1
|
Graham AL, Regoes RR. Dose-dependent interaction of parasites with tiers of host defense predicts "wormholes" that prolong infection at intermediate inoculum sizes. PLoS Comput Biol 2024; 20:e1012652. [PMID: 39642189 DOI: 10.1371/journal.pcbi.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/18/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
Immune responses are induced by parasite exposure and can in turn reduce parasite burden. Despite such apparently simple rules of engagement, key drivers of within-host dynamics, including dose-dependence of defense and infection duration, have proven difficult to predict. Here, we model how varied inoculating doses interact with multi-tiered host defenses at a site of inoculation, by confronting barrier, innate, and adaptive tiers with replicating and non-replicating parasites across multiple orders of magnitude of dose. We find that, in general, intermediate parasite doses generate infections of longest duration because they are sufficient in number to breach barrier defenses, but insufficient to strongly induce subsequent tiers of defense. These doses reveal "wormholes" in defense from which parasites might profit: Deviation from the hypothesis of independent action, which postulates that each parasite has an independent probability of establishing infection, may therefore be widespread. Interestingly, our model predicts local maxima of duration at two doses-one for each tier transition. While some empirical evidence is consistent with nonlinear dose-dependencies, testing the predicted dynamics will require finer-scale dose variation than experiments usually incorporate. Our results help explain varied infection establishment and duration among differentially-exposed hosts and elucidate evolutionary pressures that shape both virulence and defense.
Collapse
Affiliation(s)
- Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Roland R Regoes
- Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
2
|
Amono R, Markussen T, Singh VK, Lund M, Manji F, Mor SK, Evensen Ø, Mikalsen AB. Unraveling the genomic landscape of piscine myocarditis virus: mutation frequencies, viral diversity and evolutionary dynamics in Atlantic salmon. Virus Evol 2024; 10:veae097. [PMID: 39717704 PMCID: PMC11665822 DOI: 10.1093/ve/veae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Over a decade since its discovery, piscine myocarditis virus (PMCV) remains a significant pathogen in Atlantic salmon aquaculture. Despite this significant impact, the genomic landscape, evolutionary dynamics, and virulence factors of PMCV are poorly understood. This study enhances the existing PMCV sequence dataset by adding 34 genome sequences and 202 new ORF3 sequences from clinical cardiomyopathy syndrome (CMS) cases in Norwegian aquaculture. Phylogenetic analyses, also including sequences from the Faroe Islands and Ireland revealed that PMCV sequences are highly conserved with distinct clustering by country of origin. Still, single CMS outbreaks display multiple PMCV variants, and although some clustering was seen by case origin, occasional grouping of sequences from different cases was also apparent. Temporal data from selected cases indicated increased sequence diversity in the population. We hypothesize that multiple bottlenecks and changing infection dynamics in the host population, with transfer to naïve individuals over time, represent a continuous selection pressure on the virus populations. No clear relation was found between PMCV variants and the severity of heart pathology. However, specific non-synonymous and synonymous mutations that might impact protein function and gene expression efficiency were identified. An additional factor that may impact PMCV replication is the presence of defective viral genomes, a novel finding for viruses of the order Ghabrivirales. This study provides new insights into PMCV genomic characteristics and evolutionary dynamics, highlighting the complex interplay of genetic diversity, virulence markers, and host-pathogen interactions, underscoring the epidemiological complexity of the virus. Keywords: piscine myocarditis virus; evolutionary dynamics; diversity; phylogeny; genomic sequencing; defective viral genomes.
Collapse
Affiliation(s)
- Racheal Amono
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Vikash K Singh
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
| | - Morten Lund
- PatoGen AS, Rasmus Rønnebergs Gate 21, Ålesund 6002, Norway
| | - Farah Manji
- Mowi ASA, Post box 4102, Bergen 5835, Norway
| | - Sunil K Mor
- Department of Veterinary Population Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN 55108, United States
- Department of Veterinary and Biomedical Sciences and Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Post box 2175 University Station, Brookings, SD 57007, USA
| | - Øystein Evensen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| | - Aase B Mikalsen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway
| |
Collapse
|
3
|
Jones DR, Everson J, Leeds TD, Wiens GD, Wargo AR. The Impact of Exposure Dosage and Host Genetics on the Shedding Kinetics of Flavobacterium psychrophilum in Rainbow Trout. JOURNAL OF FISH DISEASES 2024:e14026. [PMID: 39380420 PMCID: PMC11978924 DOI: 10.1111/jfd.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD), is one of the leading pathogens in rainbow trout (Oncorhynchus mykiss) aquaculture. To date, there is little knowledge of the transmission kinetics of F. psychrophilum over the course of infection. In particular, how transmission is affected by host genotype and pathogen exposure dosage are not well studied. In order to fill in these knowledge gaps, we exposed two divergently selected lines of rainbow trout (ARS-Fp-R and ARS-Fp-S) to a range of dosages of F. psychrophilum (strain CSF117-10). We then measured mortality and bacterial shedding to estimate transmission risk at multiple time points since initial infection. As dosage increased, the number of fish shedding and the amount of bacteria shed increased ranging from 0% to 100% and 103 to 108 cells fish-1 h-1, respectively. In addition, we found that disease resistance (survival) was not correlated with transmission risk blocking, in that 67% of fish which shed bacteria experienced no clinical disease. In general, fish mortality began on Day 3, peaked between Days 5-7 and was higher in the ARS-Fp-R line. Results from this study could be used to develop epidemiological models and improve disease management, particularly in the context of aquaculture and selective breeding.
Collapse
Affiliation(s)
- Darbi R. Jones
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
- Current Address: University of California Davis, Davis, CA 95616, USA
| | - Jeremy Everson
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Timothy D. Leeds
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Gregory D. Wiens
- National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Andrew R. Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| |
Collapse
|
4
|
Bendall EE, Callear AP, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. Nat Commun 2023; 14:272. [PMID: 36650162 PMCID: PMC9844183 DOI: 10.1038/s41467-023-36001-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of selection along a transmission chain. While increased force of infection, receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here we compare the transmission bottleneck of non-VOC SARS-CoV-2 lineages to those of Alpha, Delta, and Omicron. We sequenced viruses from 168 individuals in 65 households. Most virus populations had 0-1 single nucleotide variants (iSNV). From 64 transmission pairs with detectable iSNV, we identify a per clade bottleneck of 1 (95% CI 1-1) for Alpha, Delta, and Omicron and 2 (95% CI 2-2) for non-VOC. These tight bottlenecks reflect the low diversity at the time of transmission, which may be more pronounced in rapidly transmissible variants. Tight bottlenecks will limit the development of highly mutated VOC in transmission chains, adding to the evidence that selection over prolonged infections may drive their evolution.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy P Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
6
|
Mesel F, Zhao M, García B, Simón‐Mateo C, García J. Targeting of genomic and negative-sense strands of viral RNA contributes to antiviral resistance mediated by artificial miRNAs and promotes the emergence of complex viral populations. MOLECULAR PLANT PATHOLOGY 2022; 23:1640-1657. [PMID: 35989243 PMCID: PMC9562735 DOI: 10.1111/mpp.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 05/27/2023]
Abstract
Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus-specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive-sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative-sense RNA strand is cleaved by the amiRNA-guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.
Collapse
Affiliation(s)
- Frida Mesel
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Mingmin Zhao
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Beatriz García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Carmen Simón‐Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
7
|
Bendall EE, Callear A, Getz A, Goforth K, Edwards D, Monto AS, Martin ET, Lauring AS. Rapid transmission and tight bottlenecks constrain the evolution of highly transmissible SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.12.511991. [PMID: 36263068 PMCID: PMC9580385 DOI: 10.1101/2022.10.12.511991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmission bottlenecks limit the spread of novel mutations and reduce the efficiency of natural selection along a transmission chain. Many viruses exhibit tight bottlenecks, and studies of early SARS-CoV-2 lineages identified a bottleneck of 1-3 infectious virions. While increased force of infection, host receptor binding, or immune evasion may influence bottleneck size, the relationship between transmissibility and the transmission bottleneck is unclear. Here, we compare the transmission bottleneck of non-variant-of-concern (non-VOC) SARS-CoV-2 lineages to those of the Alpha, Delta, and Omicron variants. We sequenced viruses from 168 individuals in 65 multiply infected households in duplicate to high depth of coverage. In 110 specimens collected close to the time of transmission, within-host diversity was extremely low. At a 2% frequency threshold, 51% had no intrahost single nucleotide variants (iSNV), and 42% had 1-2 iSNV. In 64 possible transmission pairs with detectable iSNV, we identified a bottleneck of 1 infectious virion (95% CI 1-1) for Alpha, Delta, and Omicron lineages and 2 (95% CI 2-2) in non-VOC lineages. The latter was driven by a single iSNV shared in one non-VOC household. The tight transmission bottleneck in SARS-CoV-2 is due to low genetic diversity at the time of transmission, a relationship that may be more pronounced in rapidly transmissible variants. The tight bottlenecks identified here will limit the development of highly mutated VOC in typical transmission chains, adding to the evidence that selection over prolonged infections in immunocompromised patients may drive their evolution.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Callear
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Getz
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Kendra Goforth
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Drew Edwards
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Arnold S. Monto
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
McDonald BA, Suffert F, Bernasconi A, Mikaberidze A. How large and diverse are field populations of fungal plant pathogens? The case of Zymoseptoria tritici. Evol Appl 2022; 15:1360-1373. [PMID: 36187182 PMCID: PMC9488677 DOI: 10.1111/eva.13434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Pathogen populations differ in the amount of genetic diversity they contain. Populations carrying higher genetic diversity are thought to have a greater evolutionary potential than populations carrying less diversity. We used published studies to estimate the range of values associated with two critical components of genetic diversity, the number of unique pathogen genotypes and the number of spores produced during an epidemic, for the septoria tritici blotch pathogen Zymoseptoria tritici. We found that wheat fields experiencing typical levels of infection are likely to carry between 3.1 and 14.0 million pathogen genotypes per hectare and produce at least 2.1-9.9 trillion pycnidiospores per hectare. Given the experimentally derived mutation rate of 3 × 10-10 substitutions per site per cell division, we estimate that between 27 and 126 million pathogen spores carrying adaptive mutations to counteract fungicides and resistant cultivars will be produced per hectare during a growing season. This suggests that most of the adaptive mutations that have been observed in Z. tritici populations can emerge through local selection from standing genetic variation that already exists within each field. The consequences of these findings for disease management strategies are discussed.
Collapse
Affiliation(s)
- Bruce A. McDonald
- Plant Pathology GroupInstitute of Integrative Biology, ETH ZurichZurichSwitzerland
| | | | - Alessio Bernasconi
- Plant Pathology GroupInstitute of Integrative Biology, ETH ZurichZurichSwitzerland
| | - Alexey Mikaberidze
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
9
|
Jeong MA, Jeong YJ, Kim KI. Virulence difference between red sea bream iridovirus mixed subtype I/II and subtype II and the expression of viral and apoptosis-related genes in infected rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:195-202. [PMID: 35643355 DOI: 10.1016/j.fsi.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, the virulence of the red sea bream iridovirus (RSIV) subtype II (17RbGs isolate) and a novel RSIV mixed subtype I/II (17SbTy isolate), which was genetically characterized in a previous study, were compared. The infectivity to rock bream (Oplegnathus fasciatus) determined by infectious dose (ID50) revealed that 17RbGs isolate was significantly more infective than 17SbTy isolate using both intraperitoneal injection and bath immersion. In a cohabitation challenge test that mimicked natural conditions, the cumulative mortality of the donor (RSIV-injected rock bream) and the recipient (cohabited naïve rock bream) was significantly higher in the 17RbGs group than in the 17SbTy group, regardless of RSIV injected doses, supporting the correlation between genetic mutation and pathogenicity. In addition, the maximum viral shedding ratio identified from RSIV-infected rock bream suggested that viral transmission through infection with the 17SbTy isolate could have a lower relative risk than that of infection with the 17RbGs isolate. In particular, the odds ratio based on the spleen index after 17RbGs infection was 55.00, which was inconsistent with that of 17SbTy infection (19.38), hence supporting the virulence difference between RSIVs. Furthermore, the expression of viral genes, including DNA membrane and myristoylated protein genes with insertion and deletion mutations, and that of caspase-8, which is related to caspase-dependent apoptosis induced by RSIV infection, were significantly upregulated at 11 days post 17RbGs-infection compared to that following 17SbTy infection. Notably, although viral genes were highly expressed in the early infection stage and caspase-8 was upregulated, the low caspase-3 expression may have inhibited apoptosis, reflecting the difference in virulence between different RSIV isolates. Several virulence factors, including pathogenicity, viral shedding ratio, odds ratio, and gene expression, support that RSIV mixed subtype I/II may be a less pathogenic RSIV isolate compared with general RSIV subtype II in a natural environment.
Collapse
Affiliation(s)
- Min A Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ye Jin Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Kwang Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Perdoncini Carvalho C, Ren R, Han J, Qu F. Natural Selection, Intracellular Bottlenecks of Virus Populations, and Viral Superinfection Exclusion. Annu Rev Virol 2022; 9:121-137. [PMID: 35567296 DOI: 10.1146/annurev-virology-100520-114758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural selection acts on cellular organisms by ensuring the genes responsible for an advantageous phenotype consistently reap the phenotypic advantage. This is possible because reproductive cells of these organisms are almost always haploid, separating the beneficial gene from its rival allele at every generation. How natural selection acts on plus-strand RNA viruses is unclear because these viruses frequently load host cells with numerous genome copies and replicate thousands of progeny genomes in each cell. Recent studies suggest that these viruses encode the Bottleneck, Isolate, Amplify, Select (BIAS) mechanism that blocks all but a few viral genome copies from replication, thus creating the environment in which the bottleneck-escaping viral genome copies are isolated from each other, allowing natural selection to reward beneficial mutations and purge lethal errors. This BIAS mechanism also blocks the genomes of highly homologous superinfecting viruses, thus explaining cellular-level superinfection exclusion. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Ruifan Ren
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Junping Han
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| | - Feng Qu
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
11
|
Wait LF, Kamiya T, Fairlie-Clarke KJ, Metcalf CJE, Graham AL, Mideo N. Differential drivers of intraspecific and interspecific competition during malaria-helminth co-infection. Parasitology 2021; 148:1030-1039. [PMID: 33971991 PMCID: PMC11010048 DOI: 10.1017/s003118202100072x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/05/2022]
Abstract
Various host and parasite factors interact to determine the outcome of infection. We investigated the effects of two factors on the within-host dynamics of malaria in mice: initial infectious dose and co-infection with a helminth that limits the availability of red blood cells (RBCs). Using a statistical, time-series approach to model the within-host ‘epidemiology’ of malaria, we found that increasing initial dose reduced the time to peak cell-to-cell parasite propagation, but also reduced its magnitude, while helminth co-infection delayed peak cell-to-cell propagation, except at the highest malaria doses. Using a mechanistic model of within-host infection dynamics, we identified dose-dependence in parameters describing host responses to malaria infection and uncovered a plausible explanation of the observed differences in single vs co-infections. Specifically, in co-infections, our model predicted a higher background death rate of RBCs. However, at the highest dose, when intraspecific competition between malaria parasites would be highest, these effects of co-infection were not observed. Such interactions between initial dose and co-infection, although difficult to predict a priori, are key to understanding variation in the severity of disease experienced by hosts and could inform studies of malaria transmission dynamics in nature, where co-infection and low doses are the norm.
Collapse
Affiliation(s)
- L. F. Wait
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - T. Kamiya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - C. J. E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - A. L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - N. Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Merleau NSC, Pénisson S, Gerrish PJ, Elena SF, Smerlak M. Why are viral genomes so fragile? The bottleneck hypothesis. PLoS Comput Biol 2021; 17:e1009128. [PMID: 34237053 PMCID: PMC8291636 DOI: 10.1371/journal.pcbi.1009128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/20/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
If they undergo new mutations at each replication cycle, why are RNA viral genomes so fragile, with most mutations being either strongly deleterious or lethal? Here we provide theoretical and numerical evidence for the hypothesis that genetic fragility is partly an evolutionary response to the multiple population bottlenecks experienced by viral populations at various stages of their life cycles. Modelling within-host viral populations as multi-type branching processes, we show that mutational fragility lowers the rate at which Muller’s ratchet clicks and increases the survival probability through multiple bottlenecks. In the context of a susceptible-exposed-infectious-recovered epidemiological model, we find that the attack rate of fragile viral strains can exceed that of more robust strains, particularly at low infectivities and high mutation rates. Our findings highlight the importance of demographic events such as transmission bottlenecks in shaping the genetic architecture of viral pathogens. Given that most mutations are deleterious, high mutation rates carry a significant evolutionary cost. To reduce this burden, an obvious evolutionary solution would be to reduce the fitness cost of mutations by becoming more robust; this solution is indeed selected in populations of constantly large size. Here, we show that when populations regularly experience bottlenecks, as viruses do upon transmission to a new host, a less obvious solution becomes more viable: namely, to increase the fitness cost of mutations so that unfit mutants are less likely to fix at each passage. This could explain why viruses—especially RNA viruses—do in fact have very fragile genomes.
Collapse
Affiliation(s)
| | - Sophie Pénisson
- Université Paris Est Créteil, CNRS, LAMA, Creteil, France
- Université Gustave Eiffel, LAMA, Marne-la-Vallée, France
| | - Philip J. Gerrish
- University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, València, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- * E-mail:
| |
Collapse
|
13
|
Courtney JM, Bax A. Hydrating the respiratory tract: An alternative explanation why masks lower severity of COVID-19. Biophys J 2021; 120:994-1000. [PMID: 33582134 PMCID: PMC7879047 DOI: 10.1016/j.bpj.2021.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
The seasonality of respiratory diseases has been linked, among other factors, to low outdoor absolute humidity and low indoor relative humidity, which increase evaporation of water in the mucosal lining of the respiratory tract. We demonstrate that normal breathing results in an absorption-desorption cycle inside facemasks, in which supersaturated air is absorbed by the mask fibers during expiration, followed by evaporation during inspiration of dry environmental air. For double-layered cotton masks, which have considerable heat capacity, the temperature of inspired air rises above room temperature, and the effective increase in relative humidity can exceed 100%. We propose that the recently reported, disease-attenuating effect of generic facemasks is dominated by the strong humidity increase of inspired air. This elevated humidity promotes mucociliary clearance of pathogens from the lungs, both before and after an infection of the upper respiratory tract has occurred. Effective mucociliary clearance can delay and reduce infection of the lower respiratory tract, thus mitigating disease severity. This mode of action suggests that masks can benefit the wearer even after an infection in the upper respiratory tract has occurred, complementing the traditional function of masks to limit person-to-person disease transmission. This potential therapeutical use should be studied further.
Collapse
Affiliation(s)
- Joseph M Courtney
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland
| | - Ad Bax
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
14
|
Zhdanov VP, Kasemo B. Virions and respiratory droplets in air: Diffusion, drift, and contact with the epithelium. Biosystems 2020; 198:104241. [PMID: 32896576 PMCID: PMC9991016 DOI: 10.1016/j.biosystems.2020.104241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023]
Abstract
Some infections, including e.g. influenza and currently active COVID 19, may be transmitted via air during sneezing, coughing, and talking. This pathway occurs via diffusion and gravity-induced drift of single virions and respiratory droplets consisting primarily of water, including small fraction of nonvolatile matter, and containing virions. These processes are accompanied by water evaporation resulting in reduction of the droplet size. The manifold of information concerning these steps is presented in textbooks and articles not related to virology and the focus is there frequently on biologically irrelevant conditions and/or droplet sizes. In this brief review, we systematically describe the behavior of virions and virion-carrying droplets in air with emphasis on various regimes of diffusion, drift, and evaporation, and estimate the rates of all these steps under virologically relevant conditions. In addition, we discuss the kinetic aspects of the first steps of infection after attachment of virions or virion-carrying droplets to the epithelium, i.e., virion diffusion in the mucus and periciliary layers, penetration into the cells, and the early stage of replication. The presentation is oriented to virologists who are interested in the corresponding physics and to physicists who are interested in application of the physics to virology.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Sections of Nano and Biological Physics and Chemical Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Bengt Kasemo
- Sections of Nano and Biological Physics and Chemical Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
15
|
Qu F, Zheng L, Zhang S, Sun R, Slot J, Miyashita S. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive-sense RNA viruses. Virus Evol 2020; 6:veaa086. [PMID: 33343926 PMCID: PMC7733609 DOI: 10.1093/ve/veaa086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many positive-sense RNA viruses, especially those infecting plants, are known to experience stringent, stochastic population bottlenecks inside the cells they invade, but exactly how and why these populations become bottlenecked are unclear. A model proposed ten years ago advocates that such bottlenecks are evolutionarily favored because they cause the isolation of individual viral variants in separate cells. Such isolation in turn allows the viral variants to manifest the phenotypic differences they encode. Recently published observations lend mechanistic support to this model and prompt us to refine the model with novel molecular details. The refined model, designated Bottleneck, Isolate, Amplify, Select (BIAS), postulates that these viruses impose population bottlenecks on themselves by encoding bottleneck-enforcing proteins (BNEPs) that function in a concentration-dependent manner. In cells simultaneously invaded by numerous virions of the same virus, BNEPs reach the bottleneck-ready concentration sufficiently early to arrest nearly all internalized viral genomes. As a result, very few (as few as one) viral genomes stochastically escape to initiate reproduction. Repetition of this process in successively infected cells isolates viral genomes with different mutations in separate cells. This isolation prevents mutant viruses encoding defective viral proteins from hitchhiking on sister genome-encoded products, leading to the swift purging of such mutants. Importantly, genome isolation also ensures viral genomes harboring beneficial mutations accrue the cognate benefit exclusively to themselves, leading to the fixation of such beneficial mutations. Further interrogation of the BIAS hypothesis promises to deepen our understanding of virus evolution and inspire new solutions to virus disease mitigation.
Collapse
Affiliation(s)
- Feng Qu
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Limin Zheng
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Shaoyan Zhang
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Rong Sun
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
16
|
Abstract
To make the physics of person-to-person virus transmission from emitted droplets of oral fluid while speaking easily understood, we present simple and transparent algebraic equations that capture the essential physics of the problem. Calculations with these equations provide a straightforward way of determining whether emitted droplets remain airborne or rapidly fall to the ground, after accounting for the decrease in droplet size from water evaporation. At a relative humidity of 50%, for example, droplets with initial radii larger than about 50 μm rapidly fall to the ground, while smaller, potentially virus-containing droplets shrink in size from water evaporation and remain airborne for many minutes. Estimates of airborne virion emission rates while speaking strongly support the proposal that mouth coverings can help contain the COVID-19 pandemic.
Collapse
|
17
|
Jones DR, Rutan BJ, Wargo AR. Impact of Vaccination and Pathogen Exposure Dosage on Shedding Kinetics of Infectious Hematopoietic Necrosis Virus (IHNV) in Rainbow Trout. JOURNAL OF AQUATIC ANIMAL HEALTH 2020; 32:95-108. [PMID: 32443164 PMCID: PMC7540492 DOI: 10.1002/aah.10108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Vaccine efficacy in preventing clinical disease has been well characterized. However, vaccine impacts on transmission under diverse field conditions, such as variable pathogen exposure dosages, are not fully understood. We evaluated the impacts of vaccination on disease-induced host mortality and shedding of infectious hematopoietic necrosis virus (IHNV) in Rainbow Trout Oncorhynchus mykiss. Fish, in up to three different genetic lines, were exposed to different dosages of IHNV to simulate field variability. Mortality and viral shedding of each individual fish were quantified over the course of infection. As the exposure dosage increased, mortality, number of fish shedding virus, daily virus quantity shed, and total amount of virus shed also increased. Vaccination significantly reduced mortality but had a much smaller impact on shedding, such that vaccinated fish still shed significant amounts of virus, particularly at higher viral exposure dosages. These studies demonstrate that the consideration of pathogen exposure dosage and transmission are critical for robust inference of vaccine efficacy.
Collapse
Affiliation(s)
- Darbi R. Jones
- Virginia Institute of Marine ScienceWilliam & MaryPost Office Box 1346, 1370 Greate RoadGloucester PointVirginia23062USA
| | - Barbara J. Rutan
- Virginia Institute of Marine ScienceWilliam & MaryPost Office Box 1346, 1370 Greate RoadGloucester PointVirginia23062USA
| | - Andrew R. Wargo
- Virginia Institute of Marine ScienceWilliam & MaryPost Office Box 1346, 1370 Greate RoadGloucester PointVirginia23062USA
| |
Collapse
|
18
|
Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for the detection of Tomato brown rugose fruit virus (ToBRFV). PLoS One 2020; 15:e0230403. [PMID: 32579552 PMCID: PMC7313975 DOI: 10.1371/journal.pone.0230403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a member of Tobamovirus infecting tomato and pepper. Within North America, both the United States and Mexico consider ToBRFV to be a regulated pest. In Canada, the presence of ToBRFV has been reported, but an efficient diagnostic system has not yet been established. Here, we describe the development and assessment of a loop-mediated isothermal amplification (LAMP)-based assay to detect ToBRFV. The LAMP test was efficient and robust, and results could be obtained within 35 min with an available RNA sample. Amplification was possible when either water bath or oven were used to maintain the temperature at isothermal conditions (65°C), and results could be read by visual observation of colour change. Detection limit of the LAMP was eight target RNA molecules. Under the experimental conditions tested, LAMP was as sensitive as qPCR and 100 times more sensitive than the currently used RT-PCR. We recommend this sensitive, efficient LAMP protocol to be used for routine lab testing of ToBRFV.
Collapse
|
19
|
Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A 2020. [PMID: 32404416 DOI: 10.5281/zenodo.3770559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Speech droplets generated by asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are increasingly considered to be a likely mode of disease transmission. Highly sensitive laser light scattering observations have revealed that loud speech can emit thousands of oral fluid droplets per second. In a closed, stagnant air environment, they disappear from the window of view with time constants in the range of 8 to 14 min, which corresponds to droplet nuclei of ca. 4 μm diameter, or 12- to 21-μm droplets prior to dehydration. These observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.
Collapse
Affiliation(s)
- Valentyn Stadnytskyi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Christina E Bax
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriaan Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520;
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520;
| |
Collapse
|
20
|
Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A 2020. [PMID: 32404416 DOI: 10.1073/pnas.200687411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Speech droplets generated by asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are increasingly considered to be a likely mode of disease transmission. Highly sensitive laser light scattering observations have revealed that loud speech can emit thousands of oral fluid droplets per second. In a closed, stagnant air environment, they disappear from the window of view with time constants in the range of 8 to 14 min, which corresponds to droplet nuclei of ca. 4 μm diameter, or 12- to 21-μm droplets prior to dehydration. These observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.
Collapse
Affiliation(s)
- Valentyn Stadnytskyi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Christina E Bax
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Adriaan Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520;
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520;
| |
Collapse
|
21
|
The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A 2020; 117:11875-11877. [PMID: 32404416 PMCID: PMC7275719 DOI: 10.1073/pnas.2006874117] [Citation(s) in RCA: 605] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Speech droplets generated by asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are increasingly considered to be a likely mode of disease transmission. Highly sensitive laser light scattering observations have revealed that loud speech can emit thousands of oral fluid droplets per second. In a closed, stagnant air environment, they disappear from the window of view with time constants in the range of 8 to 14 min, which corresponds to droplet nuclei of ca. 4 μm diameter, or 12- to 21-μm droplets prior to dehydration. These observations confirm that there is a substantial probability that normal speaking causes airborne virus transmission in confined environments.
Collapse
|
22
|
Rousseau E, Bonneault M, Fabre F, Moury B, Mailleret L, Grognard F. Virus epidemics, plant-controlled population bottlenecks and the durability of plant resistance. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180263. [PMID: 31056046 DOI: 10.1098/rstb.2018.0263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plant qualitative resistances to viruses are natural exhaustible resources that can be impaired by the emergence of resistance-breaking (RB) virus variants. Mathematical modelling can help determine optimal strategies for resistance durability by a rational deployment of resistance in agroecosystems. Here, we propose an innovative approach, built up from our previous empirical studies, based on plant cultivars combining qualitative resistance with quantitative resistance narrowing population bottlenecks exerted on viruses during host-to-host transmission and/or within-host infection. Narrow bottlenecks are expected to slow down virus adaptation to plant qualitative resistance. To study the effect of bottleneck size on yield, we developed a stochastic epidemic model with mixtures of susceptible and resistant plants, relying on continuous-time Markov chain processes. Overall, narrow bottlenecks are beneficial when the fitness cost of RB virus variants in susceptible plants is intermediate. In such cases, they could provide up to 95 additional percentage points of yield compared with deploying a qualitative resistance alone. As we have shown in previous works that virus population bottlenecks are at least partly heritable plant traits, our results suggest that breeding and deploying plant varieties exposing virus populations to narrowed bottlenecks will increase yield and delay the emergence of RB variants. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Collapse
Affiliation(s)
- Elsa Rousseau
- 1 Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore team , Sophia Antipolis , France.,2 Université Côte d'Azur, INRA, CNRS, ISA , France.,3 Pathologie Végétale, INRA , F-84140 Montfavet , France
| | - Mélanie Bonneault
- 1 Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore team , Sophia Antipolis , France
| | - Frédéric Fabre
- 4 UMR 1065 SAVE, INRA , Bordeaux Sciences Agro, F-33882, Villenave d'Ornon , France
| | - Benoît Moury
- 3 Pathologie Végétale, INRA , F-84140 Montfavet , France
| | - Ludovic Mailleret
- 1 Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore team , Sophia Antipolis , France.,2 Université Côte d'Azur, INRA, CNRS, ISA , France
| | - Frédéric Grognard
- 1 Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne Université, Biocore team , Sophia Antipolis , France
| |
Collapse
|
23
|
Tamisier L, Szadkowski M, Nemouchi G, Lefebvre V, Szadkowski E, Duboscq R, Santoni S, Sarah G, Sauvage C, Palloix A, Moury B. Genome-wide association mapping of QTLs implied in potato virus Y population sizes in pepper: evidence for widespread resistance QTL pyramiding. MOLECULAR PLANT PATHOLOGY 2020; 21:3-16. [PMID: 31605444 PMCID: PMC6913244 DOI: 10.1111/mpp.12874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this study, we looked for genetic factors in the pepper (Capsicum annuum) germplasm that control the number of potato virus Y (PVY) particles entering the plant (i.e. effective population size at inoculation) and the PVY accumulation at the systemic level (i.e. census population size). Using genotyping-by-sequencing (GBS) in a core collection of 256 pepper accessions, we obtained 10 307 single nucleotide polymorphisms (SNPs) covering the whole genome. Genome-wide association studies (GWAS) detected seven SNPs significantly associated with the virus population size at inoculation and/or systemic level on chromosomes 4, 6, 9 and 12. Two SNPs on chromosome 4 associated with both PVY population sizes map closely to the major resistance gene pvr2 encoding the eukaryotic initiation factor 4E. No obvious candidates for resistance were identified in the confidence intervals for the other chromosomes. SNPs detected on chromosomes 6 and 12 colocalized with resistance quantitative trait loci (QTLs) previously identified with a biparental population. These results show the efficiency of GBS and GWAS in C. annuum, indicate highly consistent results between GWAS and classical QTL mapping, and suggest that resistance QTLs identified with a biparental population are representative of a much larger collection of pepper accessions. Moreover, the resistance alleles at these different loci were more frequently combined than expected by chance in the core collection, indicating widespread pyramiding of resistance QTLs and widespread combination of resistance QTLs and major effect genes. Such pyramiding may increase resistance efficiency and/or durability.
Collapse
Affiliation(s)
- Lucie Tamisier
- GAFLINRA84140MontfavetFrance
- Pathologie VégétaleINRA84140MontfavetFrance
- Present address:
Plant Pathology LaboratoryTERRA‐Gembloux Agro‐Bio TechUniversity of LiègePassage des Déportés, 25030GemblouxBelgium
| | - Marion Szadkowski
- GAFLINRA84140MontfavetFrance
- Pathologie VégétaleINRA84140MontfavetFrance
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garcia S, Hily JM, Komar V, Gertz C, Demangeat G, Lemaire O, Vigne E. Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes. Viruses 2019; 11:v11121139. [PMID: 31835488 PMCID: PMC6950412 DOI: 10.3390/v11121139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Grapevine fanleaf virus (GFLV) is responsible for a widespread disease in vineyards worldwide. Its genome is composed of two single-stranded positive-sense RNAs, which both show a high genetic diversity. The virus is transmitted from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Grapevines in diseased vineyards are often infected by multiple genetic variants of GFLV but no information is available on the molecular composition of virus variants retained in X. index following nematodes feeding on roots. In this work, aviruliferous X. index were fed on three naturally GFLV-infected grapevines for which the virome was characterized by RNAseq. Six RNA-1 and four RNA-2 molecules were assembled segregating into four and three distinct phylogenetic clades of RNA-1 and RNA-2, respectively. After 19 months of rearing, single and pools of 30 X. index tested positive for GFLV. Additionally, either pooled or single X. index carried multiple variants of the two GFLV genomic RNAs. However, the full viral genetic diversity found in the leaves of infected grapevines was not detected in viruliferous nematodes, indicating a genetic bottleneck. Our results provide new insights into the complexity of GFLV populations and the putative role of X. index as reservoirs of virus diversity.
Collapse
Affiliation(s)
- Shahinez Garcia
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Jean-Michel Hily
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
- Institut Français de la Vigne et du Vin (IFV), 30240 Le Grau-Du-Roi, France
| | - Véronique Komar
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Claude Gertz
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Gérard Demangeat
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Olivier Lemaire
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Emmanuelle Vigne
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
- Correspondence: ; Tel.: +33-389-224-955
| |
Collapse
|
25
|
Montarry J, Bardou-Valette S, Mabon R, Jan PL, Fournet S, Grenier E, Petit EJ. Exploring the causes of small effective population sizes in cyst nematodes using artificial Globodera pallida populations. Proc Biol Sci 2019; 286:20182359. [PMID: 30963865 PMCID: PMC6367184 DOI: 10.1098/rspb.2018.2359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
The effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( Ne), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate Ne in the potato cyst nematode Globodera pallida and to explore the causes of a low Ne/ N ratio in cyst nematodes using artificial populations. Using a temporal analysis of 24 independent populations, the median Ne was 58 individuals (min Ne = 25 and max Ne = 228). Ne is commonly lower than N but in the case of cyst nematodes, the Ne/ N ratio was extremely low. Using artificial populations showed that this low ratio did not result from migration, selection and overlapping generations, but could be explain by the fact that G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low Ne, resulting in a strong intensity of genetic drift, could be important for their control because G. pallida populations will have a low capacity to adapt to changing environments.
Collapse
Affiliation(s)
- Josselin Montarry
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Sylvie Bardou-Valette
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Romain Mabon
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Pierre-Loup Jan
- INRA, Agrocampus-Ouest, UMR985 ESE, Ecology and Ecosystem Health, 35042 Rennes, France
| | - Sylvain Fournet
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Eric Grenier
- INRA, UMR1349 IGEPP, Institute of Genetic Environment and Plant Protection, 35653 Le Rheu, France
| | - Eric J. Petit
- INRA, Agrocampus-Ouest, UMR985 ESE, Ecology and Ecosystem Health, 35042 Rennes, France
| |
Collapse
|
26
|
Rousseau E, Tamisier L, Fabre F, Simon V, Szadkowski M, Bouchez O, Zanchetta C, Girardot G, Mailleret L, Grognard F, Palloix A, Moury B. Impact of genetic drift, selection and accumulation level on virus adaptation to its host plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2575-2589. [PMID: 30074299 PMCID: PMC6638063 DOI: 10.1111/mpp.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The efficiency of plant major resistance genes is limited by the emergence and spread of resistance-breaking mutants. Modulation of the evolutionary forces acting on pathogen populations constitutes a promising way to increase the durability of these genes. We studied the effect of four plant traits affecting these evolutionary forces on the rate of resistance breakdown (RB) by a virus. Two of these traits correspond to virus effective population sizes (Ne ) at either plant inoculation or during infection. The third trait corresponds to differential selection exerted by the plant on the virus population. Finally, the fourth trait corresponds to within-plant virus accumulation (VA). These traits were measured experimentally on Potato virus Y (PVY) inoculated to a set of 84 pepper doubled-haploid lines, all carrying the same pvr23 resistance gene, but having contrasting genetic backgrounds. The lines showed extensive variation for the rate of pvr23 RB by PVY and for the four other traits of interest. A generalized linear model showed that three of these four traits, with the exception of Ne at inoculation, and several pairwise interactions between them had significant effects on RB. RB increased with increasing values of Ne during plant infection or VA. The effect of differential selection was more complex because of a strong interaction with VA. When VA was high, RB increased as the differential selection increased. An opposite relationship between RB and differential selection was observed when VA was low. This study provides a framework to select plants with appropriate virus evolution-related traits to avoid or delay RB.
Collapse
Affiliation(s)
- Elsa Rousseau
- Pathologie VégétaleINRA84140MontfavetFrance
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
- Present address:
IBM Almaden Research CenterSan Jose, CA 95120–6099USA
| | - Lucie Tamisier
- Pathologie VégétaleINRA84140MontfavetFrance
- GAFL, INRA84140MontfavetFrance
- Present address:
Université de Liège, Terra‐Gembloux Agro-Bio Tech, PlantPathology Laboratory, Passage des Déportés2, GemblouxBelgium, 5030
| | | | - Vincent Simon
- Pathologie VégétaleINRA84140MontfavetFrance
- UMR BFPINRA33882Villenave d'OrnonFrance
| | | | - Olivier Bouchez
- INRAGeT‐PlaGe, US 1426, Genotoul, 31326 Castanet‐TolosanFrance
| | | | | | - Ludovic Mailleret
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
- Université Côte d'Azur, INRA, CNRS, ISAFrance
| | - Frederic Grognard
- Université Côte d'Azur, Inria, INRA, CNRS, Sorbonne UniversitéBiocore TeamSophia AntipolisFrance
| | | | | |
Collapse
|
27
|
Population bottlenecks in multicomponent viruses: first forays into the uncharted territory of genome-formula drift. Curr Opin Virol 2018; 33:184-190. [DOI: 10.1016/j.coviro.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
|
28
|
Ngo TTN, Senior AM, Culina A, Santos ESA, Vlak JM, Zwart MP. Quantitative analysis of the dose-response of white spot syndrome virus in shrimp. JOURNAL OF FISH DISEASES 2018; 41:1733-1744. [PMID: 30117593 DOI: 10.1111/jfd.12877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
White spot syndrome virus (WSSV) is an important cause of mortality and economic losses in shrimp farming. Although WSSV-induced mortality is virus dose dependent and WSSV infection does not necessarily lead to mortality, the relationships between virus-particle dose, infection and mortality have not been analysed quantitatively. Here, we explored WSSV dose-response by a combination of experiments, modelling and meta-analysis. We performed dose-response experiments in Penaeus vannamei postlarvae, recorded host mortality and detected WSSV infection. When we fitted infection models to these data, two models-differing in whether they incorporated heterogeneous host susceptibility to the virus or not-were supported for two independent experiments. To determine the generality of these results, we reanalysed published data sets and then performed a meta-analysis. We found that WSSV dose-response kinetics is indeed variable over experiments. We could not clearly identify which specific infection model has the most support by meta-analysis, but we argue that these results also are most concordant with a model incorporating varying levels of heterogeneous host susceptibility to WSSV. We have identified suitable models for analysing WSSV dose-response, which can elucidate the most basic virus-host interactions and help to avoid underestimating WSSV infection at low virus doses.
Collapse
Affiliation(s)
- Thuy T N Ngo
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Research Institute for Aquaculture No. 2, The Ministry of Agriculture and Rural Development, Ho Chi Minh City, Vietnam
| | - Alistair M Senior
- Charles Perkins Centre, and School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Antica Culina
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Eduardo S A Santos
- BECO do Departamento de Zoologia, Universidade de São Paulo, São Paulo, Brazil
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Mark P Zwart
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
29
|
Lumby CK, Nene NR, Illingworth CJR. A novel framework for inferring parameters of transmission from viral sequence data. PLoS Genet 2018; 14:e1007718. [PMID: 30325921 PMCID: PMC6203404 DOI: 10.1371/journal.pgen.1007718] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have used genome sequence data to evaluate the number of particles transmitted between hosts, and the role of selection as it operates during the transmission process. However, the interpretation of sequence data describing transmission events is a challenging task. We here present a novel and comprehensive framework for using short-read sequence data to understand viral transmission events, designed for influenza virus, but adaptable to other viral species. Our approach solves multiple shortcomings of previous methods for this purpose; for example, we consider transmission as an event involving whole viruses, rather than sets of independent alleles. We demonstrate how selection during transmission and noisy sequence data may each affect naive inferences of the population bottleneck, accounting for these in our framework so as to achieve a correct inference. We identify circumstances in which selection for increased viral transmission may or may not be identified from data. Applying our method to experimental data in which transmission occurs in the presence of strong selection, we show that our framework grants a more quantitative insight into transmission events than previous approaches, inferring the bottleneck in a manner that accounts for selection, both for within-host virulence, and for inherent viral transmissibility. Our work provides new opportunities for studying transmission processes in influenza, and by extension, in other infectious diseases.
Collapse
Affiliation(s)
- Casper K. Lumby
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R. Nene
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Abstract
The study of tobacco mosaic virus and other tobamovirus species has greatly contributed to the development of all areas of virology, including virus evolution. Research with tobamoviruses has been pioneer, or particularly significant, in all major areas of research in this field, including: the characterization of the genetic diversity of virus populations, the mechanisms and rates of generation of genetic diversity, the analysis of the genetic structure of virus populations and of the factors that shape it, the adaptation of viruses to hosts and the evolution of host range, and the evolution of virus taxa and of virus-host interactions. Many of these continue to be hot topics in evolutionary biology, or have been identified recently as such, including (i) host-range evolution, (ii) predicting the overcoming of resistance in crops, (iii) trade-offs between virus life-history traits in virus evolution, and (iv) the codivergence of viruses and hosts at different taxonomical and spatial scales. Tobamoviruses may be particularly appropriate to address these topics with plant viruses, as they provide convenient experimental systems, and as the detailed knowledge on their molecular and structural biology allows the analysis of the mechanisms behind evolutionary processes. Also, the extensive information on parameters related to infection dynamics and population structure may facilitate the development of realistic models to predict virus evolution. Certainly, tobamoviruses will continue to be favorite system for the study of virus evolution.
Collapse
Affiliation(s)
- Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I., Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
31
|
Gignoux-Wolfsohn SA, Aronson FM, Vollmer SV. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral. FEMS Microbiol Ecol 2017. [PMID: 28637338 DOI: 10.1093/femsec/fix080] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and decreasing over time only in corals that displayed disease signs, suggesting a role in disease resistance. We grouped disease-associated bacteria by when they increased in abundance (primary vs secondary) and whether they originated in the dose (colonizers) or the previously healthy corals (responders). We found that all primary responders increased in all dosed corals regardless of final disease state and are therefore unlikely to cause disease signs. In contrast, primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in the development of disease signs. Moving away from a static comparison of diseased and healthy bacterial communities, we provide a framework to identify key players in other coral diseases.
Collapse
Affiliation(s)
- Sarah A Gignoux-Wolfsohn
- Department of Ecology, Evolution, & Natural Resources School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA
| | - Felicia M Aronson
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Steven V Vollmer
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
32
|
Rousseau E, Moury B, Mailleret L, Senoussi R, Palloix A, Simon V, Valière S, Grognard F, Fabre F. Estimating virus effective population size and selection without neutral markers. PLoS Pathog 2017; 13:e1006702. [PMID: 29155894 PMCID: PMC5720836 DOI: 10.1371/journal.ppat.1006702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/07/2017] [Accepted: 10/19/2017] [Indexed: 12/04/2022] Open
Abstract
By combining high-throughput sequencing (HTS) with experimental evolution, we can observe the within-host dynamics of pathogen variants of biomedical or ecological interest. We studied the evolutionary dynamics of five variants of Potato virus Y (PVY) in 15 doubled-haploid lines of pepper. All plants were inoculated with the same mixture of virus variants and variant frequencies were determined by HTS in eight plants of each pepper line at each of six sampling dates. We developed a method for estimating the intensities of selection and genetic drift in a multi-allelic Wright-Fisher model, applicable whether these forces are strong or weak, and in the absence of neutral markers. This method requires variant frequency determination at several time points, in independent hosts. The parameters are the selection coefficients for each PVY variant and four effective population sizes Ne at different time-points of the experiment. Numerical simulations of asexual haploid Wright-Fisher populations subjected to contrasting genetic drift (Ne ∈ [10, 2000]) and selection (|s| ∈ [0, 0.15]) regimes were used to validate the method proposed. The experiment in closely related pepper host genotypes revealed that viruses experienced a considerable diversity of selection and genetic drift regimes. The resulting variant dynamics were accurately described by Wright-Fisher models. The fitness ranks of the variants were almost identical between host genotypes. By contrast, the dynamics of Ne were highly variable, although a bottleneck was often identified during the systemic movement of the virus. We demonstrated that, for a fixed initial PVY population, virus effective population size is a heritable trait in plants. These findings pave the way for the breeding of plant varieties exposing viruses to stronger genetic drift, thereby slowing virus adaptation. A growing number of experimental evolution studies are using an “evolve-and-resequence” approach to observe the within-host dynamics of pathogen variants of biomedical or ecological interest. The resulting data are particularly appropriate for studying the effects of evolutionary forces, such as selection and genetic drift, on the emergence of new pathogen variants. However, it remains challenging to unravel the effects of selection and genetic drift in the absence of neutral markers, a situation frequently encountered for microbes, such as viruses, due to their small constrained genomes. Using such an approach on a plant virus, we observed that the same set of virus variants displayed highly diverse dynamics in closely related plant genotypes. We developed and validated a method that does not require neutral markers, for estimating selection coefficients and effective population sizes from these experimental evolution data. We found that the viruses experienced considerable diversity in genetic drift regimes, depending on host genotype. Importantly, genetic drift experienced by virus populations was shown to be a heritable plant trait. These findings pave the way for the breeding of plant varieties exposing viruses to strong genetic drift, thereby slowing virus adaptation.
Collapse
Affiliation(s)
- Elsa Rousseau
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
- Pathologie Végétale, INRA, 84140 Montfavet, France
- * E-mail: (ER); (FF)
| | - Benoît Moury
- Pathologie Végétale, INRA, 84140 Montfavet, France
| | - Ludovic Mailleret
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
- Université Côte d’Azur, INRA, CNRS, ISA, Sophia Antipolis, France
| | | | | | - Vincent Simon
- Pathologie Végétale, INRA, 84140 Montfavet, France
- UMR BFP, INRA, Villenave d’Ornon, France
| | - Sophie Valière
- GeT-PlaGe, INRA, Genotoul, Castanet-tolosan, France
- UAR DEPT GA, INRA, Castanet-Tolosan, France
| | - Frédéric Grognard
- Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore team, Sophia Antipolis, France
| | - Frédéric Fabre
- UMR SAVE, INRA, Villenave d’Ornon, France
- * E-mail: (ER); (FF)
| |
Collapse
|
33
|
Genetic bottlenecks in intraspecies virus transmission. Curr Opin Virol 2017; 28:20-25. [PMID: 29107838 DOI: 10.1016/j.coviro.2017.10.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Ultimately, viral evolution is a consequence of mutations that arise within and spread between infected hosts. The transmission bottleneck determines how much of the viral diversity generated in one host passes to another during transmission. It therefore plays a vital role in linking within-host processes to larger evolutionary trends. Although many studies suggest that transmission severely restricts the amount of genetic diversity that passes between individuals, there are important exceptions to this rule. In many cases, the factors that determine the size of the transmission bottleneck are only beginning to be understood. Here, we review how transmission bottlenecks are measured, how they arise, and their consequences for viral evolution.
Collapse
|
34
|
Sobel Leonard A, Weissman DB, Greenbaum B, Ghedin E, Koelle K. Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus. J Virol 2017; 91:e00171-17. [PMID: 28468874 PMCID: PMC5487570 DOI: 10.1128/jvi.00171-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
The bottleneck governing infectious disease transmission describes the size of the pathogen population transferred from the donor to the recipient host. Accurate quantification of the bottleneck size is particularly important for rapidly evolving pathogens such as influenza virus, as narrow bottlenecks reduce the amount of transferred viral genetic diversity and, thus, may decrease the rate of viral adaptation. Previous studies have estimated bottleneck sizes governing viral transmission by using statistical analyses of variants identified in pathogen sequencing data. These analyses, however, did not account for variant calling thresholds and stochastic viral replication dynamics within recipient hosts. Because these factors can skew bottleneck size estimates, we introduce a new method for inferring bottleneck sizes that accounts for these factors. Through the use of a simulated data set, we first show that our method, based on beta-binomial sampling, accurately recovers transmission bottleneck sizes, whereas other methods fail to do so. We then apply our method to a data set of influenza A virus (IAV) infections for which viral deep-sequencing data from transmission pairs are available. We find that the IAV transmission bottleneck size estimates in this study are highly variable across transmission pairs, while the mean bottleneck size of 196 virions is consistent with a previous estimate for this data set. Furthermore, regression analysis shows a positive association between estimated bottleneck size and donor infection severity, as measured by temperature. These results support findings from experimental transmission studies showing that bottleneck sizes across transmission events can be variable and influenced in part by epidemiological factors.IMPORTANCE The transmission bottleneck size describes the size of the pathogen population transferred from the donor to the recipient host and may affect the rate of pathogen adaptation within host populations. Recent advances in sequencing technology have enabled bottleneck size estimation from pathogen genetic data, although there is not yet a consistency in the statistical methods used. Here, we introduce a new approach to infer the bottleneck size that accounts for variant identification protocols and noise during pathogen replication. We show that failing to account for these factors leads to an underestimation of bottleneck sizes. We apply this method to an existing data set of human influenza virus infections, showing that transmission is governed by a loose, but highly variable, transmission bottleneck whose size is positively associated with the severity of infection of the donor. Beyond advancing our understanding of influenza virus transmission, we hope that this work will provide a standardized statistical approach for bottleneck size estimation for viral pathogens.
Collapse
Affiliation(s)
| | | | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and College of Global Public Health, New York University, New York, New York, USA
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
35
|
Tamisier L, Rousseau E, Barraillé S, Nemouchi G, Szadkowski M, Mailleret L, Grognard F, Fabre F, Moury B, Palloix A. Quantitative trait loci in pepper control the effective population size of two RNA viruses at inoculation. J Gen Virol 2017; 98:1923-1931. [PMID: 28691663 DOI: 10.1099/jgv.0.000835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Infection of plants by viruses is a complex process involving several steps: inoculation into plant cells, replication in inoculated cells and plant colonization. The success of the different steps depends, in part, on the viral effective population size (Ne), defined as the number of individuals passing their genes to the next generation. During infection, the virus population will undergo bottlenecks, leading to drastic reductions in Ne and, potentially, to the loss of the fittest variants. Therefore, it is crucial to better understand how plants affect Ne. We aimed to (i) identify the plant genetic factors controlling Ne during inoculation, (ii) understand the mechanisms used by the plant to control Ne and (iii) compare these genetic factors with the genes controlling plant resistance to viruses. Ne was measured in a doubled-haploid population of Capsicum annuum. Plants were inoculated with either a Potato virus Y (PVY) construct expressing the green fluorescent protein or a necrotic variant of Cucumber mosaic virus (CMV). Newas assessed by counting the number of primary infection foci on cotyledons for PVY or the number of necrotic local lesions on leaves for CMV. The number of foci and lesions was correlated (r=0.57) and showed a high heritability (h2=0.93 for PVY and h2=0.98 for CMV). The Ne of the two viruses was controlled by both common quantitative trait loci (QTLs) and virus-specific QTLs, indicating the contribution of general and specific mechanisms. The PVY-specific QTL colocalizes with a QTL that reduces PVY accumulation and the capacity to break down a major-effect resistance gene.
Collapse
Affiliation(s)
- Lucie Tamisier
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France.,INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Elsa Rousseau
- INRIA, Biocore Team, F-06902 Sophia Antipolis, France.,INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France.,INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Sebastien Barraillé
- INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Ghislaine Nemouchi
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Marion Szadkowski
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Ludovic Mailleret
- INRIA, Biocore Team, F-06902 Sophia Antipolis, France.,INRA, Université Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Frederic Fabre
- INRA, UMR 1065 Santé et Agroécologie du Vignoble, BP 81, 33883 Villenave d'Ornon cedex, France
| | - Benoit Moury
- INRA, UR407 PV, Unité de Pathologie Végétale, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| | - Alain Palloix
- INRA, UR1052 GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, Domaine St Maurice - 67 Allée des Chênes, CS 60094, F-84143 Montfavet Cedex, France
| |
Collapse
|
36
|
Willemsen A, Zwart MP, Elena SF. High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus. BMC Evol Biol 2017; 17:25. [PMID: 28103791 PMCID: PMC5248479 DOI: 10.1186/s12862-017-0881-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Theory suggests that high virulence could hinder between-host transmission of microparasites, and that virulence therefore will evolve to lower levels. Alternatively, highly virulent microparasites could also curtail host development, thereby limiting both the host resources available to them and their own within-host effective population size. In this case, high virulence might restrain the mutation supply rate and increase the strength with which genetic drift acts on microparasite populations. Thereby, this alternative explanation limits the microparasites' potential to adapt to the host and ultimately the ability to evolve lower virulence. As a first exploration of this hypothesis, we evolved Tobacco etch virus carrying an eGFP fluorescent marker in two semi-permissive host species, Nicotiana benthamiana and Datura stramonium, for which it has a large difference in virulence. We compared the results to those previously obtained in the natural host, Nicotiana tabacum, where we have shown that carriage of eGFP has a high fitness cost and its loss serves as a real-time indicator of adaptation. RESULTS After over half a year of evolution, we sequenced the genomes of the evolved lineages and measured their fitness. During the evolution experiment, marker loss leading to viable virus variants was only observed in one lineage of the host for which the virus has low virulence, D. stramonium. This result was consistent with the observation that there was a fitness cost of eGFP in this host, while surprisingly no fitness cost was observed in the host for which the virus has high virulence, N. benthamiana. Furthermore, in both hosts we observed increases in viral fitness in few lineages, and host-specific convergent evolution at the genomic level was only found in N. benthamiana. CONCLUSIONS The results of this study do not lend support to the hypothesis that high virulence impedes microparasites' evolution. Rather, they exemplify that jumps between host species can be game changers for evolutionary dynamics. When considering the evolution of genome architecture, host species jumps might play a very important role, by allowing evolutionary intermediates to be competitive.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Cedex 5 Montpellier, France
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- Present address: Institute of Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 USA
| |
Collapse
|
37
|
Zwart MP, Elena SF. Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annu Rev Virol 2016; 2:161-79. [PMID: 26958911 DOI: 10.1146/annurev-virology-100114-055135] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For virus infections of multicellular hosts, narrow genetic bottlenecks during transmission and within-host spread appear to be widespread. These bottlenecks will affect the maintenance of genetic variation in a virus population and the prevalence of mixed-strain infections, thereby ultimately determining the strength with which different random forces act during evolution. Here we consider different approaches for estimating bottleneck sizes and weigh their merits. We then review quantitative estimates of bottleneck size during cellular infection, within-host spread, horizontal transmission, and finally vertical transmission. In most cases we find that bottlenecks do regularly occur, although in many cases they appear to be virion-concentration dependent. Finally, we consider the evolutionary implications of genetic bottlenecks during virus infection. Although on average strong bottlenecks will lead to declines in fitness, we consider a number of scenarios in which bottlenecks could also be advantageous for viruses.
Collapse
Affiliation(s)
- Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,Institute of Theoretical Physics, University of Cologne, 50937 Cologne, Germany;
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politècnica de València, 46022 València, Spain; .,The Santa Fe Institute, Santa Fe, New Mexico 87501
| |
Collapse
|
38
|
Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF. Predicting the Stability of Homologous Gene Duplications in a Plant RNA Virus. Genome Biol Evol 2016; 8:3065-3082. [PMID: 27604880 PMCID: PMC5633665 DOI: 10.1093/gbe/evw219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 01/03/2023] Open
Abstract
One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes, particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a significant reduction in viral fitness. Moreover, upon analyzing the genomes of the evolved viruses, we always observed the deletion of the duplicated gene copy and maintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the experimental data, we developed a mathematical model to characterize the stability of genetically redundant sequences, and showed that fitness effects are not enough to predict genomic stability. A context-dependent recombination rate is also required, with the context being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene duplications in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the likelihood of the maintenance of duplicated genes.
Collapse
Affiliation(s)
- Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center for Scientific Research (CNRS), 911 Avenue Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Present address: Institute of Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Pablo Higueras
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain
| | - Josep Sardanyés
- ICREA Complex Systems Laboratory, Universitat Pompeu Fabra, Barcelona, Spain Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Universitat Pompeu Fabra), Barcelona, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, València, Spain Instituto de Biología Integrativa y de Sistems (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de València, Parc Científic de la Universitat de València, Paterna, València, Spain The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
39
|
Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host-parasite coevolution: why changing population size matters. ZOOLOGY 2016; 119:330-8. [PMID: 27161157 DOI: 10.1016/j.zool.2016.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 02/10/2016] [Indexed: 01/08/2023]
Abstract
Host-parasite coevolution is widely assumed to have a major influence on biological evolution, especially as these interactions impose high selective pressure on the reciprocally interacting antagonists. The exact nature of the underlying dynamics is yet under debate and may be determined by recurrent selective sweeps (i.e., arms race dynamics), negative frequency-dependent selection (i.e., Red Queen dynamics), or a combination thereof. These interactions are often associated with reciprocally induced changes in population size, which, in turn, should have a strong impact on co-adaptation processes, yet are neglected in most current work on the topic. Here, we discuss potential consequences of temporal variations in population size on host-parasite coevolution. The limited empirical data available and the current theoretical literature in this field highlight that the consideration of such interaction-dependent population size changes is likely key for the full understanding of the coevolutionary dynamics, and, thus, a more realistic view on the complex nature of species interactions.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany
| | - Chaitanya S Gokhale
- New Zealand Institute for Advanced Study, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, 24098, Kiel, Germany.
| |
Collapse
|
40
|
Multiple Barriers to the Evolution of Alternative Gene Orders in a Positive-Strand RNA Virus. Genetics 2016; 202:1503-21. [PMID: 26868766 DOI: 10.1534/genetics.115.185017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/07/2016] [Indexed: 01/06/2023] Open
Abstract
The order in which genes are organized within a genome is generally not conserved between distantly related species. However, within virus orders and families, strong conservation of gene order is observed. The factors that constrain or promote gene-order diversity are largely unknown, although the regulation of gene expression is one important constraint for viruses. Here we investigate why gene order is conserved for a positive-strand RNA virus encoding a single polyprotein in the context of its authentic multicellular host. Initially, we identified the most plausible trajectory by which alternative gene orders could evolve. Subsequently, we studied the accessibility of key steps along this evolutionary trajectory by constructing two virus intermediates: (1) duplication of a gene followed by (2) loss of the ancestral gene. We identified five barriers to the evolution of alternative gene orders. First, the number of viable positions for reordering is limited. Second, the within-host fitness of viruses with gene duplications is low compared to the wild-type virus. Third, after duplication, the ancestral gene copy is always maintained and never the duplicated one. Fourth, viruses with an alternative gene order have even lower fitness than viruses with gene duplications. Fifth, after more than half a year of evolution in isolation, viruses with an alternative gene order are still vastly inferior to the wild-type virus. Our results show that all steps along plausible evolutionary trajectories to alternative gene orders are highly unlikely. Hence, the inaccessibility of these trajectories probably contributes to the conservation of gene order in present-day viruses.
Collapse
|
41
|
McKenney DG, Kurath G, Wargo AR. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV). Virus Res 2016; 214:80-9. [PMID: 26752429 DOI: 10.1016/j.virusres.2015.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 11/24/2022]
Abstract
The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50 values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.
Collapse
Affiliation(s)
- Douglas G McKenney
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115, United States.
| | - Gael Kurath
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St., Seattle, WA 98115, United States.
| | - Andrew R Wargo
- Virginia Institute of Marine Science, 1375 Greate Rd., Gloucester Point, VA 23062, United States.
| |
Collapse
|
42
|
Tollenaere C, Susi H, Laine AL. Evolutionary and Epidemiological Implications of Multiple Infection in Plants. TRENDS IN PLANT SCIENCE 2016; 21:80-90. [PMID: 26651920 DOI: 10.1016/j.tplants.2015.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 05/04/2023]
Abstract
Recent methodological advances have uncovered tremendous microbial diversity cohabiting in the same host plant, and many of these microbes cause disease. In this review we highlight how the presence of other pathogen species, or other pathogen genotypes, within a plant can affect key components of host-pathogen interactions: (i) within-plant virulence and pathogen accumulation, through direct and host-mediated mechanisms; (ii) evolutionary trajectories of pathogen populations, through virulence evolution, generation of novel genetic combinations, and maintenance of genetic diversity; and (iii) disease dynamics, with multiple infection likely to render epidemics more devastating. The major future challenges are to couple a community ecology approach with a molecular investigation of the mechanisms operating under coinfection and to evaluate the evolution and effectiveness of resistance within a coinfection framework.
Collapse
Affiliation(s)
- Charlotte Tollenaere
- Interactions Plantes-Microorganismes et Environnement (IPME), Institut de Recherches pour le Développement (IRD) - Cirad - Université de Montpellier, 34394 Montpellier, France; Laboratoire Mixte International Patho-Bios, IRD-INERA (Institut de l'Environnement et de Recherches Agricoles), BP171, Bobo-Dioulasso, Burkina Faso
| | - Hanna Susi
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Helsinki, Finland
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, PO Box 65 (Viikinkaari 1), FI-00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
43
|
Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus. Sci Rep 2015; 5:15346. [PMID: 26481091 PMCID: PMC4612314 DOI: 10.1038/srep15346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 01/19/2023] Open
Abstract
Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.
Collapse
|
44
|
Gignoux-Wolfsohn SA, Vollmer SV. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral. PLoS One 2015; 10:e0134416. [PMID: 26241853 PMCID: PMC4524643 DOI: 10.1371/journal.pone.0134416] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023] Open
Abstract
Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.
Collapse
Affiliation(s)
- Sarah A. Gignoux-Wolfsohn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
- * E-mail:
| | - Steven V. Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
45
|
Cuevas JM, Willemsen A, Hillung J, Zwart MP, Elena SF. Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Mol Biol Evol 2015; 32:1132-47. [PMID: 25660377 DOI: 10.1093/molbev/msv028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Populations of plant RNA viruses are highly polymorphic in infected plants, which may allow rapid within-host evolution. To understand tobacco etch potyvirus (TEV) evolution, longitudinal samples from experimentally evolved populations in the natural host tobacco and from the alternative host pepper were phenotypically characterized and genetically analyzed. Temporal and compartmental variabilities of TEV populations were quantified using high throughput Illumina sequencing and population genetic approaches. Of the two viral phenotypic traits measured, virulence increased in the novel host but decreased in the original one, and viral load decreased in both hosts, though to a lesser extent in the novel one. Dynamics of population genetic diversity were also markedly different among hosts. Population heterozygosity increased in the ancestral host, with a dominance of synonymous mutations fixed, whereas it did not change or even decreased in the new host, with an excess of nonsynonymous mutations. All together, these observations suggest that directional selection is the dominant evolutionary force in TEV populations evolving in a novel host whereas either diversifying selection or random genetic drift may play a fundamental role in the natural host. To better understand these evolutionary dynamics, we developed a computer simulation model that incorporates the effects of mutation, selection, and drift. Upon parameterization with empirical data from previous studies, model predictions matched the observed patterns, thus reinforcing our idea that the empirical patterns of mutation accumulation represent adaptive evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Julia Hillung
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, València, Spain The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
46
|
Cornforth DM, Matthews A, Brown SP, Raymond B. Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis. PLoS Pathog 2015; 11:e1004775. [PMID: 25909384 PMCID: PMC4409216 DOI: 10.1371/journal.ppat.1004775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
The Independent Action Hypothesis (IAH) states that pathogenic individuals (cells, spores, virus particles etc.) behave independently of each other, so that each has an independent probability of causing systemic infection or death. The IAH is not just of basic scientific interest; it forms the basis of our current estimates of infectious disease risk in humans. Despite the important role of the IAH in managing disease interventions for food and water-borne pathogens, experimental support for the IAH in bacterial pathogens is indirect at best. Moreover since the IAH was first proposed, cooperative behaviors have been discovered in a wide range of microorganisms, including many pathogens. A fundamental principle of cooperation is that the fitness of individuals is affected by the presence and behaviors of others, which is contrary to the assumption of independent action. In this paper, we test the IAH in Bacillus thuringiensis (B.t), a widely occurring insect pathogen that releases toxins that benefit others in the inoculum, infecting the diamondback moth, Plutella xylostella. By experimentally separating B.t. spores from their toxins, we demonstrate that the IAH fails because there is an interaction between toxin and spore effects on mortality, where the toxin effect is synergistic and cannot be accommodated by independence assumptions. Finally, we show that applying recommended IAH dose-response models to high dose data leads to systematic overestimation of mortality risks at low doses, due to the presence of synergistic pathogen interactions. Our results show that cooperative secretions can easily invalidate the IAH, and that such mechanistic details should be incorporated into pathogen risk analysis.
Collapse
Affiliation(s)
- Daniel M. Cornforth
- Department of Molecular Biosciences, The University of Texas, Austin, Austin, Texas, United States of America
- * E-mail: (DMC); (BR)
| | - Andrew Matthews
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Sam P. Brown
- Centre for Immunity, Infection and Immunity, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben Raymond
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
- * E-mail: (DMC); (BR)
| |
Collapse
|
47
|
Taylor MP, Enquist LW. Axonal spread of neuroinvasive viral infections. Trends Microbiol 2015; 23:283-8. [PMID: 25639651 DOI: 10.1016/j.tim.2015.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/05/2023]
Abstract
Neuroinvasive viral infections invade the nervous system, often eliciting serious disease and death. Members of four viral families are both neuroinvasive and capable of transmitting progeny virions or virion components within the long neuronal extensions known as axons. Axons provide physical structures that enable viral infection to spread within the host while avoiding extracellular immune responses. Technological advances in the analysis of in vivo neural circuits, neuronal culturing, and live imaging of fluorescent fusion proteins have enabled an unprecedented view into the steps of virion assembly, transport, and egress involved in axonal spread. In this review we summarize the literature supporting anterograde (axon to cell) spread of viral infection, describe the various strategies of virion transport, and discuss the effects of spread on populations of neuroinvasive viruses.
Collapse
Affiliation(s)
- Matthew P Taylor
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718, USA.
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
48
|
Zwart MP, Elena SF. Testing the independent action hypothesis of plant pathogen mode of action: a simple and powerful new approach. PHYTOPATHOLOGY 2015; 105:18-25. [PMID: 25098495 DOI: 10.1094/phyto-04-14-0111-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The independent action hypothesis is a simple model of pathogen infection that can make many useful predictions on infection kinetics and, therefore, a number of different tests of independent action have been developed. However, some of these analyses are rather sophisticated, limiting their appeal to experimentalists, and it is also unclear how well the different tests perform. Here, we developed and evaluated a simple and robust new test of independent action. Our new test is based on using a constant inoculum dose of one pathogen variant, varying the dose of a second variant, and then quantifying the infection response for the first variant. We simulated infection data in which we introduced deviations from independent action, experimental variation, or both. Simulations showed that our new procedure has many advantages over the existing tests of independent action, especially if only systemic-infection data are available. We also performed experimental tests of our new procedure using two marked Tobacco etch virus (TEV) variants. We found minor deviations from the independent action model, which were not detected by previous tests using existing methods, exemplifying the utility of this approach. We discuss the implications for TEV infection kinetics and consider how to reconcile different dose-dependent effects.
Collapse
|
49
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
50
|
Calvo M, Martínez-Turiño S, García JA. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1291-301. [PMID: 25296116 DOI: 10.1094/mpmi-05-14-0130-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.
Collapse
|