wong TT, Toita A, Yukawa T, Moraca F, Vendome J, Saha P, Sato K, Aso K, Ginn J, Meinke PT, Foley M, Nathan CF, Darwin KH, Li H, Lin G. Macrocyclic Peptides that Selectively Inhibit the Mycobacterium tuberculosis Proteasome. J Med Chem 2021; 64:6262-6272. [PMID: 33949190 PMCID: PMC8194371 DOI: 10.1021/acs.jmedchem.1c00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of tuberculosis (TB) currently takes at least 6 months. Latent Mycobacterium tuberculosis (Mtb) is phenotypically tolerant to most anti-TB drugs. A key hypothesis is that drugs that kill nonreplicating (NR) Mtb may shorten treatment when used in combination with conventional drugs. The Mtb proteasome (Mtb20S) could be such a target because its pharmacological inhibition kills NR Mtb and its genetic deletion renders Mtb unable to persist in mice. Here, we report a series of macrocyclic peptides that potently and selectively target the Mtb20S over human proteasomes, including macrocycle 6. The cocrystal structure of macrocycle 6 with Mtb20S revealed structural bases for the species selectivity. Inhibition of 20S within Mtb by 6 dose dependently led to the accumulation of Pup-tagged GFP that is degradable but resistant to depupylation and death of nonreplicating Mtb under nitrosative stress. These results suggest that compounds of this class have the potential to develop as anti-TB therapeutics.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Shoshanna C. Kahne
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kristin Burns-Huang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Tierra Ouellette
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Masanori Kawasaki
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | | | | | - Priya Saha
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St, New York, NY 10065
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| | - K. Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065
| |
Collapse
|
9
|
Tyagi R, Srivastava M, Singh B, Sharma S, Pandey RP, Asthana S, Kumar D, Raj VS. Identification and validation of potent Mycobacterial proteasome inhibitor from Enamine library. J Biomol Struct Dyn 2021; 40:8644-8654. [PMID: 33955331 DOI: 10.1080/07391102.2021.1914173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
As a consequence of present status of tuberculosis (TB) it is the obligation to develop novel targets and potential drugs so that rate of drug resistant TB can be declined. Mycobacterium proteasome is considered to be significant target for the purpose of drug designing as it is responsible for resisting the effect of NO (nitric oxide) immune system defence mechanism against the bacterial cells. Small compounds library from Enamine database has already been tested using virtual screening and molecular docking studies. Further a reanalysis with two picked out significant compounds Z1020863610, Z106766984 was carried out using molecular dynamic simulation studies and in vitro validations (in vitro susceptibility assay, enzyme inhibition assay and MTT assay). In silico outcome that two inhibiters were interacting at the active site pocket of receptor with high stability, was found to be very consistent with in vitro results. So it was conferred that compounds (Z1020863610, Z106766984) are potential lead for future process of drug development (in vivo testing and clinical trials).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rashmi Tyagi
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Baldeep Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shingini Sharma
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
- CCS National Institute of Animal Health, Baghpat, India
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi NCR, Sonepat, India
| |
Collapse
|
10
|
The Pup-Proteasome System Protects Mycobacteria from Antimicrobial Antifolates. Antimicrob Agents Chemother 2021; 65:AAC.01967-20. [PMID: 33468462 DOI: 10.1128/aac.01967-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Protein turnover via the Pup-proteasome system (PPS) is essential for nitric oxide resistance and virulence of Mycobacterium tuberculosis, the causative agent of tuberculosis. Our study revealed components of PPS as novel determinants of intrinsic antifolate resistance in both M. tuberculosis and nonpathogenic M. smegmatis The lack of expression of the prokaryotic ubiquitin-like protein (Pup) or the ligase, PafA, responsible for ligating Pup to its protein targets, enhanced antifolate susceptibility in M. smegmatis Cross-species expression of M. tuberculosis homologs restored wild-type resistance to M. smegmatis proteasomal mutants. Targeted deletion of prcA and prcB, encoding the structural components of the PPS proteolytic core, similarly resulted in reduced antifolate resistance. Furthermore, sulfonamides were synergistic with acidified nitrite, and the synergy against mycobacteria was enhanced in the absence of proteasomal activity. In M. tuberculosis, targeted mutagenesis followed by genetic complementation of mpa, encoding the regulatory subunit responsible for translocating pupylated proteins to the proteolytic core, demonstrated a similar function of PPS in antifolate resistance. The overexpression of dihydrofolate reductase, responsible for the reduction of dihydrofolate to tetrahydrofolate, or disruption of the Lonely Guy gene, responsible for PPS-controlled production of cytokinins, abolished PPS-mediated antifolate sensitivity. Together, our results show that PPS protects mycobacteria from antimicrobial antifolates via regulating both folate reduction and cytokinin production.
Collapse
|
11
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Gopal P, Sarathy JP, Yee M, Ragunathan P, Shin J, Bhushan S, Zhu J, Akopian T, Kandror O, Lim TK, Gengenbacher M, Lin Q, Rubin EJ, Grüber G, Dick T. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat Commun 2020; 11:1661. [PMID: 32245967 PMCID: PMC7125159 DOI: 10.1038/s41467-020-15516-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/16/2020] [Indexed: 11/28/2022] Open
Abstract
Pyrazinamide is a sterilizing first-line tuberculosis drug. Genetic, metabolomic and biophysical analyses previously demonstrated that pyrazinoic acid, the bioactive form of the prodrug pyrazinamide (PZA), interrupts biosynthesis of coenzyme A in Mycobacterium tuberculosis by binding to aspartate decarboxylase PanD. While most drugs act by inhibiting protein function upon target binding, we find here that pyrazinoic acid is only a weak enzyme inhibitor. We show that binding of pyrazinoic acid to PanD triggers degradation of the protein by the caseinolytic protease ClpC1-ClpP. Thus, the old tuberculosis drug pyrazinamide exerts antibacterial activity by acting as a target degrader, a mechanism of action that has recently emerged as a successful strategy in drug discovery across disease indications. Our findings provide the basis for the rational discovery of next generation PZA. It has been shown that the bioactive component of pyrazinamide, pyrazinoic acid (POA), blocks coenzyme A biosynthesis in M. tuberculosis by binding to the aspartate decarboxylase PanD. Here the authors show that pyrazinamide triggers degradation of PanD by stimulating its degradation by the caseinolytic protease Clp.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,MSD Translational Medicine Research Centre, Merck Research Laboratories, Singapore, Singapore
| | - Jickky Palmae Sarathy
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Tatos Akopian
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olga Kandror
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Medical Sciences, Hackensack Meridian Medical School at Seton Hall University, Nutley, NJ, USA
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA. .,Department of Medical Sciences, Hackensack Meridian Medical School at Seton Hall University, Nutley, NJ, USA.
| |
Collapse
|
13
|
Zhan W, Hsu HC, Morgan T, Ouellette T, Burns-Huang K, Hara R, Wright AG, Imaeda T, Okamoto R, Sato K, Michino M, Ramjee M, Aso K, Meinke PT, Foley M, Nathan CF, Li H, Lin G. Selective Phenylimidazole-Based Inhibitors of the Mycobacterium tuberculosis Proteasome. J Med Chem 2019; 62:9246-9253. [PMID: 31560200 DOI: 10.1021/acs.jmedchem.9b01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteasomes of pathogenic microbes have become attractive targets for anti-infectives. Coevolving with its human host, Mycobacterium tuberculosis (Mtb) has developed mechanisms to resist host-imposed nitrosative and oxidative stresses. Genetic deletion or pharmacological inhibition of the Mtb proteasome (Mtb20S) renders nonreplicating Mtb susceptible to reactive nitrogen species in vitro and unable to survive in the lungs of mice, validating the Mtb proteasome as a promising target for anti-Mtb agents. Using a structure-guided and flow chemistry-enabled study of structure-activity relationships, we developed phenylimidazole-based peptidomimetics that are highly potent for Mtb20S. X-ray structures of selected compounds with Mtb20S shed light on their selectivity for mycobacterial over human proteasomes.
Collapse
Affiliation(s)
- Wenhu Zhan
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Hao-Chi Hsu
- Structural Biology Program , Van Andel Institute , 333 Bostwick Avenue Northeast , Grand Rapids , Michigan 49503 , United States
| | - Trevor Morgan
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Tierra Ouellette
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Kristin Burns-Huang
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Adrian G Wright
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Manoj Ramjee
- Cyclofluidic Limited , Biopark Broadwater Road , Welwyn Garden City AL7 3AX , U.K
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Peter T Meinke
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute , 413 East 69th Street , New York , New York 10065 , United States
| | - Carl F Nathan
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| | - Huilin Li
- Structural Biology Program , Van Andel Institute , 333 Bostwick Avenue Northeast , Grand Rapids , Michigan 49503 , United States
| | - Gang Lin
- Department of Microbiology & Immunology , Weill Cornell Medicine , 1300 York Avenue , New York , New York 10065 , United States
| |
Collapse
|
14
|
Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019; 24:molecules24132449. [PMID: 31277371 PMCID: PMC6651284 DOI: 10.3390/molecules24132449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review’s main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
Collapse
Affiliation(s)
- Muhamad Harith Mazlun
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Siti Fatimah Sabran
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia.
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia.
| | - Maryati Mohamed
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Mohd Fadzelly Abu Bakar
- Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
- Centre of Research for Sustainable Uses of Natural Resources (CoR-SUNR), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Educational Hub, Pagoh 84600, Muar, Johor, Malaysia
| | - Zunoliza Abdullah
- Natural Products Division, Forest Research Institute Malaysia (FRIM), Kepong 52109, Selangor, Malaysia
| |
Collapse
|
15
|
Pupylated proteins are subject to broad proteasomal degradation specificity and differential depupylation. PLoS One 2019; 14:e0215439. [PMID: 31009487 PMCID: PMC6476560 DOI: 10.1371/journal.pone.0215439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
In actinobacteria, post-translational modification of proteins with prokaryotic ubiquitin-like protein Pup targets them for degradation by a bacterial proteasome assembly consisting of the 20S core particle (CP) and the mycobacterial proteasomal ATPase (Mpa). Modification of hundreds of cellular proteins with Pup at specific surface lysines is carried out by a single Pup-ligase (PafA, proteasome accessory factor A). Pupylated substrates are recruited to the degradative pathway by binding of Pup to the N-terminal coiled-coil domains of Mpa. Alternatively, pupylation can be reversed by the enzyme Dop (deamidase of Pup). Although pupylated substrates outcompete free Pup in proteasomal degradation, potential discrimination of the degradation complex between the various pupylated substrates has not been investigated. Here we show that Mpa binds stably to an open-gate variant of the proteasome (oCP) and associates with bona fide substrates with highly similar affinities. The proteasomal degradation of substrates differing in size, structure and assembly state was recorded in real-time, showing that the pupylated substrates are processed by the Mpa-oCP complex with comparable kinetic parameters. Furthermore, the members of a complex, pupylated proteome (pupylome) purified from Mycobacterium smegmatis are degraded evenly as followed by western blotting. In contrast, analysis of the depupylation behavior of several pupylome members suggests substrate-specific differences in enzymatic turnover, leading to the conclusion that largely indiscriminate degradation competes with differentiated depupylation to control the ultimate fate of pupylated substrates.
Collapse
|
16
|
Müller AU, Weber-Ban E. The Bacterial Proteasome at the Core of Diverse Degradation Pathways. Front Mol Biosci 2019; 6:23. [PMID: 31024929 PMCID: PMC6466877 DOI: 10.3389/fmolb.2019.00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
Proteasomal protein degradation exists in mycobacteria and other actinobacteria, and expands their repertoire of compartmentalizing protein degradation pathways beyond the usual bacterial types. A product of horizontal gene transfer, bacterial proteasomes have evolved to support the organism's survival under challenging environmental conditions like nutrient starvation and physical or chemical stresses. Like the eukaryotic 20S proteasome, the bacterial core particle is gated and must associate with a regulator complex to form a fully active protease capable of recruiting and internalizing substrate proteins. By association with diverse regulator complexes that employ different recruitment strategies, the bacterial 20S core particle is able to act in different cellular degradation pathways. In association with the mycobacterial proteasomal ATPase Mpa, the proteasome degrades substrates post-translationally modified with prokaryotic, ubiquitin-like protein Pup in a process called pupylation. Upon interaction with the ATP-independent bacterial proteasome activator Bpa, poorly structured substrates are recruited for proteasomal degradation. A potential third degradation route might employ a Cdc48-like protein of actinobacteria (Cpa), for which interaction with the 20S core was recently demonstrated but no degradation substrates have been identified yet. The alternative interaction partners and wide range of substrate proteins suggest that the bacterial proteasome is a modular, functionally flexible and conditionally regulated degradation machine in bacteria that encounter rapidly changing and challenging conditions.
Collapse
Affiliation(s)
- Andreas U Müller
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Proteomic changes in Mycobacterium tuberculosis H37Rv under hyperglycemic conditions favour its growth through altered expression of Tgs3(Rv3234c) and supportive proteins (Rv0547c, AcrA1 and Mpa). Tuberculosis (Edinb) 2019; 115:154-160. [PMID: 30948171 DOI: 10.1016/j.tube.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
Abstract
Diabetes affects the presentation of tuberculosis including delayed clearance of the bacteria from host cells, however, the molecular changes which help survival of phagocytosed mycobacterium in the diabetic host are still not clear. The effect of in vitro high glucose concentrations on the proteome of the phagocytosed mycobacterium isolated from the human monocytic THP1 cell line derived macrophages has been investigated in the present study. Concurrent tuberculosis and hyperglycemia conditions were mimicked by growing M. tuberculosis infected THP1 cells under high glucose conditions. Phagocytosed bacilli were isolated 5 days post infection. Proteomics analysis of the isolated bacilli was done by two-dimensional gel electrophoresis followed by mass spectrometry. A total of 224 ± 18 protein spots were obtained out of which 10 were found to be differentially expressed under high glucose concentrations in comparison to normal glucose concentration. Further, identity of all the ten proteins namely Tgs3, Rv0547c, AcrA1, EsxU, Rv2219, Mpa, Rv2308, ORN, LucA, and Rv1414 was elucidated by peptide mass finger printing using Matrix-assisted laser desorption and ionization-mass spectrometry (MALDI/MS) assisted with MASCOT software. Though Tgs3, Rv0547c, AcrA1 and Mpa proteins have been demonstrated to play a major role in lipid metabolism under nitric oxide stress conditions, the functional role of rest of the differentially expressed proteins remains to be elucidated. Under hyperglycemic conditions in the host cells, differential expression of these proteins might help in the better survival of mycobacteria and can further act as suitable targets to design novel drugs for more effective therapy for comorbid tuberculosis and diabetes.
Collapse
|
18
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
19
|
Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol 2018; 28:926-940. [PMID: 30107971 DOI: 10.1016/j.tcb.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Manipulation of host protein post-translational modifications (PTMs) is used by various pathogens to interfere with host cell functions. Among these modifications, ubiquitin (UBI) and ubiquitin-like proteins (UBLs) constitute key targets because they are regulators of pathways essential for the host cell. In particular, these PTM modifiers control pathways that have been described as crucial for infection such as pathogen entry, replication, propagation, or detection by the host. Although bacterial pathogens lack eucaryotic-like UBI or UBL systems, many of them produce proteins that specifically interfere with these host PTMs during infection. In this review we discuss the different mechanisms used by bacteria to interfere with host UBI and the two UBLs, SUMO and NEDD8.
Collapse
|
20
|
Abstract
It was recently reported that the human-exclusive pathogen Mycobacterium tuberculosis secretes cytokinins, which had only been known as plant hormones. While cytokinins are well-established, adenine-based signaling molecules in plants, they have never been shown to participate in signal transduction in other kingdoms of life. M. tuberculosis is not known to interact with plants. Therefore, we tested the hypothesis that cytokinins trigger transcriptional changes within this bacterial species. Here, we show cytokinins induced the strong expression of the M. tuberculosis gene Rv0077c. We found that Rv0077c expression is repressed by a TetR-like transcriptional repressor, Rv0078. Strikingly, cytokinin-induced expression of Rv0077c resulted in a loss of acid-fast staining of M. tuberculosis While acid-fast staining is thought to be associated with changes in the bacterial cell envelope and virulence, Rv0077c-induced loss of acid-fastness did not affect antibiotic susceptibility or attenuate bacterial growth in mice, consistent with an unaltered mycolic acid profile of Rv0077c-expressing cells. Collectively, these findings show cytokinins signal transcriptional changes that can affect M. tuberculosis acid-fastness and that cytokinin signaling is no longer limited to the kingdom Plantae.IMPORTANCE Cytokinins have only previously been known as plant hormones. The discovery that they can be used as signaling molecules outside of plants broadens the repertoire of small molecules that can potentially affect gene expression in all domains of life.
Collapse
|
21
|
Chikhale RV, Barmade MA, Murumkar PR, Yadav MR. Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis. J Med Chem 2018; 61:8563-8593. [PMID: 29851474 DOI: 10.1021/acs.jmedchem.8b00281] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1), a vital enzyme for cell wall synthesis, plays a crucial role in the formation of lipoarabinomannan and arabinogalactan. It was first reported as a druggable target on the basis of inhibitors discovered in high throughput screening of a drug library. Since then, inhibitors with different types of chemical scaffolds have been reported for their activity against this enzyme. Formation of a covalent or noncovalent bond by the interacting ligand with the enzyme causes loss of its catalytic activity which ultimately leads to the death of the mycobacterium. This Perspective describes various DprE1 inhibitors as anti-TB agents reported to date.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India.,School of Health Sciences, Division of Pharmacy and Optometry , University of Manchester , Manchester M13 9PL , U.K
| | - Mahesh A Barmade
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus , The Maharaja Sayajirao University of Baroda , Vadodara 390 001 , India
| |
Collapse
|
22
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
23
|
Gur E, Korman M, Hecht N, Regev O, Schlussel S, Silberberg N, Elharar Y. How to control an intracellular proteolytic system: Coordinated regulatory switches in the mycobacterial Pup-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2253-2260. [PMID: 28887055 DOI: 10.1016/j.bbamcr.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Intracellular proteolysis is critical for the proper functioning of all cells, owing to its involvement in a wide range of processes. Because of the destructive nature of protein degradation, intracellular proteolysis is restricted by control mechanisms at almost every step of the proteolytic process. Understanding the coordination of such mechanisms is a challenging task, especially in systems as complex as the eukaryotic ubiquitin-proteasome system (UPS). In comparison, the bacterial analog of the UPS, the Pup-proteasome system (PPS) is much simpler and, therefore, allows for insight into the control of a proteolytic system. This review integrates available information to present a coherent picture of what is known of PPS regulatory switches and describes how these switches act in concert to enforce regulation at the system level. Finally, open questions regarding PPS regulation are discussed, providing readers with a sense of what lies ahead in the field.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Maayan Korman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nir Hecht
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ofir Regev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shai Schlussel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nimrod Silberberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yifat Elharar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
24
|
Akhter Y, Thakur S. Targets of ubiquitin like system in mycobacteria and related actinobacterial species. Microbiol Res 2017; 204:9-29. [PMID: 28870295 DOI: 10.1016/j.micres.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Protein turnover and recycling is a prerequisite in all living organisms to maintain normal cellular physiology. Many bacteria are proteasome deficient but they possess typical protease enzymes for carrying out protein turnover. However, several groups of actinobacteria such as mycobacteria harbor both proteasome and proteases. In these bacteria, for cellular protein turnover the target proteins undergo post-translational modification referred as pupylation in which a small protein Pup (prokaryotic ubiquitin-like protein) is tagged to the specific lysine residues of the target proteins and after that those target proteins undergo proteasomal degradation. Thus, Pup serves as a degradation signal, helps in directing proteins toward the bacterial proteasome for a turnover. Although the Pup-proteasome system has a multifaceted role in environmental stresses, pathogenicity and regulation of cellular signaling, but the fate of all types of pupylation such as mono and polypupylation on the proteins is still not completely understood. In this review, we present the mechanisms involved in the activation and conjugation of Pup to the target proteins, describing the structural sketch of pupylation and fundamental differences between the eukaryotic ubiquitin-proteasome and bacterial Pup-proteasome systems. We are also presenting a concise classification and cataloging of the complete battery of experimentally identified Pup-substrates from various species of actinobacteria.
Collapse
Affiliation(s)
- Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India.
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
25
|
Elharar Y, Schlussel S, Hecht N, Meijler MM, Gur E. The regulatory significance of tag recycling in the mycobacterial Pup-proteasome system. FEBS J 2017; 284:1804-1814. [PMID: 28440944 DOI: 10.1111/febs.14086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 01/03/2023]
Abstract
Pup, a ubiquitin analog, tags proteins for degradation by the bacterial proteasome. As an intracellular proteolytic system, the Pup-proteasome system (PPS) must be carefully regulated to prevent excessive protein degradation. Currently, those factors underlying PPS regulation remain poorly understood. Here, experimental analysis combined with theoretical modeling of in vivo protein pupylation revealed how the basic PPS design allows stable and controlled protein pupylation. Specifically, the recycling of Pup when targets are degraded allows the PPS to maintain steady-state levels of protein pupylation and degradation at a rate limited by proteasome function, and at a pupylome level limited by Pup concentrations. This design allows the Pup-ligase, a highly promiscuous enzyme, to act in a controlled manner without causing damage, and the PPS to be effectively tuned to control protein degradation. This study thus provides understanding of how the inherent design of an intracellular proteolytic system serves crucial regulatory purposes.
Collapse
Affiliation(s)
- Yifat Elharar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Schlussel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Hecht
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Moreira W, Santhanakrishnan S, Dymock BW, Dick T. Bortezomib Warhead-Switch Confers Dual Activity against Mycobacterial Caseinolytic Protease and Proteasome and Selectivity against Human Proteasome. Front Microbiol 2017; 8:746. [PMID: 28496439 PMCID: PMC5406460 DOI: 10.3389/fmicb.2017.00746] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria harbor two main degradative proteolytic machineries, the caseinolytic protease ClpP1P2 and a proteasome. We recently showed that Bortezomib inhibits ClpP1P2 and exhibits whole cell activity against Mycobacterium tuberculosis. Bortezomib, a dipeptide with a boronic acid warhead, is a human proteasome inhibitor approved for cancer therapy. The boronic acid warhead of the compound has been shown to drive potency against both the human proteasome and ClpP1P2 protease. Selectivity for the bacterial ClpP1P2 protease over the human proteasome is lacking but needs to be achieved to move this new anti-tuberculosis lead forward. In this study we explored whether an alternative warhead could influence Bortezomib's selectivity. We synthesized an analog containing a chloromethyl ketone instead of the boronic acid warhead and determined potencies against the bacterial and human enzymes. Surprisingly, the analog retained activity against mycobacterial ClpP1P2 and was active against the mycobacterial proteasome, but was devoid of activity against the human proteasome. Interrogation of a set of chloromethyl ketone peptides identified three additional compounds similarly inhibiting both ClpP1P2 and the proteasome in the bacteria while leaving the human proteasome untouched. Finally, we showed that these compounds display bactericidal activity against M. tuberculosis with cytotoxicity ranging from acceptable to undetectable. These results suggest that selectivity over the human proteasome is achievable. Selectivity, together with dual-targeting of mycobacterial ClpP1P2 and proteasome makes this new scaffold an attractive starting point for optimization.
Collapse
Affiliation(s)
- Wilfried Moreira
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | | | - Brian W Dymock
- Department of Pharmacy, National University of SingaporeSingapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New JerseyNewark, NJ, USA
| |
Collapse
|
27
|
Structural Analysis of Mycobacterium tuberculosis Homologues of the Eukaryotic Proteasome Assembly Chaperone 2 (PAC2). J Bacteriol 2017; 199:JB.00846-16. [PMID: 28193903 DOI: 10.1128/jb.00846-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022] Open
Abstract
A previous bioinformatics analysis identified the Mycobacterium tuberculosis proteins Rv2125 and Rv2714 as orthologs of the eukaryotic proteasome assembly chaperone 2 (PAC2). We set out to investigate whether Rv2125 or Rv2714 can function in proteasome assembly. We solved the crystal structure of Rv2125 at a resolution of 3.0 Å, which showed an overall fold similar to that of the PAC2 family proteins that include the archaeal PbaB and the yeast Pba1. However, Rv2125 and Rv2714 formed trimers, whereas PbaB forms tetramers and Pba1 dimerizes with Pba2. We also found that purified Rv2125 and Rv2714 could not bind to M. tuberculosis 20S core particles. Finally, proteomic analysis showed that the levels of known proteasome components and substrate proteins were not affected by disruption of Rv2125 in M. tuberculosis Our work suggests that Rv2125 does not participate in bacterial proteasome assembly or function.IMPORTANCE Although many bacteria do not encode proteasomes, M. tuberculosis not only uses proteasomes but also has evolved a posttranslational modification system called pupylation to deliver proteins to the proteasome. Proteasomes are essential for M. tuberculosis to cause lethal infections in animals; thus, determining how proteasomes are assembled may help identify new ways to combat tuberculosis. We solved the structure of a predicted proteasome assembly factor, Rv2125, and isolated a genetic Rv2125 mutant of M. tuberculosis Our structural, biochemical, and genetic studies indicate that Rv2125 and Rv2714 do not function as proteasome assembly chaperones and are unlikely to have roles in proteasome biology in mycobacteria.
Collapse
|
28
|
Loss-of-Function Mutations in HspR Rescue the Growth Defect of a Mycobacterium tuberculosis Proteasome Accessory Factor E ( pafE) Mutant. J Bacteriol 2017; 199:JB.00850-16. [PMID: 28096448 DOI: 10.1128/jb.00850-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis uses a proteasome to degrade proteins by both ATP-dependent and -independent pathways. While much has been learned about ATP-dependent degradation, relatively little is understood about the ATP-independent pathway, which is controlled by Mycobacterium tuberculosisproteasome accessory factor E (PafE). Recently, we found that a Mycobacterium tuberculosispafE mutant has slowed growth in vitro and is sensitive to killing by heat stress. However, we did not know if these phenotypes were caused by an inability to degrade the PafE-proteasome substrate HspR (heat shock protein repressor), an inability to degrade any damaged or misfolded proteins, or a defect in another protein quality control pathway. To address this question, we characterized pafE suppressor mutants that grew similarly to pafE+ bacteria under normal culture conditions. All but one suppressor mutant analyzed contained mutations that inactivated HspR function, demonstrating that the slowed growth and heat shock sensitivity of a pafE mutant were caused primarily by the inability of the proteasome to degrade HspR.IMPORTANCEMycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required for virulence. We recently discovered a proteasome cofactor, PafE, which is required for the normal growth, heat shock resistance, and full virulence of M. tuberculosis In this study, we demonstrate that PafE influences this phenotype primarily by promoting the expression of protein chaperone genes that are necessary for surviving proteotoxic stress.
Collapse
|
29
|
Bibo-Verdugo B, Jiang Z, Caffrey CR, O'Donoghue AJ. Targeting proteasomes in infectious organisms to combat disease. FEBS J 2017; 284:1503-1517. [PMID: 28122162 DOI: 10.1111/febs.14029] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Chemistry & Biochemistry Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
31
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
32
|
Bacterial Proteasomes: Mechanistic and Functional Insights. Microbiol Mol Biol Rev 2016; 81:81/1/e00036-16. [PMID: 27974513 DOI: 10.1128/mmbr.00036-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulated proteolysis is essential for the normal physiology of all organisms. While all eukaryotes and archaea use proteasomes for protein degradation, only certain orders of bacteria have proteasomes, whose functions are likely as diverse as the species that use them. In this review, we discuss the most recent developments in the understanding of how proteins are targeted to proteasomes for degradation, including ATP-dependent and -independent mechanisms, and the roles of proteasome-dependent degradation in protein quality control and the regulation of cellular physiology. Furthermore, we explore newly established functions of proteasome system accessory factors that function independently of proteolysis.
Collapse
|
33
|
Chaudhari K, Surana S, Jain P, Patel HM. Mycobacterium Tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Eur J Med Chem 2016; 124:160-185. [PMID: 27569197 DOI: 10.1016/j.ejmech.2016.08.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 01/24/2023]
Abstract
New classes of drugs are needed to treat tuberculosis (TB) in order to combat the emergence of resistance (MDR and XDR) to existing agents and shorten the duration of therapy. Mycobacterial DNA gyrase B subunit has been identified to be one of the potentially under exploited drug targets in the field of antitubercular drug discovery. In the present review, we discussed the synthesis, structural optimization and docking study of effective potent DNA gyrase inhibitor against M. tuberculosis, with improved properties such as enhanced activity against MDR strains, reduced toxicity. Based on this progress, if we can successfully leverage the opportunities in this target, there is hope that we will be able to raise novel gyrase inhibitor in earnest in the long.
Collapse
Affiliation(s)
- Kavita Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Sanjay Surana
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India
| | - Pritam Jain
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, 425405, Maharashtra, India.
| |
Collapse
|
34
|
Fascellaro G, Petrera A, Lai ZW, Nanni P, Grossmann J, Burger S, Biniossek ML, Gomez-Auli A, Schilling O, Imkamp F. Comprehensive Proteomic Analysis of Nitrogen-Starved Mycobacterium smegmatis Δpup Reveals the Impact of Pupylation on Nitrogen Stress Response. J Proteome Res 2016; 15:2812-25. [PMID: 27378031 DOI: 10.1021/acs.jproteome.6b00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pupylation is a bacterial ubiquitin-like protein modification pathway, which results in the attachment of the small protein Pup to specific lysine residues of cellular targets. Pup was shown to serve as a degradation signal, directing proteins toward the bacterial proteasome for turnover. Recently, it was hypothesized that pupylation and proteasomal protein degradation support the survival of Mycobacterium smegmatis (Msm) during nitrogen starvation by supplying recycled amino acids. In the present study we generated a Pup deletion strain to investigate the influence of pupylation on Msm proteome in the absence of nitrogen sources. Quantitative proteomic analyses revealed a relatively low impact of Pup on MsmΔpup proteome immediately after exposure to growth medium lacking nitrogen. Less than 5.4% of the proteins displayed altered cellular levels when compared to Msm wild type. In contrast, post 24 h of nitrogen starvation 501 proteins (41% of the total quantified proteome) of Msm pup deletion strain showed significant changes in abundance. Noteworthy, important players involved in nitrogen assimilation were significantly affected in MsmΔpup. Furthermore, we quantified pupylated proteins of nitrogen-starved Msm to gain more detailed insights in the role of pupylation in surviving and overcoming the lack of nitrogen.
Collapse
Affiliation(s)
| | - Agnese Petrera
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Freiburg, Germany
| | - Zon Weng Lai
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Freiburg, Germany
| | - Paolo Nanni
- Functional Genomic Center, University of Zurich/ETH , Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomic Center, University of Zurich/ETH , Zurich, Switzerland
| | - Sibylle Burger
- Institute of Medical Microbiology, University of Zurich , Zurich, Switzerland
| | - Martin L Biniossek
- BIOSS Centre for Biological Signaling Studies, University of Freiburg , Freiburg, Germany
| | - Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg , Freiburg, Germany.,Faculty of Biology, University of Freiburg , Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg , Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg , Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Frank Imkamp
- Institute of Medical Microbiology, University of Zurich , Zurich, Switzerland
| |
Collapse
|
35
|
Abstract
Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.
Collapse
Affiliation(s)
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
36
|
Chen X, Li C, Wang L, Liu Y, Li C, Zhang J. The Mechanism of Mycobacterium smegmatis PafA Self-Pupylation. PLoS One 2016; 11:e0151021. [PMID: 26953889 PMCID: PMC4783102 DOI: 10.1371/journal.pone.0151021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
PafA, the prokaryotic ubiquitin-like protein (Pup) ligase, catalyzes the Pup modification of bacterial proteins and targets the substrates for proteasomal degradation. It has been reported that that M. smegmatis PafA can be poly-pupylated. In this study, the mechanism of PafA self-pupylation is explored. We found that K320 is the major target residue for the pupylation of PafA. During the self-pupylation of PafA, the attachment of the first Pup to PafA is catalyzed by the other PafA molecule through an intermolecular reaction, while the formation of the polymeric Pup chain is carried out in an intramolecular manner through the internal ligase activity of the already pupylated PafA. Among the three lysine residues, K7, K31 and K61, in M. smegmatis Pup, K7 and K31 are involved in the formation of the poly-Pup chain in PafA poly-pupylation. Poly-pupylation of PafA can be reversibly regulated by depupylase Dop. The polymeric Pup chain formed through K7/K31 linkage is much more sensitive to Dop than the mono-Pup directly attached to PafA. Moreover, self-pupylation of PafA is involved in the regulation of its stability in vivo in a proteasome-dependent manner, suggesting that PafA self-pupylation functions as a mechanism in the auto-regulation of the Pup-proteasome system.
Collapse
Affiliation(s)
- Xuejie Chen
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chandan Li
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Liu
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Tongzhou District, Beijing, China
| | - Junjie Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- * E-mail:
| |
Collapse
|
37
|
Posttranslational regulation of coordinated enzyme activities in the Pup-proteasome system. Proc Natl Acad Sci U S A 2016; 113:E1605-14. [PMID: 26951665 DOI: 10.1073/pnas.1525185113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proper functioning of any biological system depends on the coordinated activity of its components. Regulation at the genetic level is, in many cases, effective in determining the cellular levels of system components. However, in cases where regulation at the genetic level is insufficient for attaining harmonic system function, posttranslational regulatory mechanisms are often used. Here, we uncover posttranslational regulatory mechanisms in the prokaryotic ubiquitin-like protein (Pup)-proteasome system (PPS), the bacterial equivalent of the eukaryotic ubiquitin-proteasome system. Pup, a ubiquitin analog, is conjugated to proteins through the activities of two enzymes, Dop (deamidase of Pup) and PafA (proteasome accessory factor A), the Pup ligase. As Dop also catalyzes depupylation, it was unclear how PPS function could be maintained without Dop and PafA canceling the activity of the other, and how the two activities of Dop are balanced. We report that tight Pup binding and the limited degree of Dop interaction with high-molecular-weight pupylated proteins results in preferred Pup deamidation over protein depupylation by this enzyme. Under starvation conditions, when accelerated protein pupylation is required, this bias is intensified by depletion of free Dop molecules, thereby minimizing the chance of depupylation. We also find that, in contrast to Dop, PafA presents a distinct preference for high-molecular-weight protein substrates. As such, PafA and Dop act in concert, rather than canceling each other's activity, to generate a high-molecular-weight pupylome. This bias in pupylome molecular weight distribution is consistent with the proposed nutritional role of the PPS under starvation conditions.
Collapse
|
38
|
Abstract
Proteasomes are ATP-dependent, barrel-shaped proteases found in all three domains of life. In eukaryotes, proteins are typically targeted for degradation by posttranslational modification with the small protein ubiquitin. In 2008, the first bacterial protein modifier, Pup (prokaryotic ubiquitin-like protein), was identified in Mycobacterium tuberculosis. Functionally analogous to ubiquitin, conjugation with Pup serves as a signal for degradation by the mycobacterial proteasome. Proteolysis-dependent and -independent functions of the M. tuberculosis proteasome are essential for virulence of this successful pathogen. In this article we describe the discovery of the proteasome as a key player in tuberculosis pathogenesis and the biology and biochemistry of the Pup-proteasome system.
Collapse
|
39
|
Samanovic MI, Darwin KH. Game of 'Somes: Protein Destruction for Mycobacterium tuberculosis Pathogenesis. Trends Microbiol 2016; 24:26-34. [PMID: 26526503 PMCID: PMC4698092 DOI: 10.1016/j.tim.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The proteasome system of Mycobacterium tuberculosis is required for causing disease. Proteasomes are multisubunit chambered proteases and, until recently, were only known to participate in adenosine triphosphate (ATP)-dependent proteolysis in bacteria. In this review, we discuss the latest advances in understanding how both ATP-dependent and ATP-independent proteasome-regulated pathways contribute to M. tuberculosis virulence.
Collapse
Affiliation(s)
- Marie I Samanovic
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA
| | - K Heran Darwin
- New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236 New York, NY 10016, USA.
| |
Collapse
|
40
|
Ehrt S, Rhee K, Schnappinger D. Mycobacterial genes essential for the pathogen's survival in the host. Immunol Rev 2015; 264:319-26. [PMID: 25703569 DOI: 10.1111/imr.12256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved within the human immune system as both host and reservoir. The study of genes required for its growth and persistence in vivo thus offers linked insights into its pathogenicity and host immunity. Studies of Mtb mutants have implicated metabolic adaptation (consisting of carbon, nitrogen, vitamin, and cofactor metabolism), intrabacterial pH homeostasis, and defense against reactive oxygen and reactive nitrogen species, as key determinants of its pathogenicity. However, the mechanisms of host immunity are complex and often combinatorial. Growing evidence has thus begun to reveal that the determinants of Mtb's pathogenicity may serve a broader and more complex array of functions than the isolated experimental settings in which they were initially found. Here, we review select examples, which exemplify this complexity, highlighting the distinct phases of Mtb's life cycle and the diverse microenvironments encountered therein.
Collapse
Affiliation(s)
- Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
41
|
Ozeki Y, Igarashi M, Doe M, Tamaru A, Kinoshita N, Ogura Y, Iwamoto T, Sawa R, Umekita M, Enany S, Nishiuchi Y, Osada-Oka M, Hayashi T, Niki M, Tateishi Y, Hatano M, Matsumoto S. A New Screen for Tuberculosis Drug Candidates Utilizing a Luciferase-Expressing Recombinant Mycobacterium bovis Bacillus Calmette-Guéren. PLoS One 2015; 10:e0141658. [PMID: 26571296 PMCID: PMC4646695 DOI: 10.1371/journal.pone.0141658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/12/2015] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is a serious infectious disease caused by a bacterial pathogen. Mortality from tuberculosis was estimated at 1.5 million deaths worldwide in 2013. Development of new TB drugs is needed to not only to shorten the medication period but also to treat multi-drug resistant and extensively drug-resistant TB. Mycobacterium tuberculosis (Mtb) grows slowly and only multiplies once or twice per day. Therefore, conventional drug screening takes more than 3 weeks. Additionally, a biosafety level-3 (BSL-3) facility is required. Thus, we developed a new screening method to identify TB drug candidates by utilizing luciferase-expressing recombinant Mycobacterium bovis bacillus Calmette-Guéren (rBCG). Using this method, we identified several candidates in 4 days in a non-BSL-3 facility. We screened 10,080 individual crude extracts derived from Actinomyces and Streptomyces and identified 137 extracts which possessed suppressive activity to the luciferase of rBCG. Among them, 41 compounds inhibited the growth of both Mtb H37Rv and the extensively drug-resistant Mtb (XDR-Mtb) strains. We purified the active substance of the 1904–1 extract, which possessed strong activity toward rBCG, Mtb H37Rv, and XDR-Mtb but was harmless to the host eukaryotic cells. The MIC of this substance was 0.13 μg/ml, 0.5 μg/ml, and 2.0–7.5 μg/ml against rBCG, H37Rv, and 2 XDR-strains, respectively. Its efficacy was specific to acid-fast bacterium except for the Mycobacterium avium intracellular complex. Mass spectrometry and nuclear magnetic resonance analyses revealed that the active substance of 1904–1 was cyclomarin A. To confirm the mode of action of the 1904-1-derived compound, resistant BCG clones were used. Whole genome DNA sequence analysis showed that these clones contained a mutation in the clpc gene which encodes caseinolytic protein, an essential component of an ATP-dependent proteinase, and the likely target of the active substance of 1904–1. Our method provides a rapid and convenient screen to identify an anti-mycobacterial drug.
Collapse
Affiliation(s)
- Yuriko Ozeki
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail:
| | - Masayuki Igarashi
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Matsumi Doe
- Graduate School of Sciences, Osaka City University, Osaka, Japan
| | - Aki Tamaru
- Bacteriology Division, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Naoko Kinoshita
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Yoshitoshi Ogura
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan
| | - Ryuichi Sawa
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Maya Umekita
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shymaa Enany
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School, Osaka, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Tetsuya Hayashi
- Division of Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Hatano
- Department of Microbiology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
42
|
Expansion of the tetracycline-dependent regulation toolbox for Helicobacter pylori. Appl Environ Microbiol 2015; 81:7969-80. [PMID: 26362986 DOI: 10.1128/aem.02191-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In an effort to gain greater understanding of the biology and infection processes of Helicobacter pylori, we have expanded the functionality of the tetracycline-dependent gene regulation (tet) system to provide more improved and versatile genetic control and facilitate the generation of conditional mutants to study essential genes. Second-generation tetracycline-responsive H. pylori uPtetO5 promoters were based on the mutated core ureA promoter. Single point mutations at either the ribosomal binding site or the start codon were introduced to shift the regulatory range of three uPtetO5 derivatives. All promoters were tested for regulation by TetR and revTetR using dapD, a gene essential to peptidoglycan biosynthesis, as a reporter. All tet promoters were effectively regulated by both TetR and revTetR, and their regulation windows overlapped so as to cover a broad range of expression levels. tet promoters uPtetO5m1 and uPtetO5m2 could be sufficiently silenced by both TetR and revTetR so that the conditional mutants could not grow in the absence of diaminopimelic acid (DAP). Furthermore, through the use of these inducible promoters, we reveal that insufficient DAP biosynthesis results in viable cells with altered morphology. Overall, the development and optimization of tet regulation for H. pylori will not only permit the study of essential genes but also facilitate investigations into gene dosage effects on H. pylori physiology.
Collapse
|
43
|
Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015; 59:6521-38. [PMID: 26239979 PMCID: PMC4576094 DOI: 10.1128/aac.00803-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/31/2015] [Indexed: 01/31/2023] Open
Abstract
The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days—about 2 weeks sooner than required to count CFU—fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic.
Collapse
|
44
|
Hecht N, Gur E. Development of a fluorescence anisotropy-based assay for Dop, the first enzyme in the pupylation pathway. Anal Biochem 2015; 485:97-101. [PMID: 26095396 DOI: 10.1016/j.ab.2015.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
The Pup-proteasome system (PPS) carries out regulated tagging and degradation of proteins in bacterial species belonging to the phyla Actinobacteria and Nitrospira. In the pathogen Mycobacterium tuberculosis, where this proteolytic pathway was initially discovered, PPS enzymes are essential for full virulence and persistence in the mammalian host. As such, PPS enzymes are potential targets for development of antituberculosis therapeutics. Such development often requires sensitive and robust assays for measurements of enzymatic activities and the effect of examined inhibitors. Here, we describe the development of an in vitro activity assay for Dop, the first enzyme in the PPS. Based on fluorescence anisotropy measurements, this assay is simple, sensitive, and compatible with a high-throughput format for screening purposes. We demonstrate how this assay can also be reliably and conveniently used for detailed kinetic measurements of Dop activity. As such, this assay is of value for basic research into Dop and the PPS. Finally, we show that the assay developed here primarily for the mycobacterial Dop can be readily employed with other Dop enzymes, using the same simple protocol.
Collapse
Affiliation(s)
- Nir Hecht
- The Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eyal Gur
- The Department of Life Sciences & the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
45
|
Jastrab JB, Wang T, Murphy JP, Bai L, Hu K, Merkx R, Huang J, Chatterjee C, Ovaa H, Gygi SP, Li H, Darwin KH. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015; 112:E1763-72. [PMID: 25831519 PMCID: PMC4394314 DOI: 10.1073/pnas.1423319112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Tong Wang
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973
| | - J Patrick Murphy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Lin Bai
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Kuan Hu
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Remco Merkx
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | - Jessica Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
46
|
Latent tuberculosis infection: myths, models, and molecular mechanisms. Microbiol Mol Biol Rev 2015; 78:343-71. [PMID: 25184558 DOI: 10.1128/mmbr.00010-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to present the current state of knowledge on human latent tuberculosis infection (LTBI) based on clinical studies and observations, as well as experimental in vitro and animal models. Several key terms are defined, including "latency," "persistence," "dormancy," and "antibiotic tolerance." Dogmas prevalent in the field are critically examined based on available clinical and experimental data, including the long-held beliefs that infection is either latent or active, that LTBI represents a small population of nonreplicating, "dormant" bacilli, and that caseous granulomas are the haven for LTBI. The role of host factors, such as CD4(+) and CD8(+) T cells, T regulatory cells, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ), in controlling TB infection is discussed. We also highlight microbial regulatory and metabolic pathways implicated in bacillary growth restriction and antibiotic tolerance under various physiologically relevant conditions. Finally, we pose several clinically important questions, which remain unanswered and will serve to stimulate future research on LTBI.
Collapse
|
47
|
Samanovic MI, Tu S, Novák O, Iyer LM, McAllister FE, Aravind L, Gygi SP, Hubbard SR, Strnad M, Darwin KH. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide. Mol Cell 2015; 57:984-994. [PMID: 25728768 DOI: 10.1016/j.molcel.2015.01.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/17/2014] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
Abstract
One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homolog of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Shengjiang Tu
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ondřej Novák
- Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany AS CR, 78371 Olomouc, Czech Republic
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Fiona E McAllister
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, The Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Miroslav Strnad
- Department of Metabolomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 78371 Olomouc, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany AS CR, 78371 Olomouc, Czech Republic
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
48
|
Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome. PLoS One 2014; 9:e114348. [PMID: 25469515 PMCID: PMC4254994 DOI: 10.1371/journal.pone.0114348] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/06/2014] [Indexed: 12/14/2022] Open
Abstract
The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.
Collapse
|
49
|
Zheng Y, Jiang X, Gao F, Song J, Sun J, Wang L, Sun X, Lu Z, Zhang H. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:400. [PMID: 25315519 PMCID: PMC4203866 DOI: 10.1186/1472-6882-14-400] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/07/2014] [Indexed: 01/22/2023]
Abstract
Background The Mycobacterium tuberculosis (Mtb) proteasome has been established as a viable target for the development of anti-tuberculosis agents. In this study, the inhibitory activities of 100 plant-derived natural products on the Mtb proteasome were analyzed to identify novel potential inhibitors. Methods The fluorescent substrate Suc-Leu-Leu-Val-Tyr-AMC can be hydrolyzed by the proteasome to release free AMC, the fluorescence of which is proportional to the proteasome activity. The inhibitory activities of 100 natural products (each at a final concentration of 200 μM) were detected by this method using MG132 as a positive control. Results Twelve of these natural products (10 of which were flavonoids) inhibited the activity of the Mtb proteasome by more than 65%. Comparison of the structural differences between the flavonoids with good inhibitory activity and those without inhibitory activity revealed that the hydroxyl at the flavonoid C ring C-3 or the hydroxyl/methoxyl at the flavonoid A ring C-6 were critical for the inhibition of proteasomal activity. Conclusions These data indicate that flavonoids represent a basis for rational structural design in the process of novel anti-tuberculosis drug discovery.
Collapse
|
50
|
Abstract
Several major pathogens, including Mycobacterium tuberculosis, parasitize host cells and exploit host-derived nutrients to sustain their own metabolism. Although the carbon sources that are used by M. tuberculosis have been extensively studied, the mechanisms by which mycobacteria capture and metabolize nitrogen, which is another essential constituent of biomolecules, have only recently been revisited. In this Progress article, we discuss central nitrogen metabolism in M. tuberculosis, the mechanisms that are used by this pathogen to obtain nitrogen from its host and the potential role of nitrogen capture and metabolism in virulence.
Collapse
|