1
|
Peluzzo AM, St Paul A, Corbett CB, Kelemen SE, Fossati S, Liu X, Autieri MV. IL-19 Is a Novel Lymphangiocrine Factor Inducing Lymphangiogenesis and Lymphatic Junctional Regulation. Arterioscler Thromb Vasc Biol 2025. [PMID: 40371466 DOI: 10.1161/atvbaha.125.322669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND The lymphatic system functions by removing fluid, macromolecules, and immune cells to maintain tissue homeostasis. The structural organization of junctional protein complexes is vital to lymphatic function where initial lymphatics have permeable button junctions and collecting lymphatics have relatively impermeable zipper junctions. During inflammation, this junctional morphology appears to reverse, contributing to overall lymphatic malfunction. Little is known about the effects of immunomodulatory cytokines on lymphatic vessel formation and function during inflammation. The purpose of this study is to test the hypothesis that IL (interleukin)-19 promotes lymphangiogenesis and proper lymphatic function during inflammation. METHODS We used cultured human dermal lymphatic endothelial cells to determine IL-19 expression and its effects on lymphangiogenesis assays. Immunocytochemistry and electric cell-substrate impedance sensing determined effects on junctional morphology as it relates to permeability in vitro. RNA sequencing determined the effects of IL-19 on gene expression. Il19-/-Ldlr-/- double knockout mice were used to determine IL-19 effects on lymphatic function and lymphatic vessel visualization in vivo. RESULTS Endogenous IL-19 expression is induced by exogenous IL-19 and VEGF (vascular endothelial growth factor) C stimulation. IL-19 is lymphangiogenic, increasing human dermal lymphatic endothelial cell migration, network formation, and proliferation. IL-19 induces expression of transcription factors and permeability-associated genes. IL-19 induces rapid VE-cadherin (vascular endothelial cadherin) phosphorylation, increases permeability of human dermal lymphatic endothelial cell monolayers, and mitigates oxidized low-density lipoprotein-associated decrease in human dermal lymphatic endothelial cell permeability. In vivo, Il19-/-Ldlr-/- double knockout mice on a high-fat diet have impaired lymphatic drainage, decreased lymphatic branch points, and increased percentage of zippered junctions compared with control mice. CONCLUSIONS Taken together, these data show that IL-19 has potent effects on lymphatic vessel formation and function in vitro and that IL-19 regulates lymphatic drainage in vivo. IL-19 may represent an immunomodulatory cytokine with therapeutic potential for improving impaired lymphatic function consequent to inflammation.
Collapse
Affiliation(s)
- Amanda M Peluzzo
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Amanda St Paul
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Cali B Corbett
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Sheri E Kelemen
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Silvia Fossati
- Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.F.)
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research (A.M.P., A.S.P., C.B.C., S.E.K., X.L., M.V.A.)
| |
Collapse
|
2
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Fahad A, Simonson P, Risch I, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. PLoS Pathog 2025; 21:e1012233. [PMID: 40168402 PMCID: PMC11984749 DOI: 10.1371/journal.ppat.1012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/10/2025] [Accepted: 11/25/2024] [Indexed: 04/03/2025] Open
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined twenty-five skin and blood samples from sixteen subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a CD34-negative proliferative fraction of endothelial cells, and the second representing CD34-positive cells expressing endothelial genes found in a variety of cell types including high endothelial venules, fenestrated capillaries, and endothelial tip cells. Although both infected clusters contained cells expressing lytic and latent KSHV genes, the CD34+ cells expressed more K5 and less K12. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive cells was found to be less than 10% of total tumor cells in all samples and correlated inversely with tumor-infiltrating immune cells. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors after treatment with antiretroviral therapy alone, or immunotherapy were noted. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Paula Valiño Ramos
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Mariam Khanfar
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - John Harding
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Ancy Joseph
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Anam Fahad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Paul Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Isabel Risch
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Obi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America,
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America,
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America,
| |
Collapse
|
3
|
Losay VA, Damania B. Unraveling the Kaposi Sarcoma-Associated Herpesvirus (KSHV) Lifecycle: An Overview of Latency, Lytic Replication, and KSHV-Associated Diseases. Viruses 2025; 17:177. [PMID: 40006930 PMCID: PMC11860327 DOI: 10.3390/v17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus and the etiological agent of several diseases. These include the malignancies Kaposi sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD), as well as the inflammatory disorder KSHV inflammatory cytokine syndrome (KICS). The KSHV lifecycle is characterized by two phases: a default latent phase and a lytic replication cycle. During latency, the virus persists as an episome within host cells, expressing a limited subset of viral genes to evade immune surveillance while promoting cellular transformation. The lytic phase, triggered by various stimuli, results in the expression of the full viral genome, production of infectious virions, and modulation of the tumor microenvironment. Both phases of the KSHV lifecycle play crucial roles in driving viral pathogenesis, influencing oncogenesis and immune evasion. This review dives into the intricate world of the KSHV lifecycle, focusing on the molecular mechanisms that drive its latent and lytic phases, their roles in disease progression, and current therapeutic strategies.
Collapse
Affiliation(s)
- Victor A. Losay
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Clark M, Farinha A, Morrison A, Lisi G. Structural, biological, and biomedical implications of mRNA interactions with the master regulator HuR. NAR MOLECULAR MEDICINE 2025; 2:ugaf002. [PMID: 39980665 PMCID: PMC11838611 DOI: 10.1093/narmme/ugaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein (RBP) that has been implicated in a vast range of biological processes including stress response, angiogenesis, cell proliferation, and differentiation. Dysregulation of HuR has been linked to a number of pathological disorders including vascular disease, inflammation, and cancers such as those of the breast and colon. Like many RBPs, HuR is composed of multiple RNA-recognition motif (RRM) domains; however, HuR and the three other members of the Hu family (HuB, HuC, and HuD) possess a unique structural composition with two RRMs separated from a third C-terminal RRM by a long, unstructured hinge region. While there has been extensive research on the role of HuR in cellular, molecular, and developmental biology, there are fewer structural and biochemical studies of HuR and many questions still remain about the molecular mechanisms of HuR. In this review, we endeavor to synthesize existing HuR research spanning the last three decades in order to define known mechanistic roles of each domain, highlight remaining uncertainties, and provide a backdrop for ongoing research into the chemistry and biology of HuR and similar multi-RRM containing proteins.
Collapse
Affiliation(s)
- Madeline E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, United States
| | - Andrew Farinha
- Departments of Research and Medicine, Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, United States
| | - Alan R Morrison
- Departments of Research and Medicine, Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, United States
- Ocean State Research Institute, Inc., Providence, RI 02908, United States
- Department of Medicine, Section of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, United States
- Brown University RNA Center, Providence, RI 02903, United States
| |
Collapse
|
5
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
7
|
Santiago JC, Westfall DH, Adams SV, Okuku F, Phipps W, Mullins JI. Variation within major internal repeats of KSHV in vivo. Virus Evol 2023; 9:vead034. [PMID: 37325087 PMCID: PMC10266750 DOI: 10.1093/ve/vead034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), yet the viral genetic factors that lead to the development of KS in KSHV-infected individuals have not been fully elucidated. Nearly, all previous analyses of KSHV genomic evolution and diversity have excluded the three major internal repeat regions: the two origins of lytic replication, internal repeats 1 and 2 (IR1 and IR2), and the latency-associated nuclear antigen (LANA) repeat domain (LANAr). These regions encode protein domains that are essential to the KSHV infection cycle but have been rarely sequenced due to their extended repetitive nature and high guanine and cytosine (GC) content. The limited data available suggest that their sequences and repeat lengths are more heterogeneous across individuals than in the remainder of the KSHV genome. To assess their diversity, the full-length IR1, IR2, and LANAr sequences, tagged with unique molecular identifiers (UMIs), were obtained by Pacific Biosciences' single-molecule real-time sequencing (SMRT-UMI) from twenty-four tumors and six matching oral swabs from sixteen adults in Uganda with advanced KS. Intra-host single-nucleotide variation involved an average of 0.16 per cent of base positions in the repeat regions compared to a nearly identical average of 0.17 per cent of base positions in the remainder of the genome. Tandem repeat unit (TRU) counts varied by only one from the intra-host consensus in a majority of individuals. Including the TRU indels, the average intra-host pairwise identity was 98.3 per cent for IR1, 99.6 per cent for IR2 and 98.9 per cent for LANAr. More individuals had mismatches and variable TRU counts in IR1 (twelve/sixteen) than in IR2 (two/sixteen). There were no open reading frames in the Kaposin coding sequence inside IR2 in at least fifty-five of ninety-six sequences. In summary, the KSHV major internal repeats, like the rest of the genome in individuals with KS, have low diversity. IR1 was the most variable among the repeats, and no intact Kaposin reading frames were present in IR2 of the majority of genomes sampled.
Collapse
Affiliation(s)
- Jan Clement Santiago
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Dylan H Westfall
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
| | - Scott V Adams
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
| | - Fred Okuku
- Uganda Cancer Institute, Upper Mulago Hill Road, Kampala, Uganda
| | - Warren Phipps
- Global Oncology and Vaccine and Infectious Diseases Division,Fred Hutchinson Cancer Center, 1100 Eastlake Ave, Seattle, 98109-4487 WA, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, 960 Republican St, Seattle, WA 98109-4325, USA
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195-8070, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes the NDP52/CALCOCO2 selective autophagy receptor to disassemble processing bodies. PLoS Pathog 2023; 19:e1011080. [PMID: 36634147 PMCID: PMC9876383 DOI: 10.1371/journal.ppat.1011080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/25/2023] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the inflammatory and angiogenic endothelial cell neoplasm, Kaposi's sarcoma (KS). We previously demonstrated that the KSHV Kaposin B (KapB) protein promotes inflammation via the disassembly of cytoplasmic ribonucleoprotein granules called processing bodies (PBs). PBs modify gene expression by silencing or degrading labile messenger RNAs (mRNAs), including many transcripts that encode inflammatory or angiogenic proteins associated with KS disease. Although our work implicated PB disassembly as one of the causes of inflammation during KSHV infection, the precise mechanism used by KapB to elicit PB disassembly was unclear. Here we reveal a new connection between the degradative process of autophagy and PB disassembly. We show that both latent KSHV infection and KapB expression enhanced autophagic flux via phosphorylation of the autophagy regulatory protein, Beclin. KapB was necessary for this effect, as infection with a recombinant virus that does not express the KapB protein did not induce Beclin phosphorylation or autophagic flux. Moreover, we showed that PB disassembly mediated by KSHV or KapB, depended on autophagy genes and the selective autophagy receptor NDP52/CALCOCO2 and that the PB scaffolding protein, Pat1b, co-immunoprecipitated with NDP52. These studies reveal a new role for autophagy and the selective autophagy receptor NDP52 in promoting PB turnover and the concomitant synthesis of inflammatory molecules during KSHV infection.
Collapse
|
9
|
Luo Y, Li Z, Kong Y, He W, Zheng H, An M, Lin Y, Zhang D, Yang J, Zhao Y, Chen C, Chen R. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest 2022; 132:e157644. [PMID: 35579947 PMCID: PMC9282935 DOI: 10.1172/jci157644] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Lymph node (LN) metastasis occurs frequently in pancreatic ductal adenocarcinoma (PDAC) and predicts poor prognosis for patients. The KRASG12D mutation confers an aggressive PDAC phenotype that is susceptible to lymphatic dissemination. However, the regulatory mechanism underlying KRASG12D mutation-driven LN metastasis in PDAC remains unclear. Herein, we found that PDAC with the KRASG12D mutation (KRASG12D PDAC) sustained extracellular vesicle-mediated (EV-mediated) transmission of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) in a SUMOylation-dependent manner and promoted lymphangiogenesis and LN metastasis in vitro and in vivo. Mechanistically, hnRNPA1 bound with SUMO2 at the lysine 113 residue via KRASG12D-induced hyperactivation of SUMOylation, which enabled its interaction with TSG101 to enhance hnRNPA1 packaging and transmission via EVs. Subsequently, SUMOylation induced EV-packaged-hnRNPA1 anchoring to the adenylate- and uridylate-rich elements of PROX1 in lymphatic endothelial cells, thus stabilizing PROX1 mRNA. Importantly, impeding SUMOylation of EV-packaged hnRNPA1 dramatically inhibited LN metastasis of KRASG12D PDAC in a genetically engineered KrasG12D/+ Trp53R172H/+ Pdx-1-Cre (KPC) mouse model. Our findings highlight the mechanism by which KRAS mutant-driven SUMOylation triggers EV-packaged hnRNPA1 transmission to promote lymphangiogenesis and LN metastasis, shedding light on the potential application of hnRNPA1 as a therapeutic target in patients with KRASG12D PDAC.
Collapse
Affiliation(s)
- Yuming Luo
- Department of Pancreatic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhihua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yao Kong
- Department of Pancreatic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Dingwen Zhang
- Department of Pancreatic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
10
|
Rusu-Zota G, Manole OM, Galeș C, Porumb-Andrese E, Obadă O, Mocanu CV. Kaposi Sarcoma, a Trifecta of Pathogenic Mechanisms. Diagnostics (Basel) 2022; 12:1242. [PMID: 35626397 PMCID: PMC9140574 DOI: 10.3390/diagnostics12051242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kaposi's sarcoma is a rare disease with four known variants: classic, epidemic, endemic and iatrogenic (transplant-related), all caused by an oncogenic virus named Human Herpes Virus 8. The viral infection in itself, along with the oncogenic properties of HHV8 and with immune system dysfunction, forms the grounds on which Kaposi's Sarcoma may develop. Infection with HHV8 occurs through saliva via close contacts, blood, blood products, solid organ donation and, rarely, vertical transmission. Chronic inflammation and oncogenesis are promoted by a mix of viral genes that directly promote cell survival and transformation or interfere with the regular cell cycle and cell signaling (of particular note: LANA-1, v-IL6, vBCL-2, vIAP, vIRF3, vGPCR, gB, K1, K8.1, K15). The most common development sites for Kaposi's sarcoma are the skin, mucocutaneous zones, lymph nodes and visceral organs, but it can also rarely appear in the musculoskeletal system, urinary system, endocrine organs, heart or eye. Histopathologically, spindle cell proliferation with slit-like vascular spaces, plasma cell and lymphocyte infiltrate are characteristic. The clinical presentation is heterogenic depending on the variant; some patients have indolent disease and others have aggressive disease. The treatment options include highly active antiretroviral therapy, surgery, radiation therapy, chemotherapy, and immunotherapy. A literature search was carried out using the MEDLINE/PubMed, SCOPUS and Google Scholar databases with a combination of keywords with the aim to provide critical, concise, and comprehensive insights into advances in the pathogenic mechanism of Kaposi's sarcoma.
Collapse
Affiliation(s)
- Gabriela Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Oana Mădălina Manole
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania
| | - Cristina Galeș
- Department of Histology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Elena Porumb-Andrese
- Department of Dermatology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Otilia Obadă
- Department of Ophthalmology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| | - Cezar Valentin Mocanu
- Department of Anatomical Pathology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 700115 Iasi, Romania;
| |
Collapse
|
11
|
A panel of KSHV mutants in the polycistronic kaposin locus for precise analysis of individual protein products. J Virol 2021; 96:e0156021. [PMID: 34936820 PMCID: PMC8906436 DOI: 10.1128/jvi.01560-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the cause of several human cancers, including the endothelial cell (EC) malignancy, Kaposi’s sarcoma. Unique KSHV genes absent from other human herpesvirus genomes, the “K-genes,” are important for KSHV replication and pathogenesis. Among these, the kaposin transcript is highly expressed in all phases of infection, but its complex polycistronic nature has hindered functional analysis to date. At least three proteins are produced from the kaposin transcript: Kaposin A (KapA), B (KapB), and C (KapC). To determine the relative contributions of kaposin proteins during KSHV infection, we created a collection of mutant viruses unable to produce kaposin proteins individually or in combination. In previous work, we showed KapB alone recapitulated the elevated proinflammatory cytokine transcripts associated with KS via the disassembly of RNA granules called processing bodies (PBs). Using the new ΔKapB virus, we showed that KapB was necessary for this effect during latent KSHV infection. Moreover, we observed that despite the ability of all kaposin-deficient latent iSLK cell lines to produce virions, all displayed low viral episome copy number, a defect that became more pronounced after primary infection of naive ECs. For ΔKapB, provision of KapB in trans failed to complement the defect, suggesting a requirement for the kaposin locus in cis. These findings demonstrate that our panel of kaposin-deficient viruses enables precise analysis of the respective contributions of individual kaposin proteins to KSHV replication. Moreover, our mutagenesis approach serves as a guide for the functional analysis of other complex multicistronic viral loci. IMPORTANCE Kaposi’s sarcoma-associated herpesvirus (KSHV) expresses high levels of the kaposin transcript during both latent and lytic phases of replication. Due to its repetitive, GC-rich nature and polycistronic coding capacity, until now no reagents existed to permit a methodical analysis of the role of individual kaposin proteins in KSHV replication. We report the creation of a panel of recombinant viruses and matched producer cell lines that delete kaposin proteins individually or in combination. We demonstrate the utility of this panel by confirming the requirement of one kaposin translation product to a key KSHV latency phenotype. This study describes a new panel of molecular tools for the KSHV field to enable precise analysis of the roles of individual kaposin proteins during KSHV infection.
Collapse
|
12
|
Ducoli L, Detmar M. Beyond PROX1: transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev Cell 2021; 56:406-426. [PMID: 33621491 DOI: 10.1016/j.devcel.2021.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The lymphatic vascular system acts as the major transportation highway of tissue fluids, and its activation or impairment is associated with a wide range of diseases. There has been increasing interest in understanding the mechanisms that control lymphatic vessel formation (lymphangiogenesis) and function in development and disease. Here, we discuss recent insights into new players whose identification has contributed to deciphering the lymphatic regulatory code. We reveal how lymphatic endothelial cells, the building blocks of lymphatic vessels, utilize their transcriptional, post-transcriptional, and epigenetic portfolio to commit to and maintain their vascular lineage identity and function, with a particular focus on development.
Collapse
Affiliation(s)
- Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland; Molecular Life Sciences PhD Program, Swiss Federal Institute of Technology and University of Zürich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Clinico-pathological and prognostic implications of Srx, Nrf2, and PROX1 expression in gastric cancer and adjacent non-neoplastic mucosa - an immunohistochemical study. Contemp Oncol (Pozn) 2021; 24:229-240. [PMID: 33531870 PMCID: PMC7836280 DOI: 10.5114/wo.2020.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Sulfiredoxin (Srx), which is an endogenous antioxidant substance which could, regulate the signaling pathways of reactive oxygen species. Nuclear factor erythroid 2-related factor 2 (Nrf2) is Cap-N-collar (CNC) transcription factors family member that have essential roles in regulation of antioxidant response. The transcription factor PROX1 is a transcription factor and a key regulatory protein in cancer development. Aim of the study To analyze levels of tissue expression of Srx, Nrf2, and PROX1 in gastric cancer and adjacent non-neoplastic gastric mucosa to clarify the relationship between their expression levels, clinical, pathological parameters and patients’ outcome. The results might lead to discovering novel targeted therapies to gastric cancers. Material and methods We included 70 paraffin-embedded samples: 50 specimens from gastric carcinomas and 20 specimens from adjacent non-neoplastic gastric mucosa. All samples are stained with Srx, Nrf2, and PROX1 using immunohistochemistry, correlated their expression with clinicopathological and prognostic parameters of patients. Results High levels of Srx and Nrf2 expression were positively associated with higher cancer grade (p = 0.006, 0.031 respectively), advanced stage (p < 0.001, 0.02 respectively), higher incidence of distant metastases (p = 0.029, 0.03 respectively) and dismal outcome (p < 0.001). High levels of PROX1 expression were associated with lower cancer grade (p = 0.005), absence of lymph nodes metastases (p = 0.023), early stage (p = 0.003), absence of relapse (p = 0.004), and favorable outcome (p < 0.001). Conclusions Srx and Nrf2 expression increase gastric cancer invasiveness, suggesting their utility as poor prognostic markers, but PROX1 serves as a favorable prognostic marker of gastric cancer patients.
Collapse
|
14
|
Choi YB, Cousins E, Nicholas J. Novel Functions and Virus-Host Interactions Implicated in Pathogenesis and Replication of Human Herpesvirus 8. Recent Results Cancer Res 2021; 217:245-301. [PMID: 33200369 DOI: 10.1007/978-3-030-57362-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human herpesvirus 8 (HHV-8) is classified as a γ2-herpesvirus and is related to Epstein-Barr virus (EBV), a γ1-herpesvirus. One important aspect of the γ-herpesviruses is their association with neoplasia, either naturally or in animal model systems. HHV-8 is associated with B-cell-derived primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD), endothelial-derived Kaposi's sarcoma (KS), and KSHV inflammatory cytokine syndrome (KICS). EBV is also associated with a number of B-cell malignancies, such as Burkitt's lymphoma, Hodgkin's lymphoma, and posttransplant lymphoproliferative disease, in addition to epithelial nasopharyngeal and gastric carcinomas. Despite the similarities between these viruses and their associated malignancies, the particular protein functions and activities involved in key aspects of virus biology and neoplastic transformation appear to be quite distinct. Indeed, HHV-8 specifies a number of proteins for which counterparts had not previously been identified in EBV, other herpesviruses, or even viruses in general, and these proteins are believed to play vital functions in virus biology and to be involved centrally in viral pathogenesis. Additionally, a set of microRNAs encoded by HHV-8 appears to modulate the expression of multiple host proteins to provide conditions conductive to virus persistence within the host and possibly contributing to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Young Bong Choi
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA.
| | - Emily Cousins
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
15
|
The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int J Mol Sci 2020; 21:ijms21093220. [PMID: 32370142 PMCID: PMC7247360 DOI: 10.3390/ijms21093220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has prognostic significance and is associated with patient outcomes. In our previous experimental studies, we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1 cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of vascular molecules in cancer development and provide an update on the functionality of PROX1 in THC biology regulation.
Collapse
|
16
|
Schultz CW, Preet R, Dhir T, Dixon DA, Brody JR. Understanding and targeting the disease-related RNA binding protein human antigen R (HuR). WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1581. [PMID: 31970930 DOI: 10.1002/wrna.1581] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
Altered gene expression is a characteristic feature of many disease states such as tumorigenesis, and in most cancers, it facilitates cancer cell survival and adaptation. Alterations in global gene expression are strongly impacted by post-transcriptional gene regulation. The RNA binding protein (RBP) HuR (ELAVL1) is an established regulator of post-transcriptional gene regulation and is overexpressed in most human cancers. In many cancerous settings, HuR is not only overexpressed, but it is "overactive" as denoted by increased subcellular localization within the cytoplasm. This dysregulation of HuR expression and cytoplasmic localization allows HuR to stabilize and increase the translation of various prosurvival messenger RNA (mRNAs) involved in the pathogenesis of numerous cancers and various diseases. Based on almost 20 years of work, HuR is now recognized as a therapeutic target. Herein, we will review the role HuR plays in the pathophysiology of different diseases and ongoing therapeutic strategies to target HuR. We will focus on three ongoing-targeted strategies: (1) inhibiting HuR's translocation from the nucleus to the cytoplasm; (2) inhibiting the ability of HuR to bind target RNA; and (3) silencing HuR expression levels. In an oncologic setting, HuR has been demonstrated to be critical for a cancer cell's ability to survive a variety of cancer relevant stressors (including drugs and elements of the tumor microenvironment) and targeting this protein has been shown to sensitize cancer cells further to insult. We strongly believe that targeting HuR could be a powerful therapeutic target to treat different diseases, particularly cancer, in the near future. This article is categorized under: RNA in Disease and Development > RNA in Disease NRA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation.
Collapse
Affiliation(s)
- Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Trincot C, Caron KM. Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacol Transl Sci 2019; 2:311-324. [PMID: 32259065 PMCID: PMC7089000 DOI: 10.1021/acsptsci.9b00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology. We first focus on elucidating innate and fundamental differences between the sexes in lymphatic function and development. Next, we delve into lymphatic disease and explore the potential underpinnings toward bias prevalence in the female population. Lastly, we incorporate more broadly the role of the lymphatic system in sex-biased diseases such as cancer, cardiovascular disease, reproductive disorders, and autoimmune diseases to explore whether and how sex differences may influence lymphatic function in the context of these pathologies.
Collapse
Affiliation(s)
- Claire
E. Trincot
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| | - Kathleen M. Caron
- Department of Cell Biology
and Physiology, University of North Carolina
Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building,
CB#7545, Chapel Hill, North
Carolina 27599-7545, United States
| |
Collapse
|
18
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
20
|
Duan Z, Deng S, Ji X, Zhao J, Yuan C, Gao H. Nuclear localization of Newcastle disease virus matrix protein promotes virus replication by affecting viral RNA synthesis and transcription and inhibiting host cell transcription. Vet Res 2019; 50:22. [PMID: 30894203 PMCID: PMC6425612 DOI: 10.1186/s13567-019-0640-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 01/24/2023] Open
Abstract
Nuclear localization of paramyxovirus proteins is crucial for virus life cycle, including the regulation of viral replication and the evasion of host immunity. We previously showed that a recombinant Newcastle disease virus (NDV) with nuclear localization signal mutation in the matrix (M) protein results in a pathotype change and attenuates viral pathogenicity in chickens. However, little is known about the nuclear localization functions of NDV M protein. In this study, the potential functions of the M protein in the nucleus were investigated. We first demonstrate that nuclear localization of the M protein could not only promote the cytopathogenicity of NDV but also increase viral RNA synthesis and transcription efficiency in DF-1 cells. Using microarray analysis, we found that nuclear localization of the M protein might inhibit host cell transcription, represented by numerous up-regulating genes associated with transcriptional repressor activity and down-regulating genes associated with transcriptional activator activity. The role of representative up-regulated gene prospero homeobox 1 (PROX1) and down-regulated gene aryl hydrocarbon receptor (AHR) in the replication of NDV was then evaluated. The results show that siRNA-mediated knockdown of PROX1 or AHR significantly reduced or increased the viral RNA synthesis and viral replication, respectively, demonstrating the important roles of the expression changes of these genes in NDV replication. Together, our findings demonstrate for the first time that nuclear localization of NDV M protein promotes virus replication by affecting viral RNA synthesis and transcription and inhibiting host cell transcription, improving our understanding of the molecular mechanism of NDV replication and pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China. .,College of Animal Science, Guizhou University, Guiyang, China.
| | - Shanshan Deng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xinqin Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Hongbo Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Choi D, Park E, Jung E, Cha B, Lee S, Yu J, Kim PM, Lee S, Hong YJ, Koh CJ, Cho CW, Wu Y, Li Jeon N, Wong AK, Shin L, Kumar SR, Bermejo-Moreno I, Srinivasan RS, Cho IT, Hong YK. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight 2019; 4:125068. [PMID: 30676326 DOI: 10.1172/jci.insight.125068] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunson Jung
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Somin Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Paul M Kim
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Yeo Jin Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor Collexge of Medicine, Houston, Texas, USA
| | - Chang-Won Cho
- Department of Surgery, and.,Traditional Food Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Yifan Wu
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | | - Ivan Bermejo-Moreno
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Young-Kwon Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
22
|
Abstract
The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
Collapse
|
23
|
Mariggiò G, Koch S, Schulz TF. Kaposi sarcoma herpesvirus pathogenesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0275. [PMID: 28893942 PMCID: PMC5597742 DOI: 10.1098/rstb.2016.0275] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV), taxonomical name human gammaherpesvirus 8, is a phylogenetically old human virus that co-evolved with human populations, but is now only common (seroprevalence greater than 10%) in sub-Saharan Africa, around the Mediterranean Sea, parts of South America and in a few ethnic communities. KSHV causes three human malignancies, Kaposi sarcoma, primary effusion lymphoma, and many cases of the plasmablastic form of multicentric Castleman's disease (MCD) as well as occasional cases of plasmablastic lymphoma arising from MCD; it has also been linked to rare cases of bone marrow failure and hepatitis. As it has colonized humans physiologically for many thousand years, cofactors are needed to allow it to unfold its pathogenic potential. In most cases, these include immune defects of genetic, iatrogenic or infectious origin, and inflammation appears to play an important role in disease development. Our much improved understanding of its life cycle and its role in pathogenesis should now allow us to develop new therapeutic strategies directed against key viral proteins or intracellular pathways that are crucial for virus replication or persistence. Likewise, its limited (for a herpesvirus) distribution and transmission should offer an opportunity for the development and use of a vaccine to prevent transmission. This article is part of the themed issue ‘Human oncogenic viruses’.
Collapse
Affiliation(s)
- Giuseppe Mariggiò
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Sandra Koch
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany .,German Centre for Infection Research, Hannover-Braunschweig site, Hannover, Germany
| |
Collapse
|
24
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
26
|
Jehung JP, Kitamura T, Yanagawa-Matsuda A, Kuroshima T, Towfik A, Yasuda M, Sano H, Kitagawa Y, Minowa K, Shindoh M, Higashino F. Adenovirus infection induces HuR relocalization to facilitate virus replication. Biochem Biophys Res Commun 2017; 495:1795-1800. [PMID: 29225167 DOI: 10.1016/j.bbrc.2017.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
HuR is an RNA-binding protein of the embryonic lethal abnormal vision (ELAV) family, which binds to the AU-rich element (ARE) in the 3'-untranslated region (UTR) of certain mRNAs and is involved in the nucleo-cytoplasmic export and stabilization of ARE-mRNAs. The cytoplasmic relocalization of ARE-mRNAs with several proteins such as HuR and pp32 increases in cells transformed by the adenovirus oncogene product E4orf6. Additionally, these ARE-mRNAs were stabilized and acquired the potential to transform cells. Although, the relocalization of HuR and the stabilization of ARE-mRNAs are crucial for cell transformation, evidence regarding the relationship of HuR and ARE-mRNAs with adenovirus replication is lacking. In this report, we demonstrate that adenovirus infection induces the relocation of HuR to the cytoplasm of host cells. Analysis using the luciferase-ARE fusion gene and the tetracycline (tet)-off system revealed that the process of stabilizing ARE-mRNAs is activated in adenovirus-infected cells. Heat shock treatment or knockdown-mediated depletion of HuR reduced adenovirus production. Furthermore, expression of ARE-including viral IVa2 mRNA, decreased in HuR-depleted infected cells. These results indicate that HuR plays an important role in adenovirus replication, at least in part, by up-regulating IVa2 mRNA expression and that ARE-mRNA stabilization is required for both transformation and virus replication.
Collapse
Affiliation(s)
- Jumond P Jehung
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Takeshi Kuroshima
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Alam Towfik
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Motoaki Yasuda
- Department of Oral Molecular Microbiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan; Department of Molecular Oncology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Biomedical Science and Engineering, Sapporo, Japan.
| |
Collapse
|
27
|
Laitinen A, Böckelman C, Hagström J, Kokkola A, Kallio P, Haglund C. High PROX1 expression in gastric cancer predicts better survival. PLoS One 2017; 12:e0183868. [PMID: 28854215 PMCID: PMC5576676 DOI: 10.1371/journal.pone.0183868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND PROX1 is a transcription factor involved in the development of various organs. It has also an important function in colorectal cancer progression. The aim of this study was to investigate the prognostic role of PROX1 expression in gastric cancer. METHODS We evaluated PROX1 expression in gastric cancer by immunohistochemistry of tumor-tissue microarrays including tumor specimens from 283 patients who underwent surgery at Helsinki University Hospital. We investigated the association of PROX1 expression with clinicopathologic variables and patient survival. RESULTS Cytoplasmic PROX1 reactivity was high in 56 (20.5%) and low in 217 (79.5%) cases. Low PROX1 immunostaining associated with diffuse cancer type (p = 0.002). In subgroup analysis, PROX1 was a significant marker of better prognosis in patients aged under 66 (p = 0.007), in those with intestinal cancer (p = 0.025), among men (p = 0.019), and in tumors of less than 5 cm diameter (p = 0.030). Patients with high PROX1 expression had a cancer-specific 5-year survival of 65.6% (95% CI 52.7-78.5), compared to 37.1% (95% CI 30.2-44.0) for those with low expression (p = 0.004, log-rank test). This result remained significant in multivariable analysis (HR = 0.56; 95% CI 0.35-0.90; p = 0.017). CONCLUSION In gastric cancer, high cytoplasmic PROX1 expression is an independent marker of better prognosis.
Collapse
Affiliation(s)
- Alli Laitinen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Camilla Böckelman
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauliina Kallio
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J Microbiol 2017; 55:319-329. [PMID: 28455586 DOI: 10.1007/s12275-017-7075-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the human herpesvirus family. Unlike alpha- and beta-herpesvirus subfamily members, gamma-herpesviruses, including Epstein-Barr virus (EBV) and KSHV, cause various tumors in humans. KSHV primarily infects endothelial and B cells in vivo, and is associated with at least three malignancies: Kaposi's sarcoma and two B cell lymphomas, respectively. Although KSHV readily infects endothelial cells in vitro and thus its pathogenic mechanisms have been extensively studied, B cells had been refractory to KSHV infection. As such, functions of KSHV genes have mostly been elucidated in endothelial cells in the context of viral infection but not in B cells. Whether KSHV oncogenes, defined in endothelial cells, play the same roles in the tumorigenesis of B cells remains an open question. Only recently, through a few ground-breaking studies, B cell infection models have been established. In this review, those models will be compared and contrasted and putative mechanisms of KSHV-induced B cell transformation will be discussed.
Collapse
|
29
|
Yee D, Coles MC, Lagos D. microRNAs in the Lymphatic Endothelium: Master Regulators of Lineage Plasticity and Inflammation. Front Immunol 2017; 8:104. [PMID: 28232833 PMCID: PMC5298995 DOI: 10.3389/fimmu.2017.00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
microRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expression at the posttranscriptional level. They have crucial roles in organismal development, homeostasis, and cellular responses to pathological stress. The lymphatic system is a large vascular network that actively regulates the immune response through antigen trafficking, cytokine secretion, and inducing peripheral tolerance. Here, we review the role of miRNAs in the lymphatic endothelium with a particular focus on their role in lymphatic endothelial cell (LEC) plasticity, inflammation, and regulatory function. We highlight the lineage plasticity of LECs during inflammation and the importance of understanding the regulatory role of miRNAs in these processes. We propose that targeting miRNA expression in lymphatic endothelium can be a novel strategy in treating human pathologies associated with lymphatic dysfunction.
Collapse
Affiliation(s)
- Daniel Yee
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| | - Mark C Coles
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| |
Collapse
|
30
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
31
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
32
|
Chang HC, Hsieh TH, Lee YW, Tsai CF, Tsai YN, Cheng CC, Wang HW. c-Myc and viral cofactor Kaposin B co-operate to elicit angiogenesis through modulating miRNome traits of endothelial cells. BMC SYSTEMS BIOLOGY 2016; 10 Suppl 1:1. [PMID: 26817819 PMCID: PMC4895700 DOI: 10.1186/s12918-015-0242-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) have emerged as master regulators of angiogenesis and other cancer-related events. Discovering new angiogenesis-regulating microRNAs (angiomiRs) will eventually help in developing new therapeutic strategies for tumor angiogenesis and cardiovascular diseases. Kaposi's sarcoma (KS), which is induced by the etiological infectious agent KS-associated herpesvirus (KSHV), is a peculiar neoplasm that expresses both blood and lymphatic endothelial markers and possesses extensive neovasculature. Using KSHV and its proteins as baits will be an efficient way to discover new angiomiRs in endothelial cells. Kaposin B is one of the latent viral genes and is expressed in all KSHV tumor cells. Since Kaposin B is a nuclear protein with no DNA-binding domain, it may regulate gene expression by incorporating itself into a transcription complex. RESULTS We demonstrated that c-Myc and Kaposin B form a transcription complex and bind to the miR-221/-222 promoter, thereby affecting their expression and anti-angiogenic ability. By small RNA sequencing (smRNA-Seq), we revealed that 72.1% (173/240) of Kaposin B up-regulated and 46.5% (113/243) of Kaposin B down-regulated known miRNAs were regulated by c-Myc. We also found that 77 novel miRNA were up-regulated and 28 novel miRNAs were down-regulated in cells expressing both c-Myc and Kaposin B compared with cells expressing Kaposin B only. The result was confirmed by RNA-IP-seq data. CONCLUSIONS Our study identifies known and novel c-Myc-regulated microRNAs and reveals that a c-Myc-oriented program is coordinated by Kaposin B in KSHV-infected cells.
Collapse
Affiliation(s)
- Hsin-Chuan Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Tsung-Han Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Yi-Wei Lee
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Fong Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Ya-Ni Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan. .,VGH-YM Genome Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
33
|
Schulz TF, Cesarman E. Kaposi Sarcoma-associated Herpesvirus: mechanisms of oncogenesis. Curr Opin Virol 2015; 14:116-28. [PMID: 26431609 DOI: 10.1016/j.coviro.2015.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Kaposi Sarcoma-associated Herpesvirus (KSHV, HHV8) causes three human malignancies, Kaposi Sarcoma (KS), an endothelial tumor, as well as Primary Effusion Lymphoma (PEL) and the plasma cell variant of Multicentric Castleman's Disease (MCD), two B-cell lymphoproliferative diseases. All three cancers occur primarily in the context of immune deficiency and/or HIV infection, but their pathogenesis differs. KS most likely results from the combined effects of an endotheliotropic virus with angiogenic properties and inflammatory stimuli and thus represents an interesting example of a cancer that arises in an inflammatory context. Viral and cellular angiogenic and inflammatory factors also play an important role in the pathogenesis of MCD. In contrast, PEL represents an autonomously growing malignancy that is, however, still dependent on the continuous presence of KSHV and the action of several KSHV proteins.
Collapse
Affiliation(s)
- Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research, Hannover-Braunschweig Site, Hannover, Germany.
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
34
|
Corcoran JA, Johnston BP, McCormick C. Viral activation of MK2-hsp27-p115RhoGEF-RhoA signaling axis causes cytoskeletal rearrangements, p-body disruption and ARE-mRNA stabilization. PLoS Pathog 2015; 11:e1004597. [PMID: 25569678 PMCID: PMC4287613 DOI: 10.1371/journal.ppat.1004597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of several AIDS-related cancers, including the endothelial cell (EC) neoplasm Kaposi's sarcoma (KS). KSHV-infected ECs secrete abundant host-derived pro-inflammatory molecules and angiogenic factors that contribute to tumorigenesis. The precise contributions of viral gene products to this secretory phenotype remain to be elucidated, but there is emerging evidence for post-transcriptional regulation. The Kaposin B (KapB) protein is thought to contribute to the secretory phenotype in infected cells by binding and activating the stress-responsive kinase MK2, thereby selectively blocking decay of AU-rich mRNAs (ARE-mRNAs) encoding pro-inflammatory cytokines and angiogenic factors. Processing bodies (PBs) are cytoplasmic ribonucleoprotein foci in which ARE-mRNAs normally undergo rapid 5′ to 3′ decay. Here, we demonstrate that PB dispersion is a feature of latent KSHV infection, which is dependent on kaposin protein expression. KapB is sufficient to disperse PBs, and KapB-mediated ARE-mRNA stabilization could be partially reversed by treatments that restore PBs. Using a combination of genetic and chemical approaches we provide evidence that KapB-mediated PB dispersion is dependent on activation of a non-canonical Rho-GTPase signaling axis involving MK2, hsp27, p115RhoGEF and RhoA. PB dispersion in latently infected cells is likewise dependent on p115RhoGEF. In addition to PB dispersion, KapB-mediated RhoA activation in primary ECs caused actin stress fiber formation, increased cell motility and angiogenesis; these effects were dependent on the activity of the RhoA substrate kinases ROCK1/2. By contrast, KapB-mediated PB dispersion occurred in a ROCK1/2-independent manner. Taken together, these observations position KapB as a key contributor to viral reprogramming of ECs, capable of eliciting many of the phenotypes characteristic of KS tumor cells, and strongly contributing to the post-transcriptional control of EC gene expression and secretion. We have only scratched the surface in understanding how viruses control host gene expression. Several viruses disrupt important sites of post-transcriptional control of gene expression known as processing bodies (PBs), but underlying regulatory mechanisms and biological relevance remain poorly understood in most cases. Our study shows that the Kaposin B (KapB) protein of Kaposi's sarcoma (KS)-associated herpesvirus, known to block the degradation of a class of labile host mRNAs, does so by constitutively activating a signaling axis involving MK2, hsp27, p115RhoGEF and RhoA, thereby dispersing PBs. Thus, PB disruption may support the secretion of host pro-inflammatory cytokines and angiogenic factors that underlies KS tumor formation. Furthermore, by activating RhoA, KapB also causes cytoskeletal rearrangements, accelerated cell migration and angiogenesis in an endothelial cell model. Our findings position KapB as a key contributor to viral reprogramming of endothelial cells.
Collapse
Affiliation(s)
- Jennifer A. Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Benjamin P. Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
35
|
Bhutani M, Polizzotto MN, Uldrick TS, Yarchoan R. Kaposi sarcoma-associated herpesvirus-associated malignancies: epidemiology, pathogenesis, and advances in treatment. Semin Oncol 2014; 42:223-46. [PMID: 25843728 DOI: 10.1053/j.seminoncol.2014.12.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kaposi sarcoma associated herpesvirus (KSHV), a γ2-herpesvirus, also known as human herpesvirus-8, is the etiologic agent of three virally associated tumors: Kaposi sarcoma, a plasmablastic form of multicentric Castleman disease (KSHV-MCD), and primary effusion lymphoma. These malignancies are predominantly seen in people with acquired immunodeficiencies, including acquired immunodeficiency syndrome and iatrogenic immunosuppression in the setting of organ transplantation, but can also develop in the elderly. Kaposi sarcoma (KS) is most frequent in regions with high KSHV seroprevalence, such as sub-Saharan Africa and some Mediterranean countries. In the era of combination antiviral therapy, inflammatory manifestations associated with KSHV-infection, including KSHV-MCD, a recently described KSHV-associated inflammatory cytokine syndrome and KS immune reconstitution syndrome also are increasingly appreciated. Our understanding of viral and immune mechanisms of oncogenesis continues to expand and lead to improved molecular diagnostics, as well as novel therapeutic strategies that employ immune modulatory agents, manipulations of the tumor microenvironment, virus-activated cytotoxic therapy, or agents that target interactions between specific virus-host cell signaling pathways. This review focuses on the epidemiology and advances in molecular and clinical research that reflects the current understanding of viral oncogenesis, clinical manifestations, and therapeutics for KSHV-associated tumors.
Collapse
Affiliation(s)
- Manisha Bhutani
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Mark N Polizzotto
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD.
| |
Collapse
|
36
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. These cancers often occur in the context of immunosuppression, which has made KSHV-associated malignancies an increasing global health concern with the persistence of the AIDS epidemic. KSHV has also been linked to several acute inflammatory diseases. KSHV exists between a lytic and latent lifecycle, which allows the virus to transition between active replication and quiescent infection. KSHV encodes a number of proteins and small RNAs that are thought to inadvertently transform host cells while performing their functions of helping the virus persist in the infected host. KSHV also has an arsenal of components that aid the virus in evading the host immune response, which help the virus establish a successful lifelong infection. In this comprehensive chapter, we will discuss the diseases associated with KSHV infection, the biology of latent and lytic infection, and individual proteins and microRNAs that are known to contribute to host cell transformation and immune evasion.
Collapse
Affiliation(s)
- Louise Giffin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
37
|
Cousins E, Nicholas J. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication. Recent Results Cancer Res 2014; 193:227-68. [PMID: 24008302 PMCID: PMC4124616 DOI: 10.1007/978-3-642-38965-8_13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is the second identified human gammaherpesvirus. Like its relative Epstein-Barr virus, HHV-8 is linked to B-cell tumors, specifically primary effusion lymphoma and multicentric Castleman's disease, in addition to endothelial-derived KS. HHV-8 is unusual in its possession of a plethora of "accessory" genes and encoded proteins in addition to the core, conserved herpesvirus and gammaherpesvirus genes that are necessary for basic biological functions of these viruses. The HHV-8 accessory proteins specify not only activities deducible from their cellular protein homologies but also novel, unsuspected activities that have revealed new mechanisms of virus-host interaction that serve virus replication or latency and may contribute to the development and progression of virus-associated neoplasia. These proteins include viral interleukin-6 (vIL-6), viral chemokines (vCCLs), viral G protein-coupled receptor (vGPCR), viral interferon regulatory factors (vIRFs), and viral antiapoptotic proteins homologous to FLICE (FADD-like IL-1β converting enzyme)-inhibitory protein (FLIP) and survivin. Other HHV-8 proteins, such as signaling membrane receptors encoded by open reading frames K1 and K15, also interact with host mechanisms in unique ways and have been implicated in viral pathogenesis. Additionally, a set of micro-RNAs encoded by HHV-8 appear to modulate expression of multiple host proteins to provide conditions conducive to virus persistence within the host and could also contribute to HHV-8-induced neoplasia. Here, we review the molecular biology underlying these novel virus-host interactions and their potential roles in both virus biology and virus-associated disease.
Collapse
Affiliation(s)
- Emily Cousins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
38
|
Amin M, Pantanowitz L. Review of latent and lytic phase biomarkers in Kaposi's sarcoma. ACTA ACUST UNITED AC 2013; 7:531-42. [PMID: 24070121 DOI: 10.1517/17530059.2013.842227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Kaposi's sarcoma (KS) is a vascular neoplasm with distinct clinical-epidemiological subtypes and varied clinical presentations. While the association of KS with human herpesvirus-8 (HHV8, KSHV) infection is well known, additional factors are needed for tumorigenesis. The precise sequence of events involved in KS development, progression and regression continues to be investigated. The discovery of KSHV biomarkers is helpful for diagnostic purposes, for understanding KS pathogenesis and for identifying potential druggable targets. AREAS COVERED This article reviews a number of key biomarkers relevant for the diagnosis of KS and HHV8-related pathogenesis. New developments in KS, potential therapeutic targets and the challenges involved in their discovery are highlighted. EXPERT OPINION Although there is currently no cure for KS, continued research devoted to uncovering biomarkers and understanding their pathogenic roles remains encouraging. The hope is that sometime soon one of these candidate targets will provide a curative therapy for this enigmatic sarcoma.
Collapse
Affiliation(s)
- Milon Amin
- University of Pittsburgh Medical Center, Department of Pathology , Suite 201, 5150 Centre Street, Pittsburgh , USA +1 412 794 4195 ; +1 412 794 3195 ;
| | | |
Collapse
|
39
|
Elsir T, Smits A, Lindström MS, Nistér M. Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev 2013; 31:793-805. [PMID: 22733308 DOI: 10.1007/s10555-012-9390-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The homeobox gene PROX1 is critical for organ development during embryogenesis. The Drosophila homologue, known as prospero has been shown to act as a tumor suppressor by controlling asymmetric cell division of neuroblasts. Likewise, alterations in PROX1 expression and function are associated with a number of human cancers including hematological malignancies, carcinomas of the pancreas, liver and the biliary system, sporadic breast cancer, Kaposiform hemangioendothelioma, colon cancer, and brain tumors. PROX1 is involved in cancer development and progression and has been ascribed both tumor suppressive and oncogenic properties in a variety of different cancer types. However, the exact mechanisms through which PROX1 regulates proliferation, migration, and invasion of cancer cells are by large unknown. This review provides an update on the role of PROX1 in organ development and on its emerging functions in cancer, with special emphasis on the central nervous system and glial brain tumors.
Collapse
Affiliation(s)
- Tamador Elsir
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | | | | | | |
Collapse
|
40
|
Cancian L, Hansen A, Boshoff C. Cellular origin of Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus-induced cell reprogramming. Trends Cell Biol 2013; 23:421-32. [PMID: 23685018 DOI: 10.1016/j.tcb.2013.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/05/2023]
Abstract
Kaposi's sarcoma (KS) is the most common malignancy in untreated HIV patients. KS is characterised by abnormal neoangiogenesis, inflammation, and proliferation of tumour cells [KS spindle cells (SCs)]. Kaposi's sarcoma-associated herpesvirus (KSHV) is the aetiological agent of KS. KS SCs are the predominant KSHV-infected cells in KS lesions. In this review, we report advances in understanding of the cellular origin of the KS SC, a contentious topic in KSHV research. KS SCs are now known to be of endothelial cell (EC) origin, phenotypically most similar to lymphatic ECs (LECs), but poorly differentiated. We focus on recent insights into KSHV's ability to exploit the normal differentiation pathway and intrinsic plasticity of ECs, through manipulation of EC-specific transcriptional regulators [i.e., prospero homeobox 1 (PROX1) and MAF] and discuss how this may contribute to viral persistence and KS sarcomagenesis.
Collapse
Affiliation(s)
- Laila Cancian
- UCL Cancer Institute, 72 Huntley Street, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
41
|
Choi I, Lee S, Hong YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2013; 2:a006445. [PMID: 22474611 DOI: 10.1101/cshperspect.a006445] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood and lymphatic systems are the two major circulatory systems in our body. Although the blood system has been studied extensively, the lymphatic system has received much less scientific and medical attention because of its elusive morphology and mysterious pathophysiology. However, a series of landmark discoveries made in the past decade has begun to change the previous misconception of the lymphatic system to be secondary to the more essential blood vascular system. In this article, we review the current understanding of the development and pathology of the lymphatic system. We hope to convince readers that the lymphatic system is no less essential than the blood circulatory system for human health and well-being.
Collapse
Affiliation(s)
- Inho Choi
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
42
|
Prox1 directly interacts with LSD1 and recruits the LSD1/NuRD complex to epigenetically co-repress CYP7A1 transcription. PLoS One 2013; 8:e62192. [PMID: 23626788 PMCID: PMC3633876 DOI: 10.1371/journal.pone.0062192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/20/2013] [Indexed: 12/01/2022] Open
Abstract
Cholesterol 7α-hydroxylase (CYP7A1) catalyzes the first and rate-limiting step in the classical pathway of bile acids synthesis in liver and is crucial for maintaining lipid homeostasis. Hepatocyte nuclear factor 4α (HNF4α) and α1-fetoprotein transcription factor (FTF) are two major transcription factors driving CYP7A1 promoter activity in hepatocytes. Previous researches have shown that Prospero-related homeobox (Prox1) directly interacts with both HNF4α and FTF and potently co-represses CYP7A1 transcription and bile acid synthesis through unidentified mechanisms. In this work, mechanisms involved in Prox1-mediated co-repression were explored by identifying Prox1-associated proteins using immunoprecipitation followed by mass spectrometry (IP-MS) methodology. Multiple components of the epigenetically repressive lysine-specific demethylase 1 (LSD1)/nucleosome remodeling and histone deacetylase (NuRD) complex, most notably LSD1 and histone deacetylase 2 (HDAC2), were found to be associated with Prox1 and GST pulldown assay demonstrated that Prox1 directly interacts with LSD1. Sequential chromatin immunoprecipitation (ChIP) assays showed that Prox1 co-localizes with HNF4α, LSD1 and HDAC2 on CYP7A1 promoter in HepG2 cells. Furthermore, by using ChIP assay on HepG2 cells with endogenous Prox1 knocked down by RNA interference, Prox1 was shown to recruit LSD1 and HDAC2 onto CYP7A1 promoter and cause increased H3K4 demethylation. Finally, bile acids treatment of HepG2 cells, which significantly repressed CYP7A1 transcription, resulted in increased Prox1 and LSD1/NuRD complex occupancy on CYP7A1 promoter with a concurrent increase in H3K4 demethylation and H3/H4 deacetylation. These results showed that Prox1 interacts with LSD1 to recruit the repressive LSD1/NuRD complex to CYP7A1 promoter and co-represses transcription through epigenetic mechanisms. In addition, such Prox1-mediated epigenetic repression is involved in the physiologically essential negative feedback inhibition of CYP7A1 transcription by bile acids.
Collapse
|
43
|
Yoo J, Lee HN, Choi I, Choi D, Chung HK, Kim KE, Lee S, Aguilar B, Kang J, Park E, Lee YS, Maeng YS, Kim NY, Koh CJ, Hong YK. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus. PLoS Pathog 2012; 8:e1002770. [PMID: 22719258 PMCID: PMC3375311 DOI: 10.1371/journal.ppat.1002770] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/08/2012] [Indexed: 01/05/2023] Open
Abstract
Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV. Kaposi's sarcoma (KS) is one of the most common neoplasms in HIV-positive individuals and organ transplant recipients. KS-associated herpes virus (KSHV), also known as human herpes virus (HHV)-8, has been identified as the causative agent and infects endothelial cells to form KS. Importantly, we and others have discovered that when KSHV infects endothelial cells of blood vessels, it reprograms host cells to resemble endothelial cells in lymphatic vessels. On the other hand, when KSHV infects endothelial cells in lymphatic vessels, the virus directs the host cells to partially obtain the phenotypes of blood vessel endothelial cells. These host cell reprogramming represent abnormal pathological processes, which are not as complete as the physiological process occurring during embryonic development. Currently, it is not clear how and why this cancer causing virus modifies the fate of its host cells. In this study, we aimed to dissect the molecular mechanism underlying the virus-induced host cell fate reprogramming and found two important cellular signaling pathways, interleukin-3 and Notch, playing key roles in the pathological events. Our current study provides a better understanding of KS tumorigenesis with a potential implication in a new KS therapy.
Collapse
Affiliation(s)
- Jaehyuk Yoo
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ha Neul Lee
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Inho Choi
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Dongwon Choi
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hee Kyoung Chung
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kyu Eui Kim
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Sunju Lee
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Berenice Aguilar
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jinjoo Kang
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eunkyung Park
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yong Suk Lee
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yong-Sun Maeng
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Nam Yoon Kim
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chester J. Koh
- Division of Pediatric Urology, Children's Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Morris VA, Punjabi AS, Wells RC, Wittkopp CJ, Vart R, Lagunoff M. The KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell differentiation. Virology 2012; 428:112-20. [PMID: 22521915 DOI: 10.1016/j.virol.2012.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/11/2011] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
The predominant tumor cell of Kaposi's Sarcoma (KS) is the spindle cell, a cell of endothelial origin that expresses markers of lymphatic endothelium. In culture, Kaposi's Sarcoma-associated herpesvirus (KSHV) infection of blood endothelial cells drives expression of lymphatic endothelial cell specific markers, in a process that requires activation of the gp130 receptor and the JAK2/STAT3 and PI3K/AKT signaling pathways. While expression of each of the KSHV major latent genes in endothelial cells failed to increase expression of lymphatic markers, the viral homolog of human IL-6 (vIL-6) was sufficient for induction and requires the JAK2/STAT3 and PI3K/AKT pathways. Therefore, activation of gp130 and downstream signaling by vIL-6 is sufficient to drive blood to lymphatic endothelial cell differentiation. While sufficient, vIL-6 is not necessary for lymphatic reprogramming in the context of viral infection. This indicates that multiple viral genes are involved and suggests a central importance of this pathway to KSHV pathogenesis.
Collapse
Affiliation(s)
- Valerie A Morris
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
45
|
Dimaio TA, Lagunoff M. KSHV Induction of Angiogenic and Lymphangiogenic Phenotypes. Front Microbiol 2012; 3:102. [PMID: 22479258 PMCID: PMC3315823 DOI: 10.3389/fmicb.2012.00102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/01/2012] [Indexed: 12/19/2022] Open
Abstract
Kaposi’s sarcoma (KS) is a highly vascularized tumor supporting large amounts of neo-angiogenesis. The major cell type in KS tumors is the spindle cell, a cell that expresses markers of lymphatic endothelium. KSHV, the etiologic agent of KS, is found in the spindle cells of all KS tumors. Considering the extreme extent of angiogenesis in KS tumors at all stages it has been proposed that KSHV directly induces angiogenesis in a paracrine fashion. In accordance with this theory, KSHV infection of endothelial cells in culture induces a number of host pathways involved in activation of angiogenesis and a number of KSHV genes themselves can induce pathways involved in angiogenesis. Spindle cells are phenotypically endothelial in nature, and therefore, activation through the induction of angiogenic and/or lymphangiogenic phenotypes by the virus may also be directly involved in spindle cell growth and tumor induction. Accordingly, KSHV infection of endothelial cells induces cell autonomous angiogenic phenotypes to activate host cells. KSHV infection can also reprogram blood endothelial cells to lymphatic endothelium. However, KSHV induces some blood endothelial specific genes upon infection of lymphatic endothelial cells creating a phenotypic intermediate between blood and lymphatic endothelium. Induction of pathways involved in angiogenesis and lymphangiogenesis are likely to be critical for tumor cell growth and spread. Thus, induction of both cell autonomous and non-autonomous changes in angiogenic and lymphangiogenic pathways by KSHV likely plays a key role in the formation of KS tumors.
Collapse
Affiliation(s)
- Terri A Dimaio
- Department of Microbiology, University of Washington Seattle, WA, USA
| | | |
Collapse
|
46
|
Abstract
The cytoplasmic events that control mammalian gene expression, primarily mRNA stability and translation, potently influence the cellular response to internal and external signals. The ubiquitous RNA-binding protein (RBP) HuR is one of the best-studied regulators of cytoplasmic mRNA fate. Through its post-transcriptional influence on specific target mRNAs, HuR can alter the cellular response to proliferative, stress, apoptotic, differentiation, senescence, inflammatory and immune stimuli. In light of its central role in important cellular functions, HuR's role in diseases in which these responses are aberrant is increasingly appreciated. Here, we review the mechanisms that control HuR function, its influence on target mRNAs, and how impairment in HuR-governed gene expression programs impact upon different disease processes. We focus on HuR's well-recognized implication in cancer and chronic inflammation, and discuss emerging studies linking HuR to cardiovascular, neurological, and muscular pathologies. We also discuss the progress, potential, and challenges of targeting HuR therapeutically.
Collapse
Affiliation(s)
- Subramanya Srikantan
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
47
|
Johnsen IB, Nguyen TT, Bergstrøm B, Lien E, Anthonsen MW. Toll-like receptor 3-elicited MAPK activation induces stabilization of interferon-β mRNA. Cytokine 2011; 57:337-46. [PMID: 22200507 DOI: 10.1016/j.cyto.2011.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/18/2023]
Abstract
Prolonged release of cytokines after activation of the innate immune system may lead to systemic infection and inflammatory diseases. Many cytokines with short half-lives contain adenine- and uridine-rich elements (AREs) in their 3'-untranslated region (UTR), which mediate mRNA destabilization. The Toll-like receptors (TLRs) TLR3 and TLR4 induce immune responses via the adaptor proteins TRIF or TRIF and MyD88, respectively, leading to IFN-β production. The 3'-UTR of IFN-β mRNA contains an ARE sequence. We demonstrate that the TLR3 ligand dsRNA and the TLR4 ligand LPS induce stabilization of IFN-β mRNA transcripts in monocyte-derived dendritic cells. In cells from TRIF(-/-) and MyD88(-/-) mice we found that dsRNA-induced stabilization of IFN-β mRNA is TRIF-dependent. MAPK-activated protein 2 (MK2) has previously been found to regulate mRNA stabilization. We show that dsRNA elicits increased MK2 activation, mediated by TRIF and p38 MAPK. Chemical inhibition of p38 and MK2, and siRNA knockdown of MK2 relieved dsRNA-triggered prolongation of IFN-β mRNA half-life. Taken together, these results suggest that TLR3 induces signaling mechanisms involving TRIF, p38 MAPK and MK2 to enhance stabilization of IFN-β mRNA contributing to enhanced IFN-β levels during pathogen infections.
Collapse
Affiliation(s)
- Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim N-7006, Norway.
| | | | | | | | | |
Collapse
|
48
|
Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. ACTA ACUST UNITED AC 2011; 193:607-18. [PMID: 21576390 PMCID: PMC3166860 DOI: 10.1083/jcb.201012094] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature constitutes a highly specialized part of the vascular system that is essential for the maintenance of interstitial fluid balance, uptake of dietary fat, and immune response. Recently, there has been an increased awareness of the importance of lymphatic vessels in many common pathological conditions, such as tumor cell dissemination and chronic inflammation. Studies of embryonic development and genetically engineered animal models coupled with the discovery of mutations underlying human lymphedema syndromes have contributed to our understanding of mechanisms regulating normal and pathological lymphatic morphogenesis. It is now crucial to use this knowledge for the development of novel therapies for human diseases.
Collapse
Affiliation(s)
- Stefan Schulte-Merker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Centre, 3584 CT Utrecht, Netherlands
| | | | | |
Collapse
|