1
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
2
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
3
|
Khattab A, Rezola M, Barroso M, Kyrklund M, Pihlajamaa T, Freitag TL, van Gemert GJ, Bousema T, Permi P, Turunen O, Sauerwein R, Luty AJF, Meri S. Hijacking the human complement inhibitor C4b-binding protein by the sporozoite stage of the Plasmodium falciparum parasite. Front Immunol 2022; 13:1051161. [PMID: 36479121 PMCID: PMC9720182 DOI: 10.3389/fimmu.2022.1051161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
The complement system is considered the first line of defense against pathogens. Hijacking complement regulators from blood is a common evasion tactic of pathogens to inhibit complement activation on their surfaces. Here, we report hijacking of the complement C4b-binding protein (C4bp), the regulator of the classical and lectin pathways of complement activation, by the sporozoite (SPZ) stage of the Plasmodium falciparum parasite. This was shown by direct binding of radiolabeled purified C4bp to live SPZs as well as by binding of C4bp from human serum to SPZs in indirect immunofluorescence assays. Using a membrane-bound peptide array, peptides from the N-terminal domain (NTD) of P. falciparum circumsporozoite protein (CSP) were found to bind C4bp. Soluble biotinylated peptide covering the same region on the NTD and a recombinantly expressed NTD also bound C4bp in a dose-dependent manner. NTD-binding site on C4bp was mapped to the CCP1-2 of the C4bp α-chain, a common binding site for many pathogens. Native CSP was also co-immunoprecipitated with C4bp from human serum. Preventing C4bp binding to the SPZ surface negatively affected the SPZs gliding motility in the presence of functional complement and malaria hyperimmune IgG confirming the protective role of C4bp in controlling complement activation through the classical pathway on the SPZ surface. Incorporating the CSP-C4bp binding region into a CSP-based vaccine formulation could induce vaccine-mediated immunity that neutralizes this immune evasion region and increases the vaccine efficacy.
Collapse
Affiliation(s)
- Ayman Khattab
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland,Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt,*Correspondence: Ayman Khattab,
| | - Mikel Rezola
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Marta Barroso
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Mikael Kyrklund
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Tero Pihlajamaa
- Department of Clinical Chemistry, HUSLAB, Helsinki University Hospital, HUS Diagnostic Center, Helsinki, Finland
| | - Tobias L. Freitag
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboudumc, Nijmegen, Netherlands
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ossi Turunen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland,School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland,HUSLAB Diagnostic Center, Helsinki University Central Hospital, Helsinki, Finland,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
4
|
Chauvet M, Chhuon C, Lipecka J, Dechavanne S, Dechavanne C, Lohezic M, Ortalli M, Pineau D, Ribeil JA, Manceau S, Le Van Kim C, Luty AJF, Migot-Nabias F, Azouzi S, Guerrera IC, Merckx A. Sickle Cell Trait Modulates the Proteome and Phosphoproteome of Plasmodium falciparum-Infected Erythrocytes. Front Cell Infect Microbiol 2021; 11:637604. [PMID: 33842387 PMCID: PMC8024585 DOI: 10.3389/fcimb.2021.637604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, β-adducin, β-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.
Collapse
Affiliation(s)
- Margaux Chauvet
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Cerina Chhuon
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Joanna Lipecka
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Sébastien Dechavanne
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Margherita Ortalli
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Damien Pineau
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Antoine Ribeil
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sandra Manceau
- Laboratoire d'Excellence GR-Ex, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Caroline Le Van Kim
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | | | | | - Slim Azouzi
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, Inserm, BIGR, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France
| | - Ida Chiara Guerrera
- Université de Paris, Proteomics Platform Necker, Structure Fédérative de Recherche Necker, Inserm US24/CNRS, UMS3633, Paris, France
| | - Anaïs Merckx
- Université de Paris, MERIT, IRD, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
5
|
Plasmodium vivax rhomboid-like protease 1 gene diversity in Thailand. Exp Parasitol 2017; 181:1-6. [PMID: 28690071 PMCID: PMC9793887 DOI: 10.1016/j.exppara.2017.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Plasmodium vivax infection remains a major public health problem, especially along the Thailand border regions. We examined the genetic diversity of this parasite by analyzing single-nucleotide polymorphisms (SNPs) of the P. vivax rhomboid-like protease 1 gene (Pvrom1) in parasites collected from western (Tak province, Thai-Myanmar border) and eastern (Chanthaburi province, Thai-Cambodia border) regions. METHODS Data were collected by a cross-sectional survey, consisting of 47 and 45 P. vivax-infected filter paper-spotted blood samples from the western and eastern regions of Thailand, respectively during September 2013 to May 2014. Extracted DNA was examined for presence of P. vivax using Plasmodium species-specific nested PCR. Pvrom1 gene was PCR amplified, sequenced and the SNP diversity was analyzed using F-STAT, DnaSP, MEGA and LIAN programs. RESULTS Comparison of sequences of the 92 Pvrom1 831-base open reading frames with that of a reference sequence (GenBank acc. no. XM001615211) revealed 17 samples with a total of 8 polymorphic sites, consisting of singleton (exon 3, nt 645) and parsimony informative (exon 1, nt 22 and 39; exon 3, nt 336, 537 and 656; and exon 4, nt 719 and 748) sites, which resulted in six different deduced Pvrom1 variants. Non-synonymous to synonymous substitutions ratio estimated by the DnaSP program was 1.65 indicating positive selection, but the Z-tests of selection showed no significant deviations from neutrality for Pvrom1 samples from western region of Thailand. In addition McDonald Kreitman test (MK) showed not significant, and Fst values are not different between the two regions and the regions combined. Interestingly, only Pvrom1 exon 2 was the most conserved sequences among the four exons. CONCLUSIONS The relatively high degree of Pvrom1 polymorphism suggests that the protein is important for parasite survival in face of changes in both insect vector and human populations. These polymorphisms could serve as a sensitive marker for studying plasmodial genetic diversity. The significance of Pvrom1 conserved exon 2 sequence remains to be investigated.
Collapse
|
6
|
Deu E. Proteases as antimalarial targets: strategies for genetic, chemical, and therapeutic validation. FEBS J 2017; 284:2604-2628. [PMID: 28599096 PMCID: PMC5575534 DOI: 10.1111/febs.14130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/29/2017] [Accepted: 06/06/2017] [Indexed: 01/17/2023]
Abstract
Malaria is a devastating parasitic disease affecting half of the world's population. The rapid emergence of resistance against new antimalarial drugs, including artemisinin-based therapies, has made the development of drugs with novel mechanisms of action extremely urgent. Proteases are enzymes proven to be well suited for target-based drug development due to our knowledge of their enzymatic mechanisms and active site structures. More importantly, Plasmodium proteases have been shown to be involved in a variety of pathways that are essential for parasite survival. However, pharmacological rather than target-based approaches have dominated the field of antimalarial drug development, in part due to the challenge of robustly validating Plasmodium targets at the genetic level. Fortunately, over the last few years there has been significant progress in the development of efficient genetic methods to modify the parasite, including several conditional approaches. This progress is finally allowing us not only to validate essential genes genetically, but also to study their molecular functions. In this review, I present our current understanding of the biological role proteases play in the malaria parasite life cycle. I also discuss how the recent advances in Plasmodium genetics, the improvement of protease-oriented chemical biology approaches, and the development of malaria-focused pharmacological assays, can be combined to achieve a robust biological, chemical and therapeutic validation of Plasmodium proteases as viable drug targets.
Collapse
Affiliation(s)
- Edgar Deu
- Chemical Biology Approaches to Malaria LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
7
|
Verhelst SHL. Intramembrane proteases as drug targets. FEBS J 2017; 284:1489-1502. [PMID: 27889944 DOI: 10.1111/febs.13979] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Proteases are considered attractive drug targets. Various drugs targeting classical, soluble proteases have been approved for treatment of human disease. Intramembrane proteases (IMPs) are a more recently discovered group of proteolytic enzymes. They are embedded in lipid bilayers and their active sites are located in the plane of a membrane. All four mechanistic families of IMPs have been linked to disease, but currently, no drugs against IMPs have entered the market. In this review, I will outline the function of IMPs with a focus on the ones involved in human disease, which includes Alzheimer's disease, cancer, and infectious diseases by microorganisms. Inhibitors of IMPs are known for all mechanistic classes, but are not yet very potent or selective - aside from those targeting γ-secretase. I will here describe the different features of IMP inhibitors and discuss a list of issues that need attention in the near future in order to improve the drug development for IMPs.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| |
Collapse
|
8
|
Li M, Zhang X, Gong P, Li J. Cryptosporidium parvum rhomboid1 has an activity in microneme protein CpGP900 cleavage. Parasit Vectors 2016; 9:438. [PMID: 27502595 PMCID: PMC4977710 DOI: 10.1186/s13071-016-1728-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
Background Apicomplexan parasites actively release transmembrane (TM) adhesive proteins involved in host cell attachment and invasion. Rhomboids, a family of intramembrane serine proteases, cleave these secreted adhesive proteins within their TM domains as an essential step in completing the invasion process. In Cryptosporidium parvum, the activity of rhomboids in cleaving microneme proteins (MICs) has not been reported. In the present study, the interaction between C. parvum rhomboids (CpROM1 and CpROM4) and C. parvum microneme proteins (CpGP900 and CpTRAP-C1) was investigated using yeast two-hybrid assay and co-immunoprecipitation assays. Results Our study demonstrated that CpROM1 protein could interact with CpGP900 protein in co-transformed AH109 yeasts. Analysis of these proteins in co-transfected mammalian cells showed that the cleavage product of the CpGP900 protein was detected in the co-transfected cells. As control, CpGP900 only was transfected into cells and no cleavage was observed. The results suggested that CpGP900 protein was the substrate of CpROM1. Moreover, CpROM1 and CpROM4 could not cleave CpTRAP-C1 protein, which is the substrate of T. gondii rhomboid 2. Conclusions Our results showed that CpROM1 is an active protease that is involved in microneme protein CpGP900 cleavage, which lay the foundation for further research on the mechanisms of C. parvum invasion.
Collapse
Affiliation(s)
- Mingying Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
9
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Riestra AM, Gandhi S, Sweredoski MJ, Moradian A, Hess S, Urban S, Johnson PJ. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells. PLoS Pathog 2015; 11:e1005294. [PMID: 26684303 PMCID: PMC4684317 DOI: 10.1371/journal.ppat.1005294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/31/2015] [Indexed: 12/28/2022] Open
Abstract
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. Trichomonas vaginalis, a common pathogen with a worldwide distribution, causes a sexually transmitted infection and exacerbates other diseases. Estimated to infect over a million people annually in the United States alone, the Center for Disease Control and Prevention categorized trichomoniasis as one of five neglected parasitic diseases in the US in 2014. Only one class of drug is available to treat T. vaginalis infection, making discovery of parasite factors contributing to host colonization critical for the development of new therapeutics. Here we report the first characterization of T. vaginalis intramembrane rhomboid proteases. One protease, TvROM1, is shown to increase the parasite’s association with and destruction of host cells. We further identified two TvROM1 substrates, one of which we demonstrate is involved in modulating host: parasite interactions. This study highlights the involvement of rhomboid proteases in T. vaginalis pathogenic processes, and provides further support for targeting parasite surface proteases for therapeutic intervention.
Collapse
Affiliation(s)
- Angelica M. Riestra
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shiv Gandhi
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Michael J. Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Baumeister S, Gangopadhyay P, Repnik U, Lingelbach K. Novel insights into red blood cell physiology using parasites as tools. Eur J Cell Biol 2015; 94:332-9. [DOI: 10.1016/j.ejcb.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Kumar S, Kumari R, Pandey R. New insight-guided approaches to detect, cure, prevent and eliminate malaria. PROTOPLASMA 2015; 252:717-53. [PMID: 25323622 DOI: 10.1007/s00709-014-0697-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 09/01/2014] [Indexed: 06/04/2023]
Abstract
New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their scaffold structure several of the desired properties of malaria cure and control are exemplified by OZ439, NITD609, ELQ300 and tafenoquine that are already undergoing clinical trials, and decoquinate, usnic acid, torin-2, ferroquine, WEHI-916, MMV396749 and benzothiophene-type N-myristoyltransferase (NMT) inhibitors, which are candidates for future clinical usage. Among these, NITD609, ELQ300, decoquinate, usnic acid, torin-2 and NMT inhibitors not only cure simple malaria and are prophylactic against simple malaria, but they also cure relapsing malaria.
Collapse
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development (SKAIRED), 4/11 SarvPriya Vihar, New Delhi, 110016, India,
| | | | | |
Collapse
|
13
|
Rastew E, Morf L, Singh U. Entamoeba histolytica rhomboid protease 1 has a role in migration and motility as validated by two independent genetic approaches. Exp Parasitol 2015; 154:33-42. [PMID: 25889553 DOI: 10.1016/j.exppara.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 11/25/2022]
Abstract
Rhomboid proteins represent a recently discovered family of intramembrane proteases present in a broad range of organisms and with increasing links to human diseases. The enteric parasite Entamoeba histolytica has evolved multiple mechanisms to adapt to the human host environment and establish infection. Our recent studies identified EhROM1 as a functional E. histolytica rhomboid protease with roles in adhesion to and phagocytosis of host cells. Since those studies were performed in a non-virulent strain, roles in parasite virulence could not be assessed. We focused this study on the comparison and validation of two genetic manipulation techniques: overexpression of a dominant-negative catalytic mutant of EhROM1 and knock down of EhROM1 using a RNAi-based silencing approach followed by functional studies of phenotypic analyses in virulent parasites. Both the EhROM1 catalytic mutant and parasites with EhROM1 downregulation were reduced in cytotoxicity, hemolytic activity, and directional and non-directional transwell migration. Importantly, the role for EhROM1 in cell migration mimics similar roles for rhomboid proteases from mammalian and apicomplexan systems. However, the EhROM1 catalytic mutant and EhROM1 downregulation parasites had different phenotypes for erythrophagocytosis, while complement resistance was not affected in either strain. In summary, in this study we genetically manipulated E. histolytica rhomboid protease EhROM1 by two different approaches and identified similarly attenuated phenotypes by both approaches, suggesting a novel role for EhROM1 in amebic motility.
Collapse
Affiliation(s)
- Elena Rastew
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Morf
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Upinder Singh
- Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Freeman M. The Rhomboid-Like Superfamily: Molecular Mechanisms and Biological Roles. Annu Rev Cell Dev Biol 2014; 30:235-54. [DOI: 10.1146/annurev-cellbio-100913-012944] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew Freeman
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom;
| |
Collapse
|
15
|
Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets. Interdiscip Perspect Infect Dis 2014; 2014:453186. [PMID: 24799897 PMCID: PMC3988940 DOI: 10.1155/2014/453186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes are found in P. falciparum, of which serine proteases are of particular interest due to their involvement in parasite-specific processes of egress and invasion. In P. falciparum, a number of serine proteases belonging to chymotrypsin, subtilisin, and rhomboid clans are found. This review focuses on the potential of P. falciparum serine proteases as antimalarial drug targets.
Collapse
|
16
|
Sibley LD. The roles of intramembrane proteases in protozoan parasites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2908-15. [PMID: 24099008 DOI: 10.1016/j.bbamem.2013.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
Abstract
Intramembrane proteolysis is widely conserved throughout different forms of life, with three major types of proteases being known for their ability to cleave peptide bonds directly within the transmembrane domains of their substrates. Although intramembrane proteases have been extensively studied in humans and model organisms, they have only more recently been investigated in protozoan parasites, where they turn out to play important and sometimes unexpected roles. Signal peptide peptidases are involved in endoplasmic reticulum (ER) quality control and signal peptide degradation from exported proteins. Recent studies suggest that repurposing inhibitors developed for blocking presenilins may be useful for inhibiting the growth of Plasmodium, and possibly other protozoan parasites, by blocking signal peptide peptidases. Rhomboid proteases, originally described in the fly, are also widespread in parasites, and are especially expanded in apicomplexans. Their study in parasites has revealed novel roles that expand our understanding of how these proteases function. Within this diverse group of parasites, rhomboid proteases contribute to processing of adhesins involved in attachment, invasion, intracellular replication, phagocytosis, and immune evasion, placing them at the vertex of host-parasite interactions. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proc Natl Acad Sci U S A 2013; 110:E2838-47. [PMID: 23836641 DOI: 10.1073/pnas.1306097110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target of rapamycin (mTOR) kinase inhibitors, are fast-acting antiplasmodial compounds that unexpectedly target the parasite directly, blocking the dynamic trafficking of the Plasmodium proteins exported protein 1 (EXP1) and upregulated in sporozoites 4 (UIS4) to the liver stage PVM and leading to efficient parasite elimination by the hepatocyte. Torin2 has single-digit, or lower, nanomolar potency in both liver and blood stages of infection in vitro and is likewise effective against both stages in vivo, with a single oral dose sufficient to clear liver stage infection. Parasite elimination and perturbed trafficking of liver stage PVM-resident proteins are both specific aspects of torin-mediated Plasmodium liver stage inhibition, indicating that torins have a distinct mode of action compared with currently used antimalarials.
Collapse
|
18
|
Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines 2013; 11:1261-80. [PMID: 23176657 DOI: 10.1586/erv.12.92] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-erythrocytic malaria vaccines target Plasmodium during its sporozoite and liver stages, and can prevent progression to blood-stage disease, which causes a million deaths each year. Whole organism sporozoite vaccines induce sterile immunity in animals and humans and guide subunit vaccine development. A recombinant protein-in-adjuvant pre-erythrocytic vaccine called RTS,S reduces clinical malaria without preventing infection in field studies and additional antigens may be required to achieve sterile immunity. Although few vaccine antigens have progressed to human testing, new insights into parasite biology, expression profiles and immunobiology have offered new targets for intervention. Future advances require human trials of additional antigens, as well as platforms to induce the durable antibody and cellular responses including CD8(+) T cells that contribute to sterile protection.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, Division of Intramural Research, NIAID, NIH, Rockville, MD, USA.
| | | | | | | | | |
Collapse
|
19
|
Strisovsky K. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. FEBS J 2013; 280:1579-603. [PMID: 23432912 DOI: 10.1111/febs.12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/18/2013] [Indexed: 02/03/2023]
Abstract
Intramembrane proteases cleave membrane proteins in their transmembrane helices to regulate a wide range of biological processes. They catalyse hydrolytic reactions within the hydrophobic environment of lipid membranes where water is normally excluded. How? Do the different classes of intramembrane proteases share any mechanistic principles? In this review these questions will be discussed in view of the crystal structures of prokaryotic members of the three known catalytic types of intramembrane proteases published over the past 7 years. Rhomboids, the intramembrane serine proteases that are the best understood family, will be the initial area of focus, and the principles that have arisen from a number of structural and biochemical studies will be considered. The site-2 metalloprotease and GXGD-type aspartyl protease structures will then be discussed, with parallels drawn and differences highlighted between these enzymes and the rhomboids. Despite the significant advances achieved so far, to obtain a detailed understanding of the mechanism of any intramembrane protease, high-resolution structural information on the substrate-enzyme complex is required. This remains a major challenge for the field.
Collapse
Affiliation(s)
- Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
20
|
Lin JW, Meireles P, Prudêncio M, Engelmann S, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Nahar C, Avramut CMC, Koster AJ, Matuschewski K, Waters AP, Janse CJ, Mair GR, Khan SM. Loss-of-function analyses defines vital and redundant functions of the Plasmodium rhomboid protease family. Mol Microbiol 2013; 88:318-38. [PMID: 23490234 DOI: 10.1111/mmi.12187] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 11/26/2022]
Abstract
Rhomboid-like proteases cleave membrane-anchored proteins within their transmembrane domains. In apicomplexan parasites substrates include molecules that function in parasite motility and host cell invasion. While two Plasmodium rhomboids, ROM1 and ROM4, have been examined, the roles of the remaining six rhomboids during the malaria parasite's life cycle are unknown. We present systematic gene deletion analyses of all eight Plasmodium rhomboid-like proteins as a means to discover stage-specific phenotypes and potential functions in the rodent malaria model, P. berghei. Four rhomboids (ROM4, 6, 7 and 8) are refractory to gene deletion, suggesting an essential role during asexual blood stage development. In contrast ROM1, 3, 9 and 10 were dispensable for blood stage development and exhibited no, subtle or severe defects in mosquito or liver development. Parasites lacking ROM9 and ROM10 showed no major phenotypic defects. Parasites lacking ROM1 presented a delay in blood stage patency following liver infection, but in contrast to a previous study blood stage parasites had similar growth and virulence characteristics as wild type parasites. Parasites lacking ROM3 in mosquitoes readily established oocysts but failed to produce sporozoites. ROM3 is the first apicomplexan rhomboid identified to play a vital role in sporogony.
Collapse
Affiliation(s)
- Jing-Wen Lin
- Leiden Malaria Research Group (Parasitology), Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, Kappe SHI. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013; 12:1127-43. [PMID: 23325771 DOI: 10.1074/mcp.m112.024505] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage of infection.
Collapse
Affiliation(s)
- Scott E Lindner
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ploemen IHJ, Croes HJ, van Gemert GJJ, Wijers-Rouw M, Hermsen CC, Sauerwein RW. Plasmodium berghei Δp52&p36 parasites develop independent of a parasitophorous vacuole membrane in Huh-7 liver cells. PLoS One 2012; 7:e50772. [PMID: 23227206 PMCID: PMC3515443 DOI: 10.1371/journal.pone.0050772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/24/2012] [Indexed: 12/02/2022] Open
Abstract
The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.
Collapse
Affiliation(s)
- Ivo H. J. Ploemen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Huib J. Croes
- Department of Cell Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan J. van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mietske Wijers-Rouw
- Department of Cell Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Cornelus C. Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Sampathkumar P, Mak MW, Fischer-Witholt SJ, Guigard E, Kay CM, Lemieux MJ. Oligomeric state study of prokaryotic rhomboid proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3090-7. [DOI: 10.1016/j.bbamem.2012.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/25/2012] [Accepted: 08/07/2012] [Indexed: 12/14/2022]
|
24
|
Lindner SE, Miller JL, Kappe SHI. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell Microbiol 2012; 14:316-24. [PMID: 22151703 DOI: 10.1111/j.1462-5822.2011.01734.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
For those stricken with malaria, the classic clinical symptoms are caused by the parasite's cyclic infection of red blood cells. However, this erythrocytic phase of the parasite's life cycle initiates from an asymptomatic pre-erythrocytic phase: the injection of sporozoites via the bite of a parasite-carrying Anopheline mosquito, and the ensuing infection of the liver. With the increased capabilities of studying liver stages in mice, much progress has been made elucidating the cellular and molecular basis of the parasite's progression through this bottleneck of its life cycle. Here we review relevant findings on how sporozoites prepare for infection of the liver and factors crucial to liver stage development as well as key host/parasite interactions.
Collapse
Affiliation(s)
- Scott E Lindner
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | | | | |
Collapse
|
25
|
M Santos J, Graindorge A, Soldati-Favre D. New insights into parasite rhomboid proteases. Mol Biochem Parasitol 2011; 182:27-36. [PMID: 22173057 DOI: 10.1016/j.molbiopara.2011.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022]
Abstract
The rhomboid-like proteins constitute a large family of intramembrane serine proteases that are present in all branches of life. First studied in Drosophila, these enzymes catalyse the release of the active forms of proteins from the membrane and hence trigger signalling events. In protozoan parasites, a limited number of rhomboid-like proteases have been investigated and some of them are associated to pathogenesis. In Apicomplexans, rhomboid-like protease activity is involved in shedding adhesins from the surface of the zoites during motility and host cell entry. Recently, a Toxoplasma gondii rhomboid was also implicated in an intracellular signalling mechanism leading to parasite proliferation. In Entamoeba histolytica, the capacity to adhere to host cells and to phagocytose cells is potentiated by a rhomboid-like protease. Survey of a small number of protozoan parasite genomes has uncovered species-specific rhomboid-like protease genes, many of which are predicted to encode inactive enzymes. Functional investigation of the rhomboid-like proteases in other protozoan parasites will likely uncover novel and unexpected implications for this family of proteases.
Collapse
Affiliation(s)
- Joana M Santos
- Department of Microbiology, Faculty of Medicine, University of Geneva, 1 Rue-Michel Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|