1
|
Mahdizade Ari M, Scholz KJ, Cieplik F, Al-Ahmad A. Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy. Front Cell Infect Microbiol 2025; 15:1533768. [PMID: 40171166 PMCID: PMC11959090 DOI: 10.3389/fcimb.2025.1533768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The viable but non-cultivable (VBNC) state and persister cells, two dormancy phenomena in bacteria, differ in various aspects. The entry of bacteria into the VBNC state as a survival strategy under stressful conditions has gained increasing attention in recent years, largely due to the higher tolerance of VBNC cells to antibiotics and antimicrobials resulting from their low metabolic activity. The oral cavity favors biofilm growth in dental hard tissues, resulting in tooth decay and periodontitis. Despite advances in VBNC state detection in the food industry and environment, the entry capability of oral bacteria into the VBNC state remains poorly documented. Furthermore, the VBNC state has recently been observed in oral pathogens, including Porphyromonas gingivalis, which shows potential relevance in chronic systemic infections, Enterococcus faecalis, an important taxon in endodontic infections, and Helicobacter pylori, which exhibits transient presence in the oral cavity. Further research could create opportunities to develop novel therapeutic strategies to control oral pathogens. The inability of conventional culture-based methods to identify VBNC bacteria and the metabolic reactivation of dormant cells to restore susceptibility to therapies highlights a notable gap in anti-VBNC state strategies. The lack of targeted approaches tested for efficacy against VBNC bacteria underscores the need to develop novel detection methods. This review discusses the VBNC state, its importance in public health, and diagnostic techniques, with a special focus on the VBNC state in oral bacteria.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Konstantin Johannes Scholz
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Tan J, Zhang Z, Zheng D, Mu Y, Cao B, Yang J, Han L, Huang X. Structure-activity relationship and biofilm formation-related gene targets of oleanolic acid-type saponins from Pulsatilla chinensis against Candida albicans. Bioorg Chem 2024; 146:107311. [PMID: 38547720 DOI: 10.1016/j.bioorg.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
In the course of our investigations of antifungal natural products, the structure-activity relationship and antifungal activities of oleanolic acid-type saponins (1-28) from Pulsatilla chinensis against human and plant pathogenic fungi were elucidated. The analysis of structure-activity relationship of oleanolic acid-type saponins showed that the free carboxyl at C-28 was essential for their antifungal activities; the free hydroxyl group at the C-23 site of oleanolic acid-type saponins played a crucial role in their antifungal activities; the oligosaccharide chain at C-3 oleanolic acid-type saponins showed significant effects on antifungal efficacy and a disaccharide or trisaccharide moiety at position C-3 displayed optimal antifungal activity. The typical saponin pulchinenoside B3 (16, PB3) displayed satisfactory antifungal activity against human and plant pathogenic fungi, especially, C. albicans with an MIC value of 12.5 μg/mL. Furthermore, PB3 could inhibit the biofilm formation of C. albicans through downregulating the expression of the integrated network of biofilm formation-associated transcription factors (Bcr1 Efg1, Ndt80, Brg1, Rob1 and Tec1) and adhesion-related target genes (HWP1, ALS1, and ALS3). Meanwhile, we found that PB3 could effectively destroy the mature biofilm of C. albicans by the oxidative damage and inducing mitochondria-mediated apoptosis in cells.
Collapse
Affiliation(s)
- Junfeng Tan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Zengguang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bixuan Cao
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Junwei Yang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
3
|
Li B, Mao J, Wu J, Mao K, Jia Y, Chen F, Liu J. Nano-Bio Interactions: Biofilm-Targeted Antibacterial Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306135. [PMID: 37803439 DOI: 10.1002/smll.202306135] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Biofilm is a spatially organized community formed by the accumulation of both microorganisms and their secretions, leading to persistent and chronic infections because of high resistance toward conventional antibiotics. In view of the tunable physicochemical properties and the related unique biological behavior (e.g., size-, shape-, and surface charge-dependent penetration, protein corona endowed targeting, catalytic- and electronic-related oxidative stress, optical- and magnetic-associated hyperthermia, etc.), nanomaterials-based therapeutics are widely used for the treatment of biofilm-associated infections. In this review, the biological characteristics of biofilm are introduced. And the nanomaterials-based antibacterial strategies are further discussed via biofilm targeting, including preventing biofilm formation, enhancing biofilm penetration, disrupting the mature biofilm, and acting as drug delivery systems. In which, the interactions between biofilm and nanomaterials include mechanical disruption, electron transfer, enzymatic degradation, oxidative stress, and hyperthermia. Additionally, the current advances of nanomaterials for antibacterial nanomaterials by biofilm targeting are summarized. This review aims to present a complete vision of antibacterial nanomaterials-biofilm (nano-bio) interactions, paving the way for the future development and clinical translation of effective antibacterial nanomedicines.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Kerou Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Yangrui Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Xiong X, Othmer HG, Harcombe WR. Emergent antibiotic persistence in a spatially structured synthetic microbial mutualism. THE ISME JOURNAL 2024; 18:wrae075. [PMID: 38691424 PMCID: PMC11104777 DOI: 10.1093/ismejo/wrae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Antibiotic persistence (heterotolerance) allows a subpopulation of bacteria to survive antibiotic-induced killing and contributes to the evolution of antibiotic resistance. Although bacteria typically live in microbial communities with complex ecological interactions, little is known about how microbial ecology affects antibiotic persistence. Here, we demonstrated within a synthetic two-species microbial mutualism of Escherichia coli and Salmonella enterica that the combination of cross-feeding and community spatial structure can emergently cause high antibiotic persistence in bacteria by increasing the cell-to-cell heterogeneity. Tracking ampicillin-induced death for bacteria on agar surfaces, we found that E. coli forms up to 55 times more antibiotic persisters in the cross-feeding coculture than in monoculture. This high persistence could not be explained solely by the presence of S. enterica, the presence of cross-feeding, average nutrient starvation, or spontaneous resistant mutations. Time-series fluorescent microscopy revealed increased cell-to-cell variation in E. coli lag time in the mutualistic co-culture. Furthermore, we discovered that an E. coli cell can survive antibiotic killing if the nearby S. enterica cells on which it relies die first. In conclusion, we showed that the high antibiotic persistence phenotype can be an emergent phenomenon caused by a combination of cross-feeding and spatial structure. Our work highlights the importance of considering spatially structured interactions during antibiotic treatment and understanding microbial community resilience more broadly.
Collapse
Affiliation(s)
- Xianyi Xiong
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
- Division of Community Health & Epidemiology, University of Minnesota School of Public Health, Minneapolis, MN 55454, United States
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - William R Harcombe
- Department of Ecology, Evolution, and Behavior, BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, United States
| |
Collapse
|
5
|
Liang XW, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Wang SZ, Wu JC. Characteristics and molecular mechanism of drug-tolerant cells in cancer: a review. Front Oncol 2023; 13:1177466. [PMID: 37483492 PMCID: PMC10360399 DOI: 10.3389/fonc.2023.1177466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Drug resistance in tumours has seriously hindered the therapeutic effect. Tumour drug resistance is divided into primary resistance and acquired resistance, and the recent study has found that a significant proportion of cancer cells can acquire stable drug resistance from scratch. This group of cells first enters the drug tolerance state (DT state) under drug pressure, and gradually acquires stable drug resistance through adaptive mutations in this state. Although the specific mechanisms underlying the formation of drug tolerant cells (DTCs) remain unclear, various proteins and signalling pathways have been identified as being involved in the formation of DTCs. In the current review, we summarize the characteristics, molecular mechanisms and therapeutic strategies of DTCs in detail.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bing- Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
6
|
Theis TJ, Daubert TA, Kluthe KE, Brodd KL, Nuxoll AS. Staphylococcus aureus persisters are associated with reduced clearance in a catheter-associated biofilm infection. Front Cell Infect Microbiol 2023; 13:1178526. [PMID: 37228667 PMCID: PMC10203555 DOI: 10.3389/fcimb.2023.1178526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Staphylococcus aureus causes a wide variety of infections, many of which are chronic or relapsing in nature. Antibiotic therapy is often ineffective against S. aureus biofilm-mediated infections. Biofilms are difficult to treat partly due to their tolerance to antibiotics, however the underlying mechanism responsible for this remains unknown. One possible explanation is the presence of persister cells-dormant-like cells that exhibit tolerance to antibiotics. Recent studies have shown a connection between a fumC (fumarase C, a gene in the tricarboxylic acid cycle) knockout strain and increased survival to antibiotics, antimicrobial peptides, and in a Drosophila melanogaster model. Objective It remained unclear whether a S. aureus high persister strain would have a survival advantage in the presence of innate and adaptive immunity. To further investigate this, a fumC knockout and wild type strains were examined in a murine catheter-associated biofilm model. Results Interestingly, mice struggled to clear both S. aureus wild type and the fumC knockout strains. We reasoned both biofilm-mediated infections predominantly consisted of persister cells. To determine the persister cell population within biofilms, expression of a persister cell marker (Pcap5A::dsRED) in a biofilm was examined. Cell sorting of biofilms challenged with antibiotics revealed cells with intermediate and high expression of cap5A had 5.9-and 4.5-fold higher percent survival compared to cells with low cap5A expression. Based on previous findings that persisters are associated with reduced membrane potential, flow cytometry analysis was used to examine the metabolic state of cells within a biofilm. We confirmed cells within biofilms had reduced membrane potential compared to both stationary phase cultures (2.5-fold) and exponential phase cultures (22.4-fold). Supporting these findings, cells within a biofilm still exhibited tolerance to antibiotic challenge following dispersal of the matrix through proteinase K. Conclusion Collectively, these data show that biofilms are largely comprised of persister cells, and this may explain why biofilm infections are often chronic and/or relapsing in clinical settings.
Collapse
|
7
|
Ray RR, Pattnaik S. Contribution of phytoextracts in challenging the biofilms of pathogenic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Fermentation of Dairy-Relevant Sugars by Saccharomyces, Kluyveromyces, and Brettanomyces: An Exploratory Study with Implications for the Utilization of Acid Whey, Part II. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Greek-style yogurt production, every kilogram of product yields 2 to 3 kg of acid whey (YAW); this coproduct’s composition and low pH pose challenges for its proper valorization and reinsertion into the food supply chain. However, 240 mL of YAW contains over 9 g of lactose and represents a good source of minerals; these traits can be leveraged to develop nutritious fermented beverages. The purpose of this study is to investigate the aerobic fermentation of dairy sugars by different yeasts by characterizing these processes and their products. This will determine whether such methods provide viable options for the production of acetic-acid-containing beverages from YAW. To achieve this, yeast nitrogen base was used to prepare four growth media formulations, each supplemented with lactose, glucose, galactose, or a 1:1 mix of glucose and galactose (GLU:GAL), and each adjusted to a pH of 4.20. Fermentations were performed by pure cultures of S. cerevisiae, K. marxianus, B. claussenii, or B. bruxellensis, and were held at 25 °C with agitation at 185 rpm. For each treatment, density, pH, and microbial enumeration were measured over time to obtain process profiles, while ethanol, organic acids, and sugars were analyzed at the beginning and the end of each fermentation via HPLC, to determine resulting products. ANOVA and Tukey’s honest significant difference test at a significance level of 0.05 were used to compare residual sugars and fermentation products. Variable rates of sugar consumption were observed for each species. In GLU:GAL, B. claussenii consumed all of the glucose, left behind most of the galactose, and produced a high concentration of acetic acid. These results suggest the potential to develop versatile processes that target glucose for acetic acid production, while leaving available galactose to confer products with prebiotic properties. The development of processes for the conversion of YAW into beverages with organic acids and other healthful components not only aligns with consumers’ demands for better-for-you products, but also promotes the valorization of this otherwise underutilized dairy coproduct.
Collapse
|
9
|
Early Steps of Resistance to Targeted Therapies in Non-Small-Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112613. [PMID: 35681591 PMCID: PMC9179469 DOI: 10.3390/cancers14112613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Patients with lung cancer benefit from more effective treatments, such as targeted therapies, and the overall survival has increased in the past decade. However, the efficacy of targeted therapies is limited due to the emergence of resistance. Growing evidence suggests that resistances may arise from a small population of drug-tolerant persister (DTP) cells. Understanding the mechanisms underlying DTP survival is therefore crucial to develop therapeutic strategies to prevent the development of resistance. Herein, we propose an overview of the current scientific knowledge about the characterisation of DTP, and summarise the new therapeutic strategies that are tested to target these cells. Abstract Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.
Collapse
|
10
|
Manandhar S, Singh A, Varma A, Pandey S, Shrivastava N. High level of persister frequency in clinical staphylococcal isolates. BMC Microbiol 2022; 22:109. [PMID: 35448965 PMCID: PMC10124895 DOI: 10.1186/s12866-022-02529-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 04/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is a notorious human pathogen that causes often lethal systemic conditions that are mostly medical device associated biofilm infections. Similarly, coagulase negative staphylococci are emerging as leading pathogen for nosocomial infections owing to their ability to form biofilm on implanted medical equipment. Chronic in nature, these infections are difficult to treat. Such recalcitrance of these infections is caused mainly due to the presence of persister cells, which exhibit transient yet extreme tolerance to antibiotics. Despite tremendous clinical significance, there is lack of studies on persister cells formation among clinical bacterial isolates. Considering the importance of factors influencing persister formation, in this study, we evaluate the association of antibiotic tolerance with biofilm production, antibiotic stress, growth phase, specimen type, and dependency on staphylococcal species. Biofilm formation was detected among 375 clinical staphylococcal isolates by quantitative tissue culture plate method (TCP) and icaAD genes by genotypic method. The antibiotic susceptibility was determined by Kirby Bauer disc diffusion method while minimum inhibitory concentration values were obtained by agar dilution method. Persister cells were measured in the susceptible staphylococcal isolates in the presence of clinically relevant antibiotics. RESULTS In the study, 161 (43%) S. aureus and 214 (57%) coagulase negative staphylococci (CNS) were isolated from different clinical samples. TCP method detected biofilm production in 84 (52.2%) S. aureus and 90 (42.1%) CNS isolates. The genotypic method detected icaAD genes in 86 (22.9%) isolates. Majority (> 90%) of both the biofilm producers and non-producers were sensitive to chloramphenicol and tetracycline but were resistant to penicillin. Interestingly, all isolates were sensitive to vancomycin irrespective of biofilm production. While high persister frequency was observed among all staphylococci isolates in the stationary growth phase, the persister frequency in exponential growth phase was statistically high among isolates possessing icaAD genes compared to icaAD negative isolates. CONCLUSION The research findings provide strong evidence that the clinical staphylococcal isolates exhibit extreme antibiotic tolerance suggesting their causal link with treatment failures. Understanding the factors influencing the formation and maintenance of persister cells are of utmost important aspect to design therapeutics and control recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Sarita Manandhar
- Tri-Chandra Multiple College, Tribhuvan University, Kathmandu, Nepal.
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, UP, 201303, India
| | - Shanti Pandey
- The University of Southern Mississippi, Hattiesburg, MS-39406, USA
| | - Neeraj Shrivastava
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida, UP, 201303, India
| |
Collapse
|
11
|
Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiol Res 2022; 258:126997. [DOI: 10.1016/j.micres.2022.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
12
|
Albuquerque VDQ, Soares MJC, Matos MNC, Cavalcante RMB, Guerrero JAP, Soares Rodrigues TH, Gomes GA, de Medeiros Guedes RF, Castelo-Branco DDSCM, Goes da Silva IN, Carneiro VA. Anti-Staphylococcal Activity of Cinnamomum zeylanicum Essential Oil against Planktonic and Biofilm Cells Isolated from Canine Otological Infections. Antibiotics (Basel) 2021; 11:antibiotics11010004. [PMID: 35052881 PMCID: PMC8773145 DOI: 10.3390/antibiotics11010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the phytochemical profile of Cinnamomum zeylanicum essential oil (CZEO) and their antimicrobial and antibiofilm activity against Staphylococcus strains isolated from canine otitis. First, the CZEO chemical composition was determined by gas chromatography-mass spectrometry (CG-MS). External otitis samples collected from dogs were submitted to staphylococcal isolation, followed by MALDI-TOF mass spectrometry identification. The antimicrobial action was tested against the isolates using the disk-diffusion and microdilution methods. The antibiofilm activity was evaluated by CZEO-based concentrations, subMIC for biofilm formation and supraMIC against preformed biofilm, quantified by crystal violet (CV) staining and CFU counting. The chemical analysis revealed that (E)-cinnamaldehyde, eugenol and (E)-cinnamyl acetate were the main compounds in the CZEO, representing 77.42, 8.17 and 4.50%, respectively. Two strains of three different species, S. saprophyticus, S. schleiferi and S. pseudintermedius, were identified. The disk-diffusion test showed an inhibitory zone diameter, ranging from 34.0 to 49.5 mm, while the MIC and MBC values were around 500 and 1000 µg/mL. SubMIC demonstrated an inhibition on biofilm formation against 4 out the 6 strains tested. On mature biofilm, the CZEO-based supraMIC groups had slightly change on biomass, however, the biofilm cell viability decreased the CFU in 3 magnitude orders.
Collapse
Affiliation(s)
- Vinicius de Queiroz Albuquerque
- Department of Veterinary Sciences, State University of Ceará—Itaperi Campus, Fortaleza 60714-903, Brazil; (V.d.Q.A.); (I.N.G.d.S.)
| | - Maria Janeila Carvalho Soares
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA-UNINTA, Sobral 62050-100, Brazil;
| | - Maria Nágila Carneiro Matos
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Federal University of Ceará, Sobral 62048-280, Brazil; (M.N.C.M.); (R.M.B.C.); (J.A.P.G.)
| | - Rafaela Mesquita Bastos Cavalcante
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Federal University of Ceará, Sobral 62048-280, Brazil; (M.N.C.M.); (R.M.B.C.); (J.A.P.G.)
| | - Jesús Alberto Pérez Guerrero
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Federal University of Ceará, Sobral 62048-280, Brazil; (M.N.C.M.); (R.M.B.C.); (J.A.P.G.)
| | | | - Geovany Amorim Gomes
- Center of Exact Science and Technology, State University of Acaraú Valley, Sobral 62040-370, Brazil; (T.H.S.R.); (G.A.G.)
| | - Rodrigo Fonseca de Medeiros Guedes
- Group of Applied Medical Microbiology, Microbiology Department, Federal University of Ceará, Fortaleza 60430-160, Brazil; (R.F.d.M.G.); (D.d.S.C.M.C.-B.)
| | | | - Isaac Neto Goes da Silva
- Department of Veterinary Sciences, State University of Ceará—Itaperi Campus, Fortaleza 60714-903, Brazil; (V.d.Q.A.); (I.N.G.d.S.)
| | - Victor Alves Carneiro
- Center for Bioprospecting and Applied Molecular Experimentation (NUBEM), University Center INTA-UNINTA, Sobral 62050-100, Brazil;
- Laboratory of Biofilms and Antimicrobial Agents (LaBAM), Federal University of Ceará, Sobral 62048-280, Brazil; (M.N.C.M.); (R.M.B.C.); (J.A.P.G.)
- Correspondence:
| |
Collapse
|
13
|
Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy. Biomolecules 2021; 12:biom12010008. [PMID: 35053156 PMCID: PMC8773639 DOI: 10.3390/biom12010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a 'persister-like' behavior and are attenuated by sensitive cells; they also appear to 'educate' sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer.
Collapse
|
14
|
Zadeh RG, Kalani BS, Ari MM, Talebi M, Razavi S, Jazi FM. Isolation of Persister Cell within the Biofilm and Relative Gene Expression Analysis of Type II Toxin-antitoxin System in Pseudomonas aeruginosa Isolates in the Exponential and Stationary Phases. J Glob Antimicrob Resist 2021; 28:30-37. [PMID: 34922056 DOI: 10.1016/j.jgar.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Chronic infections and treatment failure are concerning issues in patients with Pseudomonas aeruginosa infections. Persister cell formation in biofilm is considered a key reason for antibiotic resistance and treatment failure. Thus, in this study, the expression of TA type II system genes (relBE, Xre-COG5654, vapBC, and Xre-GNAT) in persister cells of biofilm was evaluated in the presence of ciprofloxacin and colistin antibiotics during exponential and stationary phases. METHODS The impacts of ciprofloxacin and colistin were examined on persister cell formation of biofilm during the exponential and stationary phases of P. aeruginosa strains through colony count method at different time intervals in the presence of 5-fold MIC of ciprofloxacin and colistin. Furthermore, the expression of relBE, Xre-COG5654, vapBC, and Xre-GNAT genes in P. aeruginosa strains underwent antibiotic treatment for 3.5 hours during the exponential and stationary phases via qRT-PCR. RESULTS Formation of persister cells was observed in the biofilms by P. aeruginosa strains in the presence of 5-fold MIC of ciprofloxacin and colistin when compared with the control group after 3.5 hours of incubation during both exponential and stationary phases. The number of persister cells of biofilm was higher in the stationary phase than in the exponential phase. According to the findings of qRT-PCR, ciprofloxacin and colistin may induce persister cells through enhancing the expression of type II TA systems during stationary and exponential phases. CONCLUSION The result of this study indicated that ciprofloxacin and colistin have the potential to increase persister cells formation in biofilm through influencing the expression of type II TA systems.
Collapse
Affiliation(s)
- Rezvan Golmoradi Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
16
|
Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours. Br J Cancer 2021; 125:1511-1522. [PMID: 34611306 DOI: 10.1038/s41416-021-01566-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite the effectiveness of tyrosine kinase inhibitors (TKI), gastrointestinal stromal tumours (GIST) develop after the withdrawal of TKI. Based on previous studies, a subpopulation of drug-tolerant cells called "persister cells" may be responsible for the recurrence and have thus, gained attention as a novel target in cancer therapy. METHODS The metabolic changes were investigated in imatinib-derived persister GIST cells. We investigated the efficacy and the mechanism of GPX4 inhibitor, which is known as a major inducer of "ferroptosis". We also evaluated the effects of RSL3 to the gefitinib-derived persister lung cancer cells. RESULTS We demonstrated a downregulation of glucose metabolism, subsequent decrease in the glutathione level and sensitivity to glutathione peroxidase 4 (GPX4) inhibitor, RSL3 in persister cells. As the cell death induced by RSL3 was found to be "iron-dependent" and "caspase-independent", loss of GPX4 function could have possibly induced selective persister cell ferroptotic death. In the xenograft model, we confirmed the inhibition of tumour regrowth after discontinuation of imatinib treatment. Moreover, RSL3 prevented the growth of gefitinib-derived persister lung cancer cells. CONCLUSIONS RSL3 combined with TKI may be a promising therapy for both GIST and epidermal growth factor receptor-mutated lung cancer.
Collapse
|
17
|
Schrank CL, Wilt IK, Monteagudo Ortiz C, Haney BA, Wuest WM. Using membrane perturbing small molecules to target chronic persistent infections. RSC Med Chem 2021; 12:1312-1324. [PMID: 34458737 PMCID: PMC8372208 DOI: 10.1039/d1md00151e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
After antibiotic treatment, a subpopulation of bacteria often remains and can lead to recalcitrant infections. This subpopulation, referred to as persisters, evades antibiotic treatment through numerous mechanisms such as decreased uptake of small molecules and slowed growth. Membrane perturbing small molecules have been shown to eradicate persisters as well as render these populations susceptible to antibiotic treatment. Chemotype similarities have emerged suggesting amphiphilic heteroaromatic compounds possess ideal properties to increase membrane fluidity and such molecules warrant further investigation as effective agents or potentiators against persister cells.
Collapse
Affiliation(s)
| | - Ingrid K Wilt
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | | | - William M Wuest
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine Atlanta GA 30322 USA
| |
Collapse
|
18
|
Leonce C, Saintigny P, Ortiz-Cuaran S. Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2021; 20:11-29. [PMID: 34389691 DOI: 10.1158/1541-7786.mcr-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
In cancer patients with metastatic disease, the rate of complete tumor response to systemic therapies is low, and residual lesions persist in the majority of patients due to early molecular adaptation in cancer cells. A growing body of evidence suggests that a subpopulation of drug-tolerant « persister » cells - a reversible phenotype characterized by reduced drug sensitivity and decreased cell proliferation - maintains residual disease and may serve as a reservoir for resistant phenotypes. The survival of these residual tumor cells can be caused by reactivation of specific signaling pathways, phenotypic plasticity (i.e., transdifferentiation), epigenetic or metabolic reprogramming, downregulation of apoptosis as well as transcriptional remodeling. In this review, we discuss the molecular mechanisms that enable adaptive survival in drug-tolerant cells. We describe the main characteristics and dynamic nature of this persistent state, and highlight the current therapeutic strategies that may be used to interfere with the establishment of drug-tolerant cells, as an alternative to improve objective response to systemic therapies and delay the emergence of resistance to improve long-term survival.
Collapse
Affiliation(s)
- Camille Leonce
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| | - Pierre Saintigny
- Department of Medical Oncology, Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon. Department of Medical Oncology, Centre Léon Bérard
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon
| |
Collapse
|
19
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
20
|
Antisense mqsR-PNA as a putative target to the eradication of Pseudomonas aeruginosa persisters. New Microbes New Infect 2021; 41:100868. [PMID: 33996104 PMCID: PMC8102155 DOI: 10.1016/j.nmni.2021.100868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chemotherapy is frequently unsuccessful in fully eradicating bacterial biofilm infections. Persisters are a main cause for the failure of antibiotic therapies and are assumed to significantly impact the increased multidrug tolerance and unsuccessful elimination of chronic biofilm infections. Pseudomonas aeruginosa infections are frequently linked to high rates of drug-tolerant persisters, triggering a major challenge to human health. It is crucial to classify persisters to develop novel useful therapeutic strategies to fight infectious diseases. In this study, the mqsR gene was selected as a novel antimicrobial target, and silencing was with antisense peptide nucleic acid (PNA) assay to eradicate the P. aeruginosa persisters. First, they were analysed by experimental procedures. Functionality was assessed by stress conditions. We found that the expression of mqsR (as the toxin) compared with mqsA (as antitoxin) was increased under stress conditions. We demonstrated that when mqsR was targeted and treated with different concentrations of mqsR-PNA after 24 hours; the formation of P. aeruginosa persisters was eradicated. Antisense mqsR-PNA in concentrations of 35 μM or more could eradicate persister cell formation in P. aeruginosa. It was suggested that other toxin–antitoxin loci in P. aeruginosa are examined by antisense PNA to detect their functionality. However, considering the importance of persisters in human infections, ex vivo, in vivo, preclinical and clinical settings should be highlighted.
Collapse
|
21
|
Pereira R, Dos Santos Fontenelle RO, de Brito EHS, de Morais SM. Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol 2020; 131:11-22. [PMID: 33249681 DOI: 10.1111/jam.14949] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most common human fungal pathogen, causing infections that range from mucous membranes to systemic infections. The present article provides an overview of C. albicans, with the production of biofilms produced by this fungus, as well as reporting the classes of antifungals used to fight such infections, together with the resistance mechanisms to these drugs. Candida albicans is highly adaptable, enabling the transition from commensal to pathogen due to a repertoire of virulence factors. Specifically, the ability to change morphology and form biofilms is central to the pathogenesis of C. albicans. Indeed, most infections by this pathogen are associated with the formation of biofilms on surfaces of hosts or medical devices, causing high morbidity and mortality. Significantly, biofilms formed by C. albicans are inherently tolerant to antimicrobial therapy, so the susceptibility of C. albicans biofilms to current therapeutic agents remains low. Therefore, it is difficult to predict which molecules will emerge as new clinical antifungals. The biofilm formation of C. albicans has been causing impacts on susceptibility to antifungals, leading to resistance, which demonstrates the importance of research aimed at the prevention and control of these clinical microbial communities.
Collapse
Affiliation(s)
- R Pereira
- Graduate Program in Biotechnology, Microbiology Laboratory (LABMIC), Vale do Acaraú State University, Sobral, Ceará, Brazil
| | | | - E H S de Brito
- Institute of Health Sciences of University for International Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - S M de Morais
- Graduate Program in Biotechnology, Laboratory of Chemistry of Natural Products (LQPN), Ceará State University, Fortaleza, Ceará, Brazil
| |
Collapse
|
22
|
A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. NPJ Biofilms Microbiomes 2020; 6:58. [PMID: 33268776 PMCID: PMC7710749 DOI: 10.1038/s41522-020-00166-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant and biofilm-associated infections brought about by methicillin-resistant Staphylococcus aureus (MRSA) strains is a pressing issue both inside as well as outside nosocomial environments worldwide. Here, we show that a combination of two bacteriocins with distinct structural and functional characteristics, garvicin KS, and micrococcin P1, showed a synergetic antibacterial activity against biofilms produced in vitro by S. aureus, including several MRSA strains. In addition, this bacteriocin-based antimicrobial combination showed the ability to restore the sensitivity of the highly resilient MRSA strain ATCC 33591 to the β-lactam antibiotic penicillin G. By using a combination of bacterial cell metabolic assays, confocal and scanning electron microscopy, we show that the combination between garvicin KS, micrococcin P1, and penicillin G potently inhibit cell viability within S. aureus biofilms by causing severe cell damage. Together these data indicate that bacteriocins can be valuable therapeutic tools in the fight against biofilm-associated MRSA infections.
Collapse
|
23
|
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front Microbiol 2020; 11:566325. [PMID: 33193155 PMCID: PMC7658412 DOI: 10.3389/fmicb.2020.566325] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.
Collapse
Affiliation(s)
- Rojita Mishra
- Department of Botany, Polasara Science College, Polasara, India
| | | | - Surajit De Mandal
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Junaid Khan
- Department of Pharmacy, Sant Gahira Guru University, Ambikapur, India
| |
Collapse
|
24
|
Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020; 5:228. [PMID: 33028808 PMCID: PMC7541492 DOI: 10.1038/s41392-020-00313-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to cancer therapy is a major barrier to cancer management. Conventional views have proposed that acquisition of resistance may result from genetic mutations. However, accumulating evidence implicates a key role of non-mutational resistance mechanisms underlying drug tolerance, the latter of which is the focus that will be discussed here. Such non-mutational processes are largely driven by tumor cell plasticity, which renders tumor cells insusceptible to the drug-targeted pathway, thereby facilitating the tumor cell survival and growth. The concept of tumor cell plasticity highlights the significance of re-activation of developmental programs that are closely correlated with epithelial-mesenchymal transition, acquisition properties of cancer stem cells, and trans-differentiation potential during drug exposure. From observations in various cancers, this concept provides an opportunity for investigating the nature of anticancer drug resistance. Over the years, our understanding of the emerging role of phenotype switching in modifying therapeutic response has considerably increased. This expanded knowledge of tumor cell plasticity contributes to developing novel therapeutic strategies or combination therapy regimens using available anticancer drugs, which are likely to improve patient outcomes in clinical practice.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, People's Republic of China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, 611137, Chengdu, People's Republic of China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology Shenzhen, Shenzhen, Guangdong, 518055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong, People's Republic of China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, People's Republic of China.
| |
Collapse
|
25
|
Xie T, Li Y, Xing P. [Mechanism of Histologic Transformation of Drive Gene Positive Lung Adenocarcinoma in Targeted Therapy and Treatment Strategy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:701-709. [PMID: 32758349 PMCID: PMC7467985 DOI: 10.3779/j.issn.1009-3419.2020.102.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Patients with lung adenocarcinoma (ADC) who harbor drive gene mutation will inevitably develop drug resistance after receiving targeted therapy. The common mechanisms of drug resistance include secondary mutation of driver gene, change of non-driver gene, histological transformation and epithelial mesenchymal transformation. Histological transformation includes the transformation from lung ADC to small cell lung cancer (SCLC), squamous cell carcinoma (SCC), and large cell neuroendocrine carcinoma (LCNEC) and so on. Histological transformation not only has a negative impact on the quality of patients' life, but also poses great challenges to the follow-up treatment of patients. However the mechanism of transformation is still incomplete. This article will review the research results on the mechanism of histological transformation and the selection of treatment strategies.
Collapse
Affiliation(s)
- Tongji Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Puyuan Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
26
|
Wellems TE, Sá JM, Su XZ, Connelly SV, Ellis AC. 'Artemisinin Resistance': Something New or Old? Something of a Misnomer? Trends Parasitol 2020; 36:735-744. [PMID: 32586776 DOI: 10.1016/j.pt.2020.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 01/02/2023]
Abstract
Artemisinin and its derivatives (ART) are crucial first-line antimalarial drugs that rapidly clear parasitemia, but recrudescences of the infection frequently follow ART monotherapy. For this reason, ART must be used in combination with one or more partner drugs that ensure complete cure. The ability of malaria parasites to survive ART monotherapy may relate to an innate growth bistability phenomenon whereby a fraction of the drug-exposed population enters into metabolic quiescence (dormancy) as persister forms. Characterization of the events that underlie entry and waking from persistence may lead to lasting breakthroughs in malaria chemotherapy that can prevent recrudescences and protect the future of ART-based combination therapies.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean V Connelly
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela C Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Gibney PA, Chen A, Schieler A, Chen JC, Xu Y, Hendrickson DG, McIsaac RS, Rabinowitz JD, Botstein D. A tps1Δ persister-like state in Saccharomyces cerevisiae is regulated by MKT1. PLoS One 2020; 15:e0233779. [PMID: 32470059 PMCID: PMC7259636 DOI: 10.1371/journal.pone.0233779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.
Collapse
Affiliation(s)
- Patrick A. Gibney
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Anqi Chen
- Department of Food Science, Cornell University, Ithaca, New York, United States of America
| | - Ariel Schieler
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Jonathan C. Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - Yifan Xu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David G. Hendrickson
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - R. Scott McIsaac
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Chemistry, Princeton University, Princeton, New Jersey, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| |
Collapse
|
28
|
Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 2020; 11:2200. [PMID: 32366839 PMCID: PMC7198484 DOI: 10.1038/s41467-020-15966-7] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 04/02/2020] [Indexed: 01/31/2023] Open
Abstract
Bacterial persister cells are phenotypic variants that exhibit a transient non-growing state and antibiotic tolerance. Here, we provide in vitro evidence of Staphylococcus aureus persisters within infected host cells. We show that the bacteria surviving antibiotic treatment within host cells are persisters, displaying biphasic killing and reaching a uniformly non-responsive, non-dividing state when followed at the single-cell level. This phenotype is stable but reversible upon antibiotic removal. Intracellular S. aureus persisters remain metabolically active but display an altered transcriptomic profile consistent with activation of stress responses, including the stringent response as well as cell wall stress, SOS and heat shock responses. These changes are associated with multidrug tolerance after exposure to a single antibiotic. We hypothesize that intracellular S. aureus persisters may constitute a reservoir for relapsing infection and could contribute to therapeutic failures. Bacterial persister cells exhibit a transient non-growing state and antibiotic tolerance. Here, Peyrusson et al. provide evidence of metabolically active Staphylococcus aureus persisters within infected host cells exposed to antibiotics and analyse transcriptomic alterations associated with persistence.
Collapse
|
29
|
snoRNAs Offer Novel Insight and Promising Perspectives for Lung Cancer Understanding and Management. Cells 2020; 9:cells9030541. [PMID: 32111002 PMCID: PMC7140444 DOI: 10.3390/cells9030541] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs localized in the nucleolus, where they participate in the cleavage and chemical modification of ribosomal RNAs. Their biogenesis and molecular functions have been extensively studied since their identification in the 1960s. However, their role in cancer has only recently started to emerge. In lung cancer, efforts to profile snoRNA expression have enabled the definition of snoRNA-related signatures, not only in tissues but also in biological fluids, exposing these small RNAs as potential non-invasive biomarkers. Moreover, snoRNAs appear to be essential actors of lung cancer onset and dissemination. They affect diverse cellular functions, from regulation of the cell proliferation/death balance to promotion of cancer cell plasticity. snoRNAs display both oncogenic and tumor suppressive activities that are pivotal in lung cancer tumorigenesis and progression. Altogether, we review how further insight into snoRNAs may improve our understanding of basic lung cancer biology and the development of innovative diagnostic tools and therapies.
Collapse
|
30
|
Hodzic E, Imai DM, Escobar E. Generality of Post-Antimicrobial Treatment Persistence of Borrelia burgdorferi Strains N40 and B31 in Genetically Susceptible and Resistant Mouse Strains. Infect Immun 2019; 87:e00442-19. [PMID: 31308087 PMCID: PMC6759297 DOI: 10.1128/iai.00442-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023] Open
Abstract
A basic feature of infection caused by Borrelia burgdorferi, the etiological agent of Lyme borreliosis, is that persistent infection is the rule in its many hosts. The ability to persist and evade host immune clearance poses a challenge to effective antimicrobial treatment. A link between therapy failure and the presence of persister cells has started to emerge. There is growing experimental evidence that viable but noncultivable spirochetes persist following treatment with several different antimicrobial agents. The current study utilized the mouse model to evaluate if persistence occurs following antimicrobial treatment in disease-susceptible (C3H/HeJ [C3H]) and disease-resistant (C57BL/6 [B6]) mouse strains infected with B. burgdorferi strains N40 and B31 and to confirm the generality of this phenomenon, as well as to assess the persisters' clinical relevance. The status of infection was evaluated at 12 and 18 months after treatment. The results demonstrated that persistent spirochetes remain viable for up to 18 months following treatment, as well as being noncultivable. The phenomenon of persistence in disease-susceptible C3H mice is equally evident in disease-resistant B6 mice and not unique to any particular B. burgdorferi strain. The results also demonstrate that, following antimicrobial treatment, both strains of B. burgdorferi, N40 and B31, lose one or more plasmids. The study demonstrated that noncultivable spirochetes can persist in a host following antimicrobial treatment for a long time but did not demonstrate their clinical relevance in a mouse model of chronic infection. The clinical relevance of persistent spirochetes beyond 18 months following antimicrobial treatment requires further studies in other animal models.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Edlin Escobar
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
31
|
Wang L, Yang Q, Peng S, Liu X. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. Onco Targets Ther 2019; 12:5359-5373. [PMID: 31371980 PMCID: PMC6635829 DOI: 10.2147/ott.s212465] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Chemotherapy remains a major clinical option for the successful treatment of cancer by eliminating fast-growing populations of cancer cells. However, drug resistance causes the failure of antitumor treatment. Increasing evidence suggests that a small subpopulation of cancer cells will enter a “persister state” under drug pressure. The persister cell pool constitutes a reservoir from which drug resistance may emerge. Therefore, targeting persister cells presents a therapeutic opportunity to prevent drug resistance and impede tumor relapse. Materials and methods RT-qPCR, Western blot, Seahorse, apoptosis assay, clonogenic assay, and xenografted mouse model were used for this study. Results We showed that a similar therapy-resistant cell state underlies the behavior of persister cells derived from sorafenib treatments with reversible, nonmutational mechanisms. Then, we demonstrated that persister cells showed upregulated glycolysis, as evidenced by higher ECAR, as well as increased glucose consumption and lactate production. A database analysis showed that sorafenib-tolerant persister cells exhibited the increased expression of the glycolytic enzyme hexokinase 2, which is closely related to the poor prognosis in liver cancer. We found that the combined treatment with the glycolytic inhibitor 2-DG and sorafenib increased persister cell apoptosis and inhibited colony formation. Consequently, we demonstrated that when persister cells were exposed to a low concentration of sorafenib, they suffered mitochondrial dysfunction but showed compensatory increases in glycolysis, which contributes to cell growth and proliferation. Finally, we showed that the combination of 2-DG and sorafenib reduced persister tumor growth in mice. Conclusions These findings suggest that such a combination can effectively hamper persister cell growth and may represent a promising therapeutic strategy to prevent persister cell resistance.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Qian Yang
- Department of Orthopedics, Luoyang No.1 Hospital of TCM, Luoyang 471000, People's Republic of China
| | - Shaoyong Peng
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People's Republic of China
| | - Xiaoxia Liu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.,The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People's Republic of China
| |
Collapse
|
32
|
High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Exp Cell Res 2019; 378:76-86. [PMID: 30844389 DOI: 10.1016/j.yexcr.2019.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022]
Abstract
Slow-cycling and treatment-resistant cancer cells escape therapy, providing a rationale for regrowth and recurrence in patients. Much interest has focused on identifying the properties of slow-cycling tumor cells in glioblastoma (GBM), the most common and lethal primary brain tumor. Despite aggressive ionizing radiation (IR) and treatment with the alkylating agent temozolomide (TMZ), GBM patients invariably relapse and ultimately succumb to the disease. In patient biopsies, we demonstrated that GBM cells expressing the proliferation markers Ki67 and MCM2 displayed a larger cell volume compared to rare slow-cycling tumor cells. In optimized density gradients, we isolated a minor fraction of slow-cycling GBM cells in patient biopsies and tumorsphere cultures. Transcriptional profiling, self-renewal, and tumorigenicity assays reflected the slow-cycling state of high-density GBM cells (HDGCs) compared to the tumor bulk of low-density GBM cells (LDGCs). Slow-cycling HDGCs enriched for stem cell antigens proliferated a few days after isolation to generate LDGCs. Both in vitro and in vivo, we demonstrated that HDGCs show increased treatment-resistance to IR and TMZ treatment compared to LDGCs. In conclusion, density gradients represent a non-marker based approach to isolate slow-cycling and treatment-resistant GBM cells across GBM subgroups.
Collapse
|
33
|
Matallana-Surget S, Werner J, Wattiez R, Lebaron K, Intertaglia L, Regan C, Morris J, Teeling H, Ferrer M, Golyshin PN, Gerogiorgis D, Reilly SI, Lebaron P. Proteogenomic Analysis of Epibacterium Mobile BBCC367, a Relevant Marine Bacterium Isolated From the South Pacific Ocean. Front Microbiol 2018; 9:3125. [PMID: 30622520 PMCID: PMC6308992 DOI: 10.3389/fmicb.2018.03125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Epibacterium mobile BBCC367 is a marine bacterium that is common in coastal areas. It belongs to the Roseobacter clade, a widespread group in pelagic marine ecosystems. Species of the Roseobacter clade are regularly used as models to understand the evolution and physiological adaptability of generalist bacteria. E. mobile BBCC367 comprises two chromosomes and two plasmids. We used gel-free shotgun proteomics to assess its protein expression under 16 different conditions, including stress factors such as elevated temperature, nutrient limitation, high metal concentration, and UVB exposure. Comparison of the different conditions allowed us not only to retrieve almost 70% of the predicted proteins, but also to define three main protein assemblages: 584 essential core proteins, 2,144 facultative accessory proteins and 355 specific unique proteins. While the core proteome mainly exhibited proteins involved in essential functions to sustain life such as DNA, amino acids, carbohydrates, cofactors, vitamins and lipids metabolisms, the accessory and unique proteomes revealed a more specific adaptation with the expression of stress-related proteins, such as DNA repair proteins (accessory proteome), transcription regulators and a significant predominance of transporters (unique proteome). Our study provides insights into how E. mobile BBCC367 adapts to environmental changes and copes with diverse stresses.
Collapse
Affiliation(s)
- Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute of Baltic Sea Research, Rostock, Germany
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Interdisciplinary Mass Spectrometry Center (CISMa), University of Mons, Mons, Belgium
| | - Karine Lebaron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Laurent Intertaglia
- Sorbonne Universites, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France.,Sorbonne Universites, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls/Mer, France
| | - Callum Regan
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - James Morris
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Hanno Teeling
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Ferrer
- Department of Applied Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| | - Peter N Golyshin
- School of Natural Sciences, University of Bangor, Bangor, United Kingdom
| | - Dimitrios Gerogiorgis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, The King's Buildings, Edinburgh, United Kingdom
| | - Simon I Reilly
- School of Natural Sciences, University of Bangor, Bangor, United Kingdom
| | - Philippe Lebaron
- Sorbonne Universites, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France.,Sorbonne Universites, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls/Mer, France
| |
Collapse
|
34
|
Mooney JA, Pridgen EM, Manasherob R, Suh G, Blackwell HE, Barron AE, Bollyky PL, Goodman SB, Amanatullah DF. Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res 2018; 36:2331-2339. [PMID: 29663554 DOI: 10.1002/jor.24019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) is a common complication after total joint arthroplasty leading to severe morbidity and mortality. With an aging population and increasing prevalence of total joint replacement procedures, the burden of PJI will be felt not only by individual patients, but in increased healthcare costs. Current treatment of PJI is inadequate resulting in incredibly high failure rates. This is believed to be largely mediated by the presence of bacterial biofilms. These polymicrobial bacterial colonies form within secreted extracellular matrices, adhering to the implant surface and local tissue. The biofilm architecture is believed to play a complex and critical role in a variety of bacterial processes including nutrient supplementation, metabolism, waste management, and antibiotic and immune resistance. The establishment of these biofilms relies heavily on the quorum sensing communication systems utilized by bacteria. Early stage research into disrupting bacterial communication by targeting quorum sensing show promise for future clinical applications. However, prevention of the biofilm formation via early forced induction of the biofilm forming process remains yet unexplored. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2331-2339, 2018.
Collapse
Affiliation(s)
- Jake A Mooney
- Stanford University, School of Medicine, Stanford, California
| | - Eric M Pridgen
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Gina Suh
- Department of Medicine, Stanford School of Medicine, Stanford, California
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| |
Collapse
|
35
|
Bansal M, Nannapaneni R, Sharma CS, Kiess A. Listeria monocytogenes Response to Sublethal Chlorine Induced Oxidative Stress on Homologous and Heterologous Stress Adaptation. Front Microbiol 2018; 9:2050. [PMID: 30233532 PMCID: PMC6127204 DOI: 10.3389/fmicb.2018.02050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine the effect of chlorine induced sublethal oxidative stress against homologous and heterologous stress adaptations in five Listeria monocytogenes (Lm) strains. Lm cells were exposed to gradually increasing sublethal concentrations of total chlorine/day: 250 ppm (day 1), 270 ppm (day 2), 290 ppm (day 3), 310 ppm (day 4), 330 ppm (day 5), 350 ppm (day 6), and 375 ppm (day 7) in tryptic soy broth (TSB). Changes in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Lm cells exposed to chlorine and control (non-adapted cells) were determined by the macro-dilution method. Chlorine-adapted Lm cells were also evaluated for changes in antibiotic resistance using the Kirby-Bauer disk diffusion and MIC double dilution assay as per the Clinical and Laboratory Standards Institute (CLSI, 2016) guidelines. In four Lm strains (Scott A, V7, FSL-N1-227 and FSL-F6-154) after adapted to sublethal chlorine, the MIC (600 ppm) and MBC (700 ppm) values of chlorine were slightly higher as compared to control (500 ppm MIC, and 600 ppm MBC). The Kirby-Bauer and MIC double dilution assays showed some significant changes in antibiotic susceptibility patterns for antibiotics such as streptomycin, gentamicin and ceftriaxone (p < 0.05). However, the changes in zones of inhibition and MIC values to all antibiotics tested for the chlorine-adapted and non-adapted (control) Lm cells were still within the susceptible range. Transmission electron microscopy studies showed that changes in cell wall and membrane integrity resulting, from the elongation of cells, may contribute to the possible routes of its increase in tolerance to chlorine and selective antibiotics. These findings indicate that the continuous exposure of Lm cells to chlorine may lead to significant changes in homologs and heterologous stress adaptation.
Collapse
Affiliation(s)
- Mohit Bansal
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS, United States
| | - Chander S. Sharma
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| | - Aaron Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
36
|
Sadrearhami Z, Nguyen TK, Namivandi-Zangeneh R, Jung K, Wong EHH, Boyer C. Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. J Mater Chem B 2018; 6:2945-2959. [PMID: 32254331 DOI: 10.1039/c8tb00299a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nitric oxide (NO) molecule has gained increasing attention in biological applications to combat biofilm-associated bacterial infections. However, limited NO loading, relatively short half-lives of low molecular weight NO donor compounds, and difficulties in targeted delivery of NO have hindered their practical clinical administration. To overcome these drawbacks, the combination of NO and scaffolds based on biocompatible polymers is an effective way towards realizing the practical utility of NO in biomedical applications. In this regard, the present overview highlights the recent developments in NO-releasing polymeric biomaterials for antimicrobial applications, focusing on antibiofilm treatments and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Fang P, Madden JA, Neums L, Moulder RK, Forrest ML, Chien J. Olaparib-induced Adaptive Response Is Disrupted by FOXM1 Targeting that Enhances Sensitivity to PARP Inhibition. Mol Cancer Res 2018; 16:961-973. [PMID: 29545475 DOI: 10.1158/1541-7786.mcr-17-0607] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/19/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
FOXM1 transcription factor network is activated in over 84% of cases in high-grade serous ovarian cancer (HGSOC), and FOXM1 upregulates the expression of genes involved in the homologous recombination (HR) DNA damage and repair (DDR) pathway. However, the role of FOXM1 in PARP inhibitor response has not yet been studied. This study demonstrates that PARP inhibitor (PARPi), olaparib, induces the expression and nuclear localization of FOXM1. On the basis of ChIP-qPCR, olaparib enhances the binding of FOXM1 to genes involved in HR repair. FOXM1 knockdown by RNAi or inhibition by thiostrepton decreases FOXM1 expression, decreases the expression of HR repair genes, such as BRCA1 and RAD51, and enhances sensitivity to olaparib. Comet and PARP trapping assays revealed increases in DNA damage and PARP trapping in FOXM1-inhibited cells treated with olaparib. Finally, thiostrepton decreases the expression of BRCA1 in rucaparib-resistant cells and enhances sensitivity to rucaparib. Collectively, these results identify that FOXM1 plays an important role in the adaptive response induced by olaparib and FOXM1 inhibition by thiostrepton induces "BRCAness" and enhances sensitivity to PARP inhibitors.Implications: FOXM1 inhibition represents an effective strategy to overcome resistance to PARPi, and targeting FOXM1-mediated adaptive pathways may produce better therapeutic effects for PARP inhibitors. Mol Cancer Res; 16(6); 961-73. ©2018 AACR.
Collapse
Affiliation(s)
- Pingping Fang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jill A Madden
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Neums
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Ryan K Moulder
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Jeremy Chien
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico.
| |
Collapse
|
38
|
Liposomal and Deoxycholate Amphotericin B Formulations: Effectiveness against Biofilm Infections of Candida spp. Pathogens 2017; 6:pathogens6040062. [PMID: 29194382 PMCID: PMC5750586 DOI: 10.3390/pathogens6040062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 11/29/2022] Open
Abstract
Background: candidiasis is the primary fungal infection encountered in patients undergoing prolonged hospitalization, and the fourth leading cause of nosocomial bloodstream infections. One of the most important Candida spp. virulence factors is the ability to form biofilms, which are extremely refractory to antimicrobial therapy and very difficult to treat with the traditional antifungal therapies. It is known that the prophylaxis or treatment of a systemic candidiasis are recurrently taken without considering the possibility of a Candida spp. biofilm-related infections. Therefore, it is important to assess the effectiveness of the available drugs and which formulations have the best performance in these specific infections. Methods: 24-h-biofilms of four Candida spp. and their response to two amphotericin B (AmB) pharmaceutical formulations (liposomal and deoxycholate) were evaluated. Results: generally, Candida glabrata was the less susceptible yeast species to both AmBs. MBECs revealed that it is therapeutically more appealing to use AmB-L than AmB-Deox for all Candida spp. biofilms, since none of the determined concentrations of AmB-L reached 10% of the maximum daily dose, but both formulations showed a very good capacity in the biomass reduction. Conclusions: the liposomal formulation presents better performance in the eradication of the biofilm cells for all the species in comparison with the deoxycholate formulation.
Collapse
|
39
|
Formation of persisters in Streptococcus mutans biofilms induced by antibacterial dental monomer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:178. [PMID: 28980112 DOI: 10.1007/s10856-017-5981-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023]
Abstract
Antibacterial monomers can combat oral biofilm acids and caries; however, little is known on whether quaternary ammonium monomers (QAMs) would induce drug persistence in oral bacteria. The objectives of this study were to investigate the interactions of Streptococcus mutans (S. mutans) with dimethylaminohexadecyl methacrylate (DMAHDM), and determine for the first time whether DMAHDM could induce persisters in S. mutans. DMAHDM was synthesized using a modified Menschutkin reaction. Dose-dependent killing curves and time-dependent killing curves of planktonic S. mutans and biofilms were determined to evaluate drug persistence, using chlorhexidine (CHX) as control. The inheritability assay, minimum inhibitory concentration (MIC) and live/dead biofilm assay were determined to investigate persister characteristics. DMAHDM matched the killing potency of the gold standard CHX against S. mutans biofilms. DMAHDM and CHX induced drug persistence in S. mutans biofilms but not in planktonic bacteria. S. mutans biofilm persistence was not inheritable in that the tolerance to DMAHDM or CHX of the surviving persisters in the initial population was not transferred to subsequent generations, as displayed by the inheritability assay. The MIC of S. mutans parental strain and induced persisters remained the same. The induced persisters in S. mutans biofilms could be eliminated via higher doses of 300 μg/mL of DMAHDM and CHX. In conclusion, this study showed for the first time that (1) DMAHDM induced persisters only in biofilms, but not in planktonic bacteria; and (2) both DMAHDM-induced and CHX-induced S. mutans persister biofilms could be completely eradicated by even higher concentrations of DMAHDM and CHX. More studies are needed on the induction of persisters in oral biofilms for the development and use of a new generation of antibacterial dental monomers and resins.
Collapse
|
40
|
Sadiq FA, Flint S, Li Y, Ou K, Yuan L, He GQ. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiol 2017; 12:1087-1107. [DOI: 10.2217/fmb-2017-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
Collapse
Affiliation(s)
- Faizan A Sadiq
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Steve Flint
- School of Food & Nutrition, Massey University, Private Bag 11 222, Palmerston North 4474, New Zealand
| | - YanJun Li
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Kai Ou
- Research Institute of Food Science, Hangzhou Wahaha Group Co, Ltd, Hangzhou 310018, China
| | - Lei Yuan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Guo Qing He
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Transcriptomics Analysis Reveals Putative Genes Involved in Biofilm Formation and Biofilm-associated Drug Resistance of Enterococcus faecalis. J Endod 2017; 43:949-955. [DOI: 10.1016/j.joen.2017.01.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/19/2022]
|
42
|
Lin NJ. Biofilm over teeth and restorations: What do we need to know? Dent Mater 2017; 33:667-680. [PMID: 28372810 DOI: 10.1016/j.dental.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The goal of this manuscript is to provide an overview of biofilm attributes and measurement approaches in the context of studying biofilms on tooth and dental material surfaces to improve oral health. METHODS A historical perspective and terminology are presented, followed by a general description of the complexity of oral biofilms. Then, an approach to grouping measurable biofilm properties is presented and considered in relation to biofilm-material interactions and material design strategies to alter biofilms. Finally, the need for measurement assurance in biofilm and biofilm-materials research is discussed. RESULTS Biofilms are highly heterogeneous communities that are challenging to quantify. Their characteristics can be broadly categorized into constituents (identity), quantity, structure, and function. These attributes can be measured over time and in response to substrates and external stimuli. Selecting the biofilm attribute(s) of interest and appropriate measurement methods will depend on the application and, in the case of antimicrobial therapies, the strategic approach and expected mechanism of action. To provide measurement assurance, community accepted protocols and guidelines for minimum data and metadata should be established and broadly applied. Consensus standards may help to streamline testing and demonstration of product claims. SIGNIFICANCE Understanding oral biofilms and their interactions with tooth and dental material surfaces holds great promise for enabling improvements in oral and overall human health. Both substrate and biofilm properties should be considered to develop a more thorough understanding of the system.
Collapse
Affiliation(s)
- Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8543, USA.
| |
Collapse
|
43
|
Abstract
Candida albicans is an important etiological agent of superficial and life-threatening infections in individuals with compromised immune systems. To date, we know of several overlapping genetic networks that govern virulence attributes in this fungal pathogen. Classical use of deletion mutants has led to the discovery of numerous virulence factors over the years, and genome-wide functional analysis has propelled gene discovery at an even faster pace. Indeed, a number of recent studies using large-scale genetic screens followed by genome-wide functional analysis has allowed for the unbiased discovery of many new genes involved in C. albicans biology. Here we share our perspectives on the role of these studies in analyzing fundamental aspects of C. albicans virulence properties.
Collapse
Affiliation(s)
- Thabiso E Motaung
- a Agricultural Research Council - Small Grain Institute , Bethlehem , South Africa
| | - Ruan Ells
- b University of the Free Sate , Bloemfontein , South Africa
| | | | | | - Toi J Tsilo
- a Agricultural Research Council - Small Grain Institute , Bethlehem , South Africa.,c Department of Life and Consumer Sciences , University of South Africa , Pretoria , South Africa
| |
Collapse
|
44
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
45
|
Abstract
Biofilm-associated bacteria are less sensitive to antibiotics than free-living (planktonic) cells. Furthermore, with variations in the concentration of antibiotics throughout a biofilm, microbial cells are often exposed to levels below inhibitory concentrations and may develop resistance. This, as well as the irresponsible use of antibiotics, leads to the selection of pathogens that are difficult to eradicate. The Centers for Disease Control and Prevention use the terms "antibiotic" and "antimicrobial agent" interchangeably. However, a clear distinction between these two terms is required for the purpose of this assessment. Therefore, we define "antibiotics" as pharmaceutically formulated and medically administered substances and "antimicrobials" as a broad category of substances which are not regulated as drugs. This comprehensive minireview evaluates the effect of natural antimicrobials on pathogens in biofilms when used instead of, or in combination with, commonly prescribed antibiotics.
Collapse
|
46
|
Leng RA. Biofilm compartmentalisation of the rumen microbiome: modification of fermentation and degradation of dietary toxins. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an17382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many deleterious chemicals in plant materials ingested by ruminants produce clinical effects, varying from losses of production efficiency through to death. Many of the effects are insidious, often going unrecognised by animal managers. When secondary plant compounds enter the rumen, they may undergo modification by rumen microbes, which often removes the deleterious compounds, but in specific instances, the deleterious effect may be enhanced. Improved understanding of rumen ecology, particularly concerning the biofilm mode of microbial fermentation, has led to major advances in our understanding of fermentation. In the present review, the potential impact of the physical structuring of the rumen microbiome is discussed in relation to how several economically important secondary plant compounds and other toxins are metabolised by the rumen microbiome and how their toxic effects may be remedied by providing inert particles with a large surface area to weight ratio in the diet. These particles provide additional surfaces for attachment of rumen microorganisms that help alleviate toxicity problems associated with deleterious compounds, including fluoroacetate, mimosine, mycotoxins, cyanoglycosides and hydrogen cyanide. The review first summarises the basic science of biofilm formation and describes the properties of biofilms and their roles in the rumen. It then addresses how biofilms on inert solids and fermentable particulates may assist in detoxification of potentially toxic compounds. A hypothesis that explains how nitrate poisoning may occur as a result of compartmentalisation of nitrate and nitrite reduction in the rumen is included.
Collapse
|
47
|
Abstract
Candida albicans is the most common human fungal pathogen causing diseases ranging from mucosal to systemic infections. As a commensal, C. albicans asymptomatically colonizes mucosal surfaces; however, any disruption in the host environment or under conditions of immune dysfunction, C. albicans can proliferate and invade virtually any site in the host. The ability of this highly adaptable fungal species to transition from commensal to pathogen is due to a repertoire of virulence factors. Specifically, the ability to switch morphology and form biofilms are properties central to C. albicans pathogenesis. In fact, the majority of C. albicans infections are associated with biofilm formation on host or abiotic surfaces such as indwelling medical devices, which carry high morbidity and mortality. Significantly, biofilms formed by C. albicans are inherently tolerant to antimicrobial therapy and therefore, the susceptibility of Candida biofilms to the current therapeutic agents remains low. The aim of this review is to provide an overview of C. albicans highlighting some of the diverse biofilm-associated diseases caused by this opportunistic pathogen and the animal models available to study them. Further, the classes of antifungal agents used to combat these resilient infections are discussed along with mechanisms of drug resistance.
Collapse
|
48
|
|
49
|
Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. NPJ Biofilms Microbiomes 2016. [PMID: 28649396 PMCID: PMC5460242 DOI: 10.1038/s41522-016-0003-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilms in chronic wounds are known to contain a persister subpopulation that exhibits enhanced multidrug tolerance and can quickly rebound after therapeutic treatment. The presence of these “persister cells” is partly responsible for the failure of antibiotic therapies and incomplete elimination of biofilms. Electrochemical methods combined with antibiotics have been suggested as an effective alternative for biofilm and persister cell elimination, yet the mechanism of action for improved antibiotic efficacy remains unclear. In this work, an electrochemical scaffold (e-scaffold) that electrochemically generates a constant concentration of H2O2 was investigated as a means of enhancing tobramycin susceptibility in pre-grown Pseudomonas aeruginosa PAO1 biofilms and attacking persister cells. Results showed that the e-scaffold enhanced tobramycin susceptibility in P. aeruginosa PAO1 biofilms, which reached a maximum susceptibility at 40 µg/ml tobramycin, with complete elimination (7.8-log reduction vs control biofilm cells, P ≤ 0.001). Moreover, the e-scaffold eradicated persister cells in biofilms, leaving no viable cells (5-log reduction vs control persister cells, P ≤ 0.001). It was observed that the e-scaffold induced the intracellular formation of hydroxyl free radicals and improved membrane permeability in e-scaffold treated biofilm cells, which possibly enhanced antibiotic susceptibility and eradicated persister cells. These results demonstrate a promising advantage of the e-scaffold in the treatment of persistent biofilm infections. Using an electrically conductive fabric to generate hydrogen peroxide could eradicate persistent biofilms in chronically infected wounds. Electrochemical scaffolds (e-scaffolds) are thin networks of conductive material such as carbon fiber used to generate chemical responses in media they are in contact with. Haluk Beyenal and colleagues at Washington State University, USA, investigated the effect of a carbon fabric e-scaffold on cultured biofilms of the bacterium Pseudomonas aeruginosa. The procedure enhanced the susceptibility of this troublesome multidrug-resistant bacterium to the antibiotic tobramycin. Crucially, it eradicated so-called persister cells that can evade antibiotic treatment to reform biofilms in chronic wounds. The research suggests that the effect involves the production of hydroxyl free radicals from hydrogen peroxide and increased permeability of the bacterial cell membranes. The potential of e-scaffolds for treating infected wounds warrants further exploration.
Collapse
|
50
|
Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A, Heinemann M. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol 2016; 12:882. [PMID: 27655400 PMCID: PMC5043093 DOI: 10.15252/msb.20166998] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While persisters are a health threat due to their transient antibiotic tolerance, little is known about their phenotype and what actually causes persistence. Using a new method for persister generation and high‐throughput methods, we comprehensively mapped the molecular phenotype of Escherichia coli during the entry and in the state of persistence in nutrient‐rich conditions. The persister proteome is characterized by σS‐mediated stress response and a shift to catabolism, a proteome that starved cells tried to but could not reach due to absence of a carbon and energy source. Metabolism of persisters is geared toward energy production, with depleted metabolite pools. We developed and experimentally verified a model, in which persistence is established through a system‐level feedback: Strong perturbations of metabolic homeostasis cause metabolic fluxes to collapse, prohibiting adjustments toward restoring homeostasis. This vicious cycle is stabilized and modulated by high ppGpp levels, toxin/anti‐toxin systems, and the σS‐mediated stress response. Our system‐level model consistently integrates past findings with our new data, thereby providing an important basis for future research on persisters.
Collapse
Affiliation(s)
- Jakub Leszek Radzikowski
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Silke Vedelaar
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - David Siegel
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Álvaro Dario Ortega
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|