1
|
Torma G, Dörmő Á, Fülöp Á, Tombácz D, Mizik M, Pretory AM, Lee SC, Toth Z, Boldogkői Z. Long-read transcriptomics of caviid gammaherpesvirus 1: compiling a comprehensive RNA atlas. mSystems 2025; 10:e0167824. [PMID: 40013795 PMCID: PMC11915868 DOI: 10.1128/msystems.01678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Caviid gammaherpesvirus 1 (CaGHV-1), formerly known as the guinea pig herpes-like virus, is an oncogenic gammaherpesvirus with a sequenced genome but an as-yet uncharacterized transcriptome. Using nanopore long-read RNA sequencing, we annotated the CaGHV-1 genome and constructed a detailed transcriptomic atlas. Our findings reveal diverse viral mRNAs and non-coding RNAs, along with mapped promoter elements for each viral gene. We demonstrated that the CaGHV-1 RTA lytic cycle transcription factor activates its own promoter, similar to Kaposi's sarcoma-associated herpesvirus (KSHV), and that the CaGHV-1 ORF50 promoter responds to RTA proteins from other gammaherpesviruses, highlighting the evolutionary conservation of RTA-mediated transcriptional mechanisms. Additionally, our analysis uncovered extensive transcriptional overlap within the viral genome, suggesting a role in regulating global gene expression. Given its tumorigenic properties, broad host range, and non-human pathogenicity, this work establishes CaGHV-1 as a promising small animal model for investigating human gammaherpesvirus pathogenesis. IMPORTANCE The molecular underpinnings of gammaherpesvirus pathogenesis remain poorly understood, partly due to limited animal models. This study provides the first comprehensive transcriptomic atlas of CaGHV-1, highlighting both coding and non-coding RNAs and revealing regulatory elements that drive viral gene expression. Functional studies of the CaGHV-1 RTA transcription factor demonstrated its ability to self-activate and cross-activate promoters from homologous gammaherpesviruses, reflecting conserved mechanisms of transcriptional control. These findings solidify CaGHV-1 as a unique and versatile small animal model, offering new opportunities to investigate gammaherpesvirus replication, transcriptional regulation, and tumorigenesis in a controlled experimental system.
Collapse
Affiliation(s)
- Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Máté Mizik
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Amanda M. Pretory
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - See-Chi Lee
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Payen SH, Andrada K, Tara E, Petereit J, Verma SC, Rossetto CC. The cellular paraspeckle component SFPQ associates with the viral processivity factor ORF59 during lytic replication of Kaposi's Sarcoma-associated herpesvirus (KSHV). Virus Res 2024; 349:199456. [PMID: 39214388 PMCID: PMC11406446 DOI: 10.1016/j.virusres.2024.199456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
Collapse
Affiliation(s)
- Shannon Harger Payen
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Kayla Andrada
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Evelyn Tara
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Juli Petereit
- University of Nevada, Reno, Nevada Bioinformatics Center (RRID: SCR_017802), Reno, NV 89557, USA
| | - Subhash C Verma
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Cyprian C Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA.
| |
Collapse
|
3
|
Payen SH, Gutierrez IV, Andrada K, Verma SC, Rossetto CC. Identifying the amino acid domains of ORF59 responsible for interactions with ORF57 and PAN RNA during KSHV lytic replication. Microbiol Spectr 2024; 12:e0116324. [PMID: 39431897 PMCID: PMC11619453 DOI: 10.1128/spectrum.01163-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) DNA polymerase processivity factor, ORF59, is a lytic protein essential for viral DNA synthesis as part of the core replication complex. The multifunctional nature of ORF59 has prompted the investigation into its various functional domains. Prior studies of ORF59 have identified dimerization, DNA interaction, and polymerase interaction domains. The regions of ORF59 responsible for the interaction with the viral mRNA transport accumulation protein (MTA/ORF57) and the viral long non-coding polyadenylated nuclear (PAN) RNA have not been explored. Using a series of previously characterized ORF59 deletion KSHV BACmid mutants, we identified the domains of ORF59 that interact with ORF57 and PAN RNA. Interestingly, amino acids 51-100 were essential for interacting with both ORF57 and PAN RNA. Using this information, we generated a plasmid that expresses a DsRed-tagged polypeptide spanning amino acids 30-100 of ORF59. When the 30-100 aa DsRed-tagged polypeptide expression plasmid was transfected into KSHV wild-type iSLK cells prior to lytic reactivation, a dominant-negative inhibition of virus replication was observed, resulting in a decrease of infectious virus production. Our data suggest that interactions between ORF59 with ORF57 and PAN RNA are important to successful lytic replication.IMPORTANCETo better understand the Kaposi's sarcoma-associated herpesvirus (KSHV) DNA polymerase processivity factor ORF59, we investigated the interaction of ORF59 with ORF57 and polyadenylated nuclear (PAN) RNA. We used a previously characterized KSHV BACmid containing internal deletions of ORF59 to identify the domains of ORF59 that interact with ORF57 and PAN RNA. Our study revealed multiple domains of ORF59 that are essential for its association with PAN RNA. These domains span amino acids 51-100, 251-300, and 351-396. Additional experiments confirmed amino acids 51-100 are critical for the interaction between ORF59 and ORF57. Using this information, we generated an expression plasmid encompassing the ORF57 and PAN RNA interaction domains of ORF59. The ORF59 polypeptide expression plasmid of amino acids 30-100 functioned as a dominant negative inhibitor during viral reactivation and caused a decrease in virus production. These findings provide valuable insights into the key domains of ORF59, essential for its functionality, and ultimately the production of infectious viruses.
Collapse
Affiliation(s)
- Shannon Harger Payen
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Isaura Vanessa Gutierrez
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Kayla Andrada
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Cyprian C. Rossetto
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
4
|
Yan Q, Zhou J, Gu Y, Huang W, Ruan M, Zhang H, Wang T, Wei P, Chen G, Li W, Lu C. Lactylation of NAT10 promotes N 4-acetylcytidine modification on tRNA Ser-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ 2024; 31:1362-1374. [PMID: 38879723 PMCID: PMC11445560 DOI: 10.1038/s41418-024-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/03/2024] Open
Abstract
N4-acetylcytidine (ac4C), a conserved but recently rediscovered RNA modification on tRNAs, rRNAs and mRNAs, is catalyzed by N-acetyltransferase 10 (NAT10). Lysine acylation is a ubiquitous protein modification that controls protein functions. Our latest study demonstrates a NAT10-dependent ac4C modification, which occurs on the polyadenylated nuclear RNA (PAN) encoded by oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), can induce KSHV reactivation from latency and activate inflammasome. However, it remains unclear whether a novel lysine acylation occurs in NAT10 during KSHV reactivation and how this acylation of NAT10 regulates tRNAs ac4C modification. Here, we showed that NAT10 was lactylated by α-tubulin acetyltransferase 1 (ATAT1), as a writer at the critical domain, to exert RNA acetyltransferase function and thus increase the ac4C level of tRNASer-CGA-1-1. Mutagenesis at the ac4C site in tRNASer-CGA-1-1 inhibited its ac4C modifications, translation efficiency of viral lytic genes, and virion production. Mechanistically, KSHV PAN orchestrated NAT10 and ATAT1 to enhance NAT10 lactylation, resulting in tRNASer-CGA-1-1 ac4C modification, eventually boosting KSHV reactivation. Our findings reveal a novel post-translational modification in NAT10, as well as expand the understanding about tRNA-related ac4C modification during KSHV replication, which may be exploited to design therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wenjing Huang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Mingpeng Ruan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Infectious Diseases, Changzhou Third People's Hospital, Changzhou, 213000, PR China.
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
5
|
Davis DV, Choi EJ, Ismail D, Hernandez ML, Choi JM, Zhang K, Khatkar K, Jung SY, Wu W, Bao X. Role of Poly(A)-Binding Protein Cytoplasmic 1, a tRNA-Derived RNA Fragment-Bound Protein, in Respiratory Syncytial Virus Infection. Pathogens 2024; 13:791. [PMID: 39338982 PMCID: PMC11434780 DOI: 10.3390/pathogens13090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a significant cause of lower respiratory tract infections (LRTI) across all demographics, with increasing mortality and morbidity among high-risk groups such as infants under two years old, the elderly, and immunocompromised individuals. Although newly approved vaccines and treatments have substantially reduced RSV hospitalizations, accessibility remains limited, and response to treatment varies. This underscores the importance of comprehensive studies on host-RSV interactions. tRNA-derived RNA fragments (tRFs) are recently discovered non-coding RNAs, notable for their regulatory roles in diseases, including viral infections. Our prior work demonstrated that RSV infection induces tRFs, primarily derived from the 5'-end of a limited subset of tRNAs (tRF5), to promote RSV replication by partially targeting the mRNA of antiviral genes. This study found that tRFs could also use their bound proteins to regulate replication. Our proteomics data identified that PABPC1 (poly(A)-binding protein cytoplasmic 1) is associated with tRF5-GluCTC, an RSV-induced tRF. Western blot experimentally confirmed the presence of PABPC1 in the tRF5-GluCTC complex. In addition, tRF5-GluCTC is in the anti-PABPC1-precipitated immune complex. This study also discovered that suppressing PABPC1 with its specific siRNA increased RSV (-) genome copies without impacting viral gene transcription, but led to less infectious progeny viruses, suggesting the importance of PABPC1 in virus assembly, which was supported by its interaction with the RSV matrix protein. Additionally, PABPC1 knockdown decreased the production of the cytokines MIP-1α, MIP-1β, MCP-1, and TNF-α. This is the first observation suggesting that tRFs may regulate viral infection via their bound proteins.
Collapse
Affiliation(s)
- Devin V. Davis
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Deena Ismail
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Miranda L. Hernandez
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Jong Min Choi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Kashish Khatkar
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.V.D.); (E.-J.C.); (D.I.); (M.L.H.); (K.Z.); (K.K.)
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Yan Q, Zhou J, Wang Z, Ding X, Ma X, Li W, Jia X, Gao SJ, Lu C. NAT10-dependent N 4-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation. Nat Commun 2023; 14:6327. [PMID: 37816771 PMCID: PMC10564894 DOI: 10.1038/s41467-023-42135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.
Collapse
Affiliation(s)
- Qin Yan
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Ziyu Wang
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xiangya Ding
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China
| | - Xinyue Ma
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, 210004, Nanjing, P. R. China.
- Department of Microbiology, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Changzhou Medical Center, Nanjing Medical University, 211166, Nanjing, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 211166, Nanjing, P. R. China.
| |
Collapse
|
7
|
Shimoda M, Inagaki T, Davis RR, Merleev A, Tepper CG, Maverakis E, Izumiya Y. Virally encoded interleukin-6 facilitates KSHV replication in monocytes and induction of dysfunctional macrophages. PLoS Pathog 2023; 19:e1011703. [PMID: 37883374 PMCID: PMC10602306 DOI: 10.1371/journal.ppat.1011703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.
Collapse
Affiliation(s)
- Michiko Shimoda
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Tomoki Inagaki
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Ryan R. Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Alexander Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Clifford G. Tepper
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, California, United States of America
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
- UC Davis Comprehensive Cancer Center, Sacramento, California, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| |
Collapse
|
8
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
10
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
11
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Li Z, Gao J, Xiang X, Deng J, Gao D, Sheng X. Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Mol Biol Rep 2022; 49:6693-6700. [PMID: 35301646 PMCID: PMC8929458 DOI: 10.1007/s11033-022-07268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Viral infection is still a serious global health problem that kills hundreds of thousands of people annually. Understanding the mechanism by which virus replicates, packages, and infects the host cells can provide new strategies to control viral infection. Long non-coding RNAs (lncRNAs) have been identified as critical regulators involved in viral infection process and antiviral response. A lot of host lncRNAs have been identified and shown to be involved in antiviral immune response during viral infection. However, our knowledge about lncRNAs expressed by viruses is still at its infancy. LncRNAs expressed by viruses are involved in the whole viral life cycle, including promoting genome replication, regulating gene expression, involvement in genome packaging, assembling new viruses and releasing virions to the host cells. Furthermore, they enhance the pathogenicity of viral infections by down-regulating the host cell's antiviral immune response and maintain the viral latency through a refined procedure of genome integration. This review focuses on the regulatory roles of viral lncRNA in the life-cycle and pathogenicity of viruses. It gives an insight into the viral lncRNAs that can be utilized as therapeutic targets against viral diseases, and future researches aimed to identify and explore new viral lncRNAs and the mechanisms of their involvement in viral infection is encouraged.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiaqin Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xinyu Xiang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiajun Deng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
13
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
14
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
15
|
Kang SH, Aknadibossian V, Kharel L, Mudiyanselage SDD, Wang Y, Folimonova SY. The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus Tristeza Virus That Interacts with a Viral Long Non-Coding RNA. Viruses 2021; 13:2129. [PMID: 34834936 PMCID: PMC8625556 DOI: 10.3390/v13112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5'-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that performs multiple functions in the virus infection cycle, specifically binds LMT1, both in vivo and in vitro. These results were obtained through the expression of p33 under the context of the wild type virus infection or along with a mutant CTV variant that does not produce LMT1 as well as via ectopic co-expression of p33 with LMT1 in Nicotiana benthamiana leaves followed by RNA immunoprecipitation and rapid amplification of cDNA ends assays. Further experiments in which a recombinant p33 protein and an in vitro transcribed full-length LMT1 RNA or its truncated fragments were subjected to an electrophoretic mobility shift assay demonstrated that p33 binds to at least two distinct regions within LMT1. To the best of our knowledge, this is the first report of a plant virus protein binding to a lncRNA produced by the same virus. The biological significance of the interaction between these two viral factors is discussed.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Vicken Aknadibossian
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Laxmi Kharel
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| |
Collapse
|
16
|
Lau B, Kerr K, Camiolo S, Nightingale K, Gu Q, Antrobus R, Suárez NM, Loney C, Stanton RJ, Weekes MP, Davison AJ. Human Cytomegalovirus RNA2.7 Is Required for Upregulating Multiple Cellular Genes To Promote Cell Motility and Viral Spread Late in Lytic Infection. J Virol 2021; 95:e0069821. [PMID: 34346763 PMCID: PMC8475523 DOI: 10.1128/jvi.00698-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently associated with broad modulation of gene expression and thus provide the cell with the ability to synchronize entire metabolic processes. We used transcriptomic approaches to investigate whether the most abundant human cytomegalovirus-encoded lncRNA, RNA2.7, has this characteristic. By comparing cells infected with wild-type virus (WT) to cells infected with RNA2.7 deletion mutants, RNA2.7 was implicated in regulating a large number of cellular genes late in lytic infection. Pathway analysis indicated that >100 of these genes are associated with promoting cell movement, and the 10 most highly regulated of these were validated in further experiments. Morphological analysis and live cell tracking of WT- and RNA2.7 mutant-infected cells indicated that RNA2.7 is involved in promoting the movement and detachment of infected cells late in infection, and plaque assays using sparse cell monolayers indicated that RNA2.7 is also involved in promoting cell-to-cell spread of virus. Consistent with the observation that upregulated mRNAs are relatively A+U-rich, which is a trait associated with transcript instability, and that they are also enriched in motifs associated with mRNA instability, transcriptional inhibition experiments on WT- and RNA2.7 mutant-infected cells showed that four upregulated transcripts lived longer in the presence of RNA2.7. These findings demonstrate that RNA2.7 is required for promoting cell movement and viral spread late in infection and suggest that this may be due to general stabilization of A+U-rich transcripts. IMPORTANCE In addition to messenger RNAs (mRNAs), the human genome encodes a large number of long noncoding RNAs (lncRNAs). Many lncRNAs that have been studied in detail are associated with broad modulation of gene expression and have important biological roles. Human cytomegalovirus, which is a large, clinically important DNA virus, specifies four lncRNAs, one of which (RNA2.7) is expressed at remarkably high levels during lytic infection. Our studies show that RNA2.7 is required for upregulating a large number of human genes, about 100 of which are associated with cell movement, and for promoting the movement of infected cells and the spread of virus from one cell to another. Further bioinformatic and experimental analyses indicated that RNA2.7 may exert these effects by stabilizing mRNAs that are relatively rich in A and U nucleotides. These findings increase our knowledge of how human cytomegalovirus regulates the infected cell to promote its own success.
Collapse
Affiliation(s)
- Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Salvatore Camiolo
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katie Nightingale
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nicolás M. Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
17
|
Ding M, Wu J, Sun R, Yan L, Bai L, Shi J, Feng H, Zhang Y, Lan K, Wang X. Androgen receptor transactivates KSHV noncoding RNA PAN to promote lytic replication-mediated oncogenesis: A mechanism of sex disparity in KS. PLoS Pathog 2021; 17:e1009947. [PMID: 34543357 PMCID: PMC8483343 DOI: 10.1371/journal.ppat.1009947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/30/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) preferentially infects and causes Kaposi’s sarcoma (KS) in male patients. However, the biological mechanisms are largely unknown. This study was novel in confirming the extensive nuclear distribution of the androgen receptor (AR) and its co-localization with viral oncoprotein of latency-associated nuclear antigen in KS lesions, indicating a transcription way of AR in KS pathogenesis. The endogenous AR was also remarkably higher in KSHV-positive B cells than in KSHV-negative cells and responded to the ligand treatment of 5α-dihydrotestosterone (DHT), the agonist of AR. Then, the anti-AR antibody-based chromatin immunoprecipitation (ChIP)-associated sequencing was used to identify the target viral genes of AR, revealing that the AR bound to multiple regions of lytic genes in the KSHV genome. The highest peak was enriched in the core promoter sequence of polyadenylated nuclear RNA (PAN), and the physical interaction was verified by ChIP–polymerase chain reaction (PCR) and the electrophoretic mobility shift assay (EMSA). Consistently, male steroid treatment significantly transactivated the promoter activity of PAN in luciferase reporter assay, consequently leading to extensive lytic gene expression and KSHV production as determined by real-time quantitative PCR, and the deletion of nuclear localization signals of AR resulted in the loss of nuclear transport and transcriptional activity in the presence of androgen and thus impaired the expression of PAN RNA. Oncogenically, this study identified that the AR was a functional prerequisite for cell invasion, especially under the context of KSHV reactivation, through hijacking the PAN as a critical effector. Taken together, a novel mechanism from male sex steroids to viral noncoding RNA was identified, which might provide a clue to understanding the male propensity in KS. Although the incidence of Kaposi’ sarcoma (KS) is higher in men, little is known about the mechanisms by which male sex steroids contribute to this disparity. The present study confirmed the striking expression of the androgen receptor (AR) and its concordant nuclear distribution in KS tissues. High-throughput chromatin immunoprecipitation sequencing analysis showed that the AR had extensive binding sites in the KSHV genome, in which the highest enriched gene was PAN. PAN also exhibited the strongest upregulation of promoter activity and RNA transcription among various KSHV lytic genes after the male hormone treatment. Specifically, the effect was a result of the DNA-binding capability of AR to PAN promoter. Moreover, the AR induced dramatic cell invasion, especially under KSHV lytic replication, and the effect was greatly impaired by the inhibitory effect of siRNA on PAN RNA. This study provided a unique insight into the reason why KS occurred predominantly in men.
Collapse
Affiliation(s)
- Mingzhu Ding
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Jinfeng Wu
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Rui Sun
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Lijun Yan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
| | - Jiajian Shi
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Hua Feng
- Omics Core, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Yuqi Zhang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, P.R. China
- * E-mail: (KL); (XW)
| | - Xing Wang
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, P.R. China
- * E-mail: (KL); (XW)
| |
Collapse
|
18
|
Martin SE, Gan H, Toomer G, Sridhar N, Sztuba-Solinska J. The m 6A landscape of polyadenylated nuclear (PAN) RNA and its related methylome in the context of KSHV replication. RNA (NEW YORK, N.Y.) 2021; 27:1102-1125. [PMID: 34187903 PMCID: PMC8370742 DOI: 10.1261/rna.078777.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/25/2021] [Indexed: 05/10/2023]
Abstract
Polyadenylated nuclear (PAN) RNA is a long noncoding transcript involved in Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation and regulation of cellular and viral gene expression. We have previously shown that PAN RNA has dynamic secondary structure and protein binding profiles that can be influenced by epitranscriptomic modifications. N6-methyladenosine (m6A) is one of the most abundant chemical signatures found in viral RNA genomes and virus-encoded RNAs. Here, we combined antibody-independent next-generation mapping with direct RNA sequencing to address the epitranscriptomic status of PAN RNA in KSHV infected cells. We showed that PAN m6A status is dynamic, reaching the highest number of modifications at the late lytic stages of KSHV infection. Using a newly developed method, termed selenium-modified deoxythymidine triphosphate (SedTTP)-reverse transcription (RT) and ligation assisted PCR analysis of m6A (SLAP), we gained insight into the fraction of modification at identified sites. By applying comprehensive proteomic approaches, we identified writers and erasers that regulate the m6A status of PAN, and readers that can convey PAN m6A phenotypic effects. We verified the temporal and spatial subcellular availability of the methylome components for PAN modification by performing confocal microscopy analysis. Additionally, the RNA biochemical probing (SHAPE-MaP) outlined local and global structural alterations invoked by m6A in the context of full-length PAN RNA. This work represents the first comprehensive overview of the dynamic interplay that takes place between the cellular epitranscriptomic machinery and a specific viral RNA in the context of KSHV infected cells.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/genetics
- Adenosine/metabolism
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
- Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
- Base Pairing
- Base Sequence
- Cell Line, Tumor
- Endonucleases/genetics
- Endonucleases/metabolism
- Epigenesis, Genetic
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Lymphocytes/metabolism
- Lymphocytes/virology
- Methylation
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Nuclear/genetics
- RNA, Nuclear/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcription
- Sequence Analysis, RNA
- Transcriptome
Collapse
Affiliation(s)
| | - Huachen Gan
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Gabriela Toomer
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Nikitha Sridhar
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | | |
Collapse
|
19
|
The Expression and Nuclear Retention Element of Polyadenylated Nuclear RNA Is Not Required for Productive Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2021; 95:e0009621. [PMID: 33853955 DOI: 10.1128/jvi.00096-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic human gammaherpesvirus and the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). During reactivation, viral genes are expressed in a temporal manner. These lytic genes encode transactivators, core replication proteins, or structural proteins. During reactivation, other viral factors that are required for lytic replication are expressed. The most abundant viral transcript is the long noncoding RNA (lncRNA) known as polyadenylated nuclear (PAN) RNA. lncRNAs have diverse functions, including the regulation of gene expression and the immune response. PAN possesses two main cis-acting elements, the Mta response element (MRE) and the expression and nuclear retention element (ENE). While PAN has been demonstrated to be required for efficient viral replication, the function of these elements within PAN remains unclear. Our goal was to determine if the ENE of PAN is required in the context of infection. A KSHV bacmid containing a deletion of the 79-nucleotide (nt) ENE in PAN was generated to assess the effects of the ENE during viral replication. Our studies demonstrated that the ENE is not required for viral DNA synthesis, lytic gene expression, or the production of infectious virus. Although the ENE is not required for viral replication, we found that the ENE functions to retain PAN in the nucleus, and the absence of the ENE results in an increased accumulation of PAN in the cytoplasm. Furthermore, open reading frame 59 (ORF59), LANA, ORF57, H1.4, and H2A still retain the ability to bind to PAN in the absence of the ENE. Together, our data highlight how the ENE affects the nuclear retention of PAN but ultimately does not play an essential role during lytic replication. Our data suggest that PAN may have other functional domains apart from the ENE. IMPORTANCE KSHV is an oncogenic herpesvirus that establishes latency and exhibits episodes of reactivation. KSHV disease pathologies are most often associated with the lytic replication of the virus. PAN RNA is the most abundant viral transcript during the reactivation of KSHV and is required for viral replication. Deletion and knockdown of PAN resulted in defects in viral replication and reduced virion production in the absence of PAN RNA. To better understand how the cis elements within PAN may contribute to its function, we investigated if the ENE of PAN was necessary for viral replication. Although the ENE had previously been extensively studied with both biochemical and in vitro approaches, this is the first study to demonstrate the role of the ENE in the context of infection and that the ENE of PAN is not required for the lytic replication of KSHV.
Collapse
|
20
|
Avilala J, Becnel D, Abdelghani R, Nanbo A, Kahn J, Li L, Lin Z. Role of Virally Encoded Circular RNAs in the Pathogenicity of Human Oncogenic Viruses. Front Microbiol 2021; 12:657036. [PMID: 33959113 PMCID: PMC8093803 DOI: 10.3389/fmicb.2021.657036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Human oncogenic viruses are a group of important pathogens that etiologically contribute to at least 12% of total cancer cases in the world. As an emerging class of non-linear regulatory RNA molecules, circular RNAs (circRNAs) have gained increasing attention as a crucial player in the regulation of signaling pathways involved in viral infection and oncogenesis. With the assistance of current circRNA enrichment and detection technologies, numerous novel virally-encoded circRNAs (vcircRNAs) have been identified in the human oncogenic viruses, initiating an exciting new era of vcircRNA research. In this review, we discuss the current understanding of the roles of vcircRNAs in the respective viral infection cycles and in virus-associated pathogenesis.
Collapse
Affiliation(s)
- Janardhan Avilala
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - David Becnel
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Ramsy Abdelghani
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Jacob Kahn
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| | - Li Li
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Zhen Lin
- Tulane University Health Sciences Center and Tulane Cancer Center, New Orleans, LA, United States
| |
Collapse
|
21
|
Vierbuchen T, Fitzgerald KA. Long non-coding RNAs in antiviral immunity. Semin Cell Dev Biol 2021; 111:126-134. [DOI: 10.1016/j.semcdb.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
|
22
|
Zhang Z, Zhao Z, Lin S, Wu W, Tang W, Dong Y, Shen M, Wu P, Guo X. Identification of long noncoding RNAs in silkworm larvae infected with Bombyx mori cypovirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 106:1-12. [PMID: 33619747 DOI: 10.1002/arch.21777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is one of the most important pathogens causing severe disease to silkworm. Emerging evidence indicates that long noncoding RNAs (lncRNAs) play importantly regulatory roles in virus infection and host immune response. To better understand the interaction between silkworm, Bombyx mori and BmCPV, we performed a comparative transcriptome analysis on lncRNAs and mRNAs between the virus-infected and noninfected silkworm larvae midgut at two time points postinoculation. A total of 16,753 genes and 1845 candidate lncRNAs were identified, among which 356 messenger RNA (mRNAs) and 41 lncRNAs were differentially expressed (DE). Target gene prediction revealed that most of DEmRNAs (123) were coexpressed with 28 DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans- regulation by BmCPV-induced lncRNAs, and a regulatory network of DElncRNAs and DEmRNAs was then constructed. According to the network, many genes involved in apoptosis, autophagy, and antiviral response, such as ATG3, PDCD6, IBP2, and MFB1, could be targeted by different DElncRNAs, implying the essential roles of these genes and lncRNAs in BmCPV infection. In all, our studies revealed for the first time the alteration of lncRNA expression in BmCPV-infected larvae and its potential influence on BmCPV replication, providing a new perspective for host-cypovirus interaction studies.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Weiming Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Youfu Dong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Liu W, Zhang Y, Luo B. Long Non-coding RNAs in Gammaherpesvirus Infections: Their Roles in Tumorigenic Mechanisms. Front Microbiol 2021; 11:604536. [PMID: 33519750 PMCID: PMC7843584 DOI: 10.3389/fmicb.2020.604536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression at the epigenetic, transcriptional, or posttranscriptional level by interacting with protein, DNA, and RNA. Emerging evidence suggests that various lncRNAs are abnormally expressed and play indispensable roles in virus-triggered cancers. Besides, a growing number of studies have shown that virus-encoded lncRNAs participate in tumorigenesis. However, the functions of most lncRNAs in tumors caused by oncogenic viruses and their underlying mechanisms remain largely unknown. In this review, we summarize current findings regarding lncRNAs involved in cancers caused by Epstein–Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV). Additionally, we discuss the contribution of lncRNAs to tumor occurrence, development, invasion, and metastasis; the roles of lncRNAs in key signaling pathways and their potential as biomarkers and therapeutic targets for tumor diagnostics and treatment.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
25
|
Levy M, Frishberg A, Gat-Viks I. Inferring cellular heterogeneity of associations from single cell genomics. Bioinformatics 2020; 36:3466-3473. [PMID: 32129824 DOI: 10.1093/bioinformatics/btaa151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Cell-to-cell variation has uncovered associations between cellular phenotypes. However, it remains challenging to address the cellular diversity of such associations. RESULTS Here, we do not rely on the conventional assumption that the same association holds throughout the entire cell population. Instead, we assume that associations may exist in a certain subset of the cells. We developed CEllular Niche Association (CENA) to reliably predict pairwise associations together with the cell subsets in which the associations are detected. CENA does not rely on predefined subsets but only requires that the cells of each predicted subset would share a certain characteristic state. CENA may therefore reveal dynamic modulation of dependencies along cellular trajectories of temporally evolving states. Using simulated data, we show the advantage of CENA over existing methods and its scalability to a large number of cells. Application of CENA to real biological data demonstrates dynamic changes in associations that would be otherwise masked. AVAILABILITY AND IMPLEMENTATION CENA is available as an R package at Github: https://github.com/mayalevy/CENA and is accompanied by a complete set of documentations and instructions. CONTACT iritgv@gmail.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maya Levy
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Frishberg
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Andrews RJ, O’Leary CA, Moss WN. A survey of RNA secondary structural propensity encoded within human herpesvirus genomes: global comparisons and local motifs. PeerJ 2020; 8:e9882. [PMID: 32974099 PMCID: PMC7487152 DOI: 10.7717/peerj.9882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
There are nine herpesviruses known to infect humans, of which Epstein-Barr virus (EBV) is the most widely distributed (>90% of adults infected). This ubiquitous virus is implicated in a variety of cancers and autoimmune diseases. Previous analyses of the EBV genome revealed numerous regions with evidence of generating unusually stable and conserved RNA secondary structures and led to the discovery of a novel class of EBV non-coding (nc)RNAs: the stable intronic sequence (sis)RNAs. To gain a better understanding of the roles of RNA structure in EBV biology and pathogenicity, we revisit EBV using recently developed tools for genome-wide motif discovery and RNA structural characterization. This corroborated previous results and revealed novel motifs with potential functionality; one of which has been experimentally validated. Additionally, since many herpesviruses increasingly rival the seroprevalence of EBV (VZV, HHV-6 and HHV-7 being the most notable), analyses were expanded to include all sequenced human Herpesvirus RefSeq genomes, allowing for genomic comparisons. In total 10 genomes were analyzed, for EBV (types 1 and 2), HCMV, HHV-6A, HHV-6B, HHV-7, HSV-1, HSV-2, KSHV, and VZV. All resulting data were archived in the RNAStructuromeDB (https://structurome.bb.iastate.edu/herpesvirus) to make them available to a wide array of researchers.
Collapse
Affiliation(s)
- Ryan J. Andrews
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Collin A. O’Leary
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Walter N. Moss
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
27
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
28
|
Hiura K, Strahan R, Uppal T, Prince B, Rossetto CC, Verma SC. KSHV ORF59 and PAN RNA Recruit Histone Demethylases to the Viral Chromatin during Lytic Reactivation. Viruses 2020; 12:v12040420. [PMID: 32283586 PMCID: PMC7232192 DOI: 10.3390/v12040420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) causes multiple malignancies in immunocompromised individuals. KSHV primarily establishes a lifelong latency in infected humans during which only a subset of viral genes is expressed while most of the viral genome remains transcriptionally silent with condensed chromatin. However, during the lytic phase, the viral genome undergoes dramatic changes in chromatin landscape leading to a transcriptionally active state with the expression of most of the viral genes and production of progeny virions. Multiple cellular and viral factors influence the epigenetic gene regulation and transitioning of virus from latency to the lytic state. We have earlier shown that KSHV ORF59, viral processivity factor, binds to a protein arginine methyl transferase 5 (PRMT5) to alter the histone arginine methylation during reactivation. Additionally, ORF59 has been shown to interact with most abundantly expressed KSHV long noncoding polyadenylated nuclear RNA (PAN RNA), which associates with the viral epigenome during reactivation. Interestingly, PAN RNA interacts with UTX and JMJD3, cellular H3K27me3 demethylases, and removes the repressive marks on the chromatin. In this study, we report that the recruitment of histone demethylases to the viral chromatin is facilitated by the expression of ORF59 protein and PAN RNA. Using biochemical and localization assays including co-immunoprecipitation and immunofluorescence, we demonstate ORF59 localizes with UTX and JMJD3. Our results confirm that PAN RNA enhances the interaction of ORF59 with the chromatin modifying enzymes UTX and JMJD3.
Collapse
|
29
|
Campbell M, Izumiya Y. PAN RNA: transcriptional exhaust from a viral engine. J Biomed Sci 2020; 27:41. [PMID: 32143650 PMCID: PMC7060532 DOI: 10.1186/s12929-020-00637-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also designated human herpesvirus 8 (HHV-8), has been linked to Kaposi’s sarcoma, as well as to primary effusion lymphoma (PEL), and a subset of multicentric Castleman’s disease. KSHV genomes are maintained as episomes within infected cells and the virus exhibits a biphasic life cycle consisting of a life-long latent phase during which only a few viral genes are expressed and no viral progeny are produced and a transient lytic reactivation phase, in which a full repertoire of ~ 80 lytic genes are activated in a temporally regulated manner culminating in the release of new virions. Lytic replication is initiated by a single viral protein, K-Rta (ORF50), which activates more than 80 viral genes from multiple resident viral episomes (i.e., viral chromosomes). One of the major targets of K-Rta is a long non-coding nuclear RNA, PAN RNA (polyadenylated nuclear RNA), a lncRNA that accumulates to exceedingly high levels in the nucleus during viral reactivation. K-Rta directly binds to the PAN RNA promoter and robustly activates PAN RNA expression. Although PAN RNA has been known for over 20 years, its role in viral replication is still incompletely understood. In this perspective, we will briefly review the current understanding of PAN RNA and then describe our current working model of this RNA. The model is based on our observations concerning events that occur during KSHV lytic reactivation including (i) a marked accumulation of RNA Pol II at the PAN promoter, (ii) genomic looping emanating from the PAN locus, (iii) interaction of a second viral lytic protein (ORF57) with K-Rta, PAN RNA and RNA Pol II, (iv) the essential requirement for PAN RNA expression in cis for optimal transcriptional execution needed for the entire lytic program, and (v) ORF57 recruitment of RNA Pol II to the PAN genomic locus. Together our results generate a model in which the PAN locus serves as a hub for sequestration/trapping of the cellular transcriptional machinery proximal to viral episomes. Sequestration at the PAN locus facilitates high levels of viral transcription throughout the viral genome during lytic replication. ORF57 acts as a transcription-dependent transactivator at the PAN locus by binding to both Rta and PAN to locally trap RNA Pol II. The resulting accumulation of high levels of nuclear PAN RNA created by this process is an inducible enhancer-derived (eRNA) by-product that litters the infected cell nucleus.
Collapse
Affiliation(s)
- Mel Campbell
- Department of Dermatology and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, 4645 2nd Avenue Research III Room 3100, Sacramento, CA, 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology and UC Davis Comprehensive Cancer Center, University of California Davis School of Medicine, 4645 2nd Avenue Research III Room 3100, Sacramento, CA, 95817, USA.
| |
Collapse
|
30
|
Burke JM, Lester ET, Tauber D, Parker R. RNase L promotes the formation of unique ribonucleoprotein granules distinct from stress granules. J Biol Chem 2020; 295:1426-1438. [PMID: 31896577 PMCID: PMC7008361 DOI: 10.1074/jbc.ra119.011638] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Indexed: 11/25/2022] Open
Abstract
Stress granules (SGs) are ribonucleoprotein (RNP) assemblies that form in eukaryotic cells as a result of limited translation in response to stress. SGs form during viral infection and are thought to promote the antiviral response because many viruses encode inhibitors of SG assembly. However, the antiviral endoribonuclease RNase L also alters SG formation, whereby only small punctate SG-like bodies that we term RNase L-dependent bodies (RLBs) form during RNase L activation. How RLBs relate to SGs and their mode of biogenesis is unknown. Herein, using immunofluorescence, live-cell imaging, and MS-based analyses, we demonstrate that RLBs represent a unique RNP granule with a protein and RNA composition distinct from that of SGs in response to dsRNA lipofection in human cells. We found that RLBs are also generated independently of SGs and the canonical dsRNA-induced SG biogenesis pathway, because RLBs did not require protein kinase R, phosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), the SG assembly G3BP paralogs, or release of mRNAs from ribosomes via translation elongation. Unlike the transient interactions between SGs and P-bodies, RLBs and P-bodies extensively and stably interacted. However, despite both RLBs and P-bodies exhibiting liquid-like properties, they remained distinct condensates. Taken together, these observations reveal that RNase L promotes the formation of a unique RNP complex that may have roles during the RNase L-mediated antiviral response.
Collapse
Affiliation(s)
- James M Burke
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303.
| | - Evan T Lester
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Devin Tauber
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Roy Parker
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303; Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|
31
|
Abere B, Li J, Zhou H, Toptan T, Moore PS, Chang Y. Kaposi's Sarcoma-Associated Herpesvirus-Encoded circRNAs Are Expressed in Infected Tumor Tissues and Are Incorporated into Virions. mBio 2020; 11:e03027-19. [PMID: 31911496 PMCID: PMC6946807 DOI: 10.1128/mbio.03027-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection.IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.
Collapse
Affiliation(s)
- Bizunesh Abere
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jinghui Li
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Hongzhao Zhou
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tuna Toptan
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick S Moore
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Hillman Cancer Center, Cancer Virology Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Involvement and Roles of Long Noncoding RNAs in the Molecular Mechanisms of Emerging and Reemerging Viral Infections. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7150007 DOI: 10.1016/b978-0-12-814966-9.00006-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gomez GN, Abrar F, Dodhia MP, Gonzalez FG, Nag A. SARS coronavirus protein nsp1 disrupts localization of Nup93 from the nuclear pore complex. Biochem Cell Biol 2019; 97:758-766. [PMID: 30943371 DOI: 10.1139/bcb-2018-0394] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus nonstructural protein 1 (nsp1) is a key factor in virus-induced down-regulation of host gene expression. In infected cells, nsp1 engages in a multipronged mechanism to inhibit host gene expression by binding to the 40S ribosome to block the assembly of translationally competent ribosome, and then inducing endonucleolytic cleavage and the degradation of host mRNAs. Here, we report a previously undetected mechanism by which nsp1 exploits the nuclear pore complex and disrupts the nuclear-cytoplasmic transport of biomolecules. We identified members of the nuclear pore complex from the nsp1-associated protein assembly and found that the expression of nsp1 in HEK cells disrupts Nup93 localization around the nuclear envelope without triggering proteolytic degradation, while the nuclear lamina remains unperturbed. Consistent with its role in host shutoff, nsp1 alters the nuclear-cytoplasmic distribution of an RNA binding protein, nucleolin. Our results suggest that nsp1, alone, can regulate multiple steps of gene expression including nuclear-cytoplasmic transport.
Collapse
Affiliation(s)
- Garret N Gomez
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Fareeha Abrar
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Maya P Dodhia
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Fabiola G Gonzalez
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| | - Anita Nag
- Furman University, 3300 Poinsett Highway, Greenville, SC 29613, USA
| |
Collapse
|
34
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
35
|
RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs. Mol Cell 2019; 75:1203-1217.e5. [PMID: 31494035 DOI: 10.1016/j.molcel.2019.07.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
In response to foreign and endogenous double-stranded RNA (dsRNA), protein kinase R (PKR) and ribonuclease L (RNase L) reprogram translation in mammalian cells. PKR inhibits translation initiation through eIF2α phosphorylation, which triggers stress granule (SG) formation and promotes translation of stress responsive mRNAs. The mechanisms of RNase L-driven translation repression, its contribution to SG assembly, and its regulation of dsRNA stress-induced mRNAs are unknown. We demonstrate that RNase L drives translational shut-off in response to dsRNA by promoting widespread turnover of mRNAs. This alters stress granule assembly and reprograms translation by allowing translation of mRNAs resistant to RNase L degradation, including numerous antiviral mRNAs such as interferon (IFN)-β. Individual cells differentially activate dsRNA responses revealing variation that can affect cellular outcomes. This identifies bulk mRNA degradation and the resistance of antiviral mRNAs as the mechanism by which RNase L reprograms translation in response to dsRNA.
Collapse
|
36
|
Vallery TK, Steitz JA. Quantitative Fluorescence In Situ Hybridization (FISH) and Immunofluorescence (IF) of Specific Gene Products in KSHV-Infected Cells. J Vis Exp 2019. [PMID: 31524859 DOI: 10.3791/59697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanistic insight arrives from careful study and quantification of specific RNAs and proteins. The relative locations of these biomolecules throughout the cell at specific times can be captured with fluorescence in situ hybridization (FISH) and immunofluorescence (IF). During lytic herpesvirus infection, the virus hijacks the host cell to preferentially express viral genes, causing changes in cell morphology and behavior of biomolecules. Lytic activities are centered in nuclear factories, termed viral replication compartments, which are discernable only with FISH and IF. Here we describe an adaptable protocol of RNA FISH and IF techniques for Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells, both adherent and in suspension. The method includes steps for the development of specific anti-sense oligonucleotides, double RNA FISH, RNA FISH with IF, and quantitative calculations of fluorescence intensities. This protocol has been successfully applied to multiple cell types, uninfected cells, latent cells, lytic cells, time-courses, and cells treated with inhibitors to analyze the spatiotemporal activities of specific RNAs and proteins from both the human host and KSHV.
Collapse
Affiliation(s)
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale School of Medicine;
| |
Collapse
|
37
|
An H, Cai Z, Yang Y, Wang Z, Liu DX, Fang S. Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus. Virology 2019; 528:176-180. [PMID: 30616206 PMCID: PMC7112027 DOI: 10.1016/j.virol.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
Viral noncoding (nc) RNAs have been shown to play important roles in viral life cycle. Many viruses employ different mechanism to produce ncRNAs. Here, we report that coronavirus infectious bronchitis virus (IBV) produces a novel ncRNA in virus-infected cells. This ncRNA consists of 563 nucleotides excluding a poly(A) tail, is mainly derived from the 3'-untranslated region of IBV genome, and contains a 63-nt-long of terminal leader sequence derived from the 5' end of the viral genome. Using mutagenesis and reverse genetics, we reveal that this ncRNA is a subgenomic RNA generated by discontinuous transcription mechanism.
Collapse
Affiliation(s)
- Hongliu An
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Zhichao Cai
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Yuying Yang
- College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Zhaoxiong Wang
- College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, Guangzhou 510642, Guangdong, PR China.
| | - Shouguo Fang
- College of Agriculture, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China; College of Animal Sciences, Yangtze University, 88 Jingmilu, Jingzhou 434025, Hubei, PR China.
| |
Collapse
|
38
|
Wang P. The Opening of Pandora's Box: An Emerging Role of Long Noncoding RNA in Viral Infections. Front Immunol 2019; 9:3138. [PMID: 30740112 PMCID: PMC6355698 DOI: 10.3389/fimmu.2018.03138] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has proved that long noncoding RNAs (lncRNAs) participate in various physiological and pathological processes. Recent evidence has demonstrated that lncRNAs are crucial regulators of virus infections and antiviral immune responses. Upon viral infections, significant changes take place at the transcriptional level and the majority of the expression modifications occur in lncRNAs from both the host and viral genomes with dynamic regulatory courses. These lncRNAs exert diverse effects. Some are antiviral either through directly inhibiting viral infections or through stimulating antiviral immune responses, while others are pro-viral through directly promoting virus replication or through influencing cellular status, such as suppressing antiviral mechanisms. Consequently, these dynamic regulations lead to disparate pathophysiological outcomes and clinical manifestations. This review will focus on the roles of lncRNAs in viral infection and antiviral responses, summarize expression patterns of both host- and virally derived lncRNAs, describe their acting stages and modes of action, discuss challenges and novel concepts, and propose solutions and perspectives. Research into lncRNA will help identify novel viral infection-related regulators and design preventative and therapeutic strategies against virus-related diseases and immune disorders.
Collapse
Affiliation(s)
- Pin Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, Lu C. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS Pathog 2019; 15:e1007578. [PMID: 30699189 PMCID: PMC6370251 DOI: 10.1371/journal.ppat.1007578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma (KS), a highly disseminated tumor of hyperproliferative spindle endothelial cells, is the most common AIDS-associated malignancy caused by infection of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-encoded viral interferon regulatory factor 1 (vIRF1) is a viral oncogene but its role in KSHV-induced tumor invasiveness and motility remains unknown. Here, we report that vIRF1 promotes endothelial cell migration, invasion and proliferation by down-regulating miR-218-5p to relieve its suppression of downstream targets high mobility group box 2 (HMGB2) and cytidine/uridine monophosphate kinase 1 (CMPK1). Mechanistically, vIRF1 inhibits p53 function to increase the expression of DNA methyltransferase 1 (DNMT1) and DNA methylation of the promoter of pre-miR-218-1, a precursor of miR-218-5p, and increases the expression of a long non-coding RNA OIP5 antisense RNA 1 (lnc-OIP5-AS1), which acts as a competing endogenous RNA (ceRNA) of miR-218-5p to inhibit its function and reduce its stability. Moreover, lnc-OIP5-AS1 increases DNA methylation of the pre-miR-218-1 promoter. Finally, deletion of vIRF1 from the KSHV genome reduces the level of lnc-OIP5-AS1, increases the level of miR-218-5p, and inhibits KSHV-induced invasion. Together, these results define a novel complex lnc-OIP5-AS1/miR-218-5p network hijacked by vIRF1 to promote invasiveness and motility of KSHV-induced tumors.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qi Feng
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Fei Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, P. R. China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- * E-mail:
| |
Collapse
|
40
|
Katano H. Expression and Function of Kaposi’s Sarcoma-Associated Herpesvirus Non-coding RNAs. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Withers JB, Li ES, Vallery TK, Yario TA, Steitz JA. Two herpesviral noncoding PAN RNAs are functionally homologous but do not associate with common chromatin loci. PLoS Pathog 2018; 14:e1007389. [PMID: 30383841 PMCID: PMC6233925 DOI: 10.1371/journal.ppat.1007389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/13/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023] Open
Abstract
During lytic replication of Kaposi’s sarcoma-associated herpesvirus (KSHV), a nuclear viral long noncoding RNA known as PAN RNA becomes the most abundant polyadenylated transcript in the cell. Knockout or knockdown of KSHV PAN RNA results in loss of late lytic viral gene expression and, consequently, reduction of progeny virion release from the cell. Here, we demonstrate that knockdown of PAN RNA from the related Rhesus macaque rhadinovirus (RRV) phenocopies that of KSHV PAN RNA. These two PAN RNA homologs, although lacking significant nucleotide sequence conservation, can functionally substitute for each other to rescue phenotypes associated with the absence of PAN RNA expression. Because PAN RNA is exclusively nuclear, previous studies suggested that it directly interacts with host and viral chromatin to modulate gene expression. We studied KSHV and RRV PAN RNA homologs using capture hybridization analysis of RNA targets (CHART) and observed their association with host chromatin, but the loci differ between PAN RNA homologs. Accordingly, we find that KSHV PAN RNA is undetectable in chromatin following cell fractionation. Thus, modulation of gene expression at specific chromatin loci appears not to be the primary, nor the pertinent function of this viral long noncoding RNA. PAN RNA represents a cautionary tale for the investigation of RNA association with chromatin whereby cross-linking of DNA spatially adjacent to an abundant nuclear RNA gives the appearance of specific interactions. Similarly, PAN RNA expression does not affect viral transcription factor complex expression or activity, which is required for generation of the late lytic viral mRNAs. Rather, we provide evidence for an alternative model of PAN RNA function whereby knockdown of KSHV or RRV PAN RNA results in compromised nuclear mRNA export thereby reducing the cytoplasmic levels of viral mRNAs available for production of late lytic viral proteins. Herpesviruses produce noncoding RNAs, some of which are essential to the viral life cycle. One such noncoding RNA from Kaposi’s sarcoma-associated herpesvirus is the polyadenylated, nuclear (PAN) RNA, which is required for production and release of progeny virions from infected cells. In this study, we demonstrate that although lacking nucleotide sequence conservation, PAN RNAs from two related viruses–when knocked down–exhibit the same phenotype, loss of late lytic viral gene expression and progeny virion production. Moreover, they can functionally substitute for each other to rescue this phenotype. We demonstrate that, in contrast to published literature, the reduction in viral gene expression upon PAN RNA knockdown is not due to loss of PAN RNA association with conserved, specific chromatin loci, nor does PAN RNA expression affect the viral transcription factor complex required for generation of the late lytic viral mRNAs. We present data suggesting that PAN RNA instead serves as a binding platform to sequester cellular proteins that are mislocalized to the nucleoplasm. These herpesviral noncoding RNAs can serve as models for the mechanistic study of human noncoding RNAs.
Collapse
Affiliation(s)
- Johanna B. Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Eric S. Li
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tenaya K. Vallery
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Therese A. Yario
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joan A. Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bullard WL, Flemington EK, Renne R, Tibbetts SA. Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends Cancer 2018; 4:729-740. [PMID: 30352676 DOI: 10.1016/j.trecan.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.
Collapse
Affiliation(s)
- Whitney L Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Chavez-Calvillo G, Martin S, Hamm C, Sztuba-Solinska J. The Structure-To-Function Relationships of Gammaherpesvirus-Encoded Long Non-Coding RNAs and Their Contributions to Viral Pathogenesis. Noncoding RNA 2018; 4:ncrna4040024. [PMID: 30261651 PMCID: PMC6315926 DOI: 10.3390/ncrna4040024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022] Open
Abstract
Advances in next-generation sequencing have facilitated the discovery of a multitude of long non-coding RNAs (lncRNAs) with pleiotropic functions in cellular processes, disease, and viral pathogenesis. It came as no surprise when viruses were also revealed to transcribe their own lncRNAs. Among them, gammaherpesviruses, one of the three subfamilies of the Herpesviridae, code their largest number. These structurally and functionally intricate non-coding (nc) transcripts modulate cellular and viral gene expression to maintain viral latency or prompt lytic reactivation. These lncRNAs allow for the virus to escape cytosolic surveillance, sequester, and re-localize essential cellular factors and modulate the cell cycle and proliferation. Some viral lncRNAs act as “messenger molecules”, transferring information about viral infection to neighboring cells. This broad range of lncRNA functions is achieved through lncRNA structure-mediated interactions with effector molecules of viral and host origin, including other RNAs, proteins and DNAs. In this review, we discuss examples of gammaherpesvirus-encoded lncRNAs, emphasize their unique structural attributes, and link them to viral life cycle, pathogenesis, and disease progression. We will address their potential as novel targets for drug discovery and propose future directions to explore lncRNA structure and function relationship.
Collapse
Affiliation(s)
- Gabriela Chavez-Calvillo
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Sarah Martin
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Chad Hamm
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Ave, Rouse Life Sciences Building, Auburn, AL 36849, USA.
| |
Collapse
|
44
|
Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA. J Virol 2018; 92:JVI.00220-18. [PMID: 29643239 DOI: 10.1128/jvi.00220-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments.IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus.
Collapse
|
45
|
Battling for Ribosomes: Translational Control at the Forefront of the Antiviral Response. J Mol Biol 2018; 430:1965-1992. [PMID: 29746850 DOI: 10.1016/j.jmb.2018.04.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023]
Abstract
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus-host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.
Collapse
|
46
|
Ahmed W, Liu ZF. Long Non-Coding RNAs: Novel Players in Regulation of Immune Response Upon Herpesvirus Infection. Front Immunol 2018; 9:761. [PMID: 29706968 PMCID: PMC5906719 DOI: 10.3389/fimmu.2018.00761] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Herpesviruses have developed a variety of sophisticated immune evasion strategies to establish lifelong latent infection, including the use of long non-coding RNAs (lncRNAs). In this review, we summarize the lncRNA action modes, i.e., RNA-protein, RNA-RNA, and RNA-DNA interactions, involved in regulating important aspects of immunity by controlling gene expression at various stages. Upon herpesvirus infection, host lncRNAs, such as nuclear paraspeckle assembly transcript 1, negative regulator of antiviral, and B-cell integration cluster have been functionally characterized as negative or positive antiviral regulators in the immune response. Herpesviruses have also evolved multiple strategies to modulate the host immune response using lncRNAs, such as latency-associated transcript, β 2.7 RNA, 5 kb and 7.2 kb lncRNAs, Epstein-Barr virus-encoded non-coding RNA, BamH I-A rightward transcripts, polyadenylated nuclear, and herpesvirus saimiri U-rich RNAs. We discuss the various mechanisms of immune-related lncRNAs, and their diversified and important functions in the modulation of innate and adaptive immunity upon herpesvirus infection as well as in host-pathogen interactions, which will facilitate our understanding of rational design of novel strategies to combat herpesvirus infection.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
47
|
Chen CP, Chuang F, Izumiya Y. Functional Imaging of Viral Transcription Factories Using 3D Fluorescence Microscopy. J Vis Exp 2018. [PMID: 29443057 DOI: 10.3791/56832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is well known that spatial and temporal regulation of genes is an integral part of governing proper gene expression. Consequently, it is invaluable to understand where and when transcription is taking place within nuclear space and to visualize the relationship between episomes infected within the same cell's nucleus. Here, both immunofluorescence (IFA) and RNA-FISH have been combinedto identify actively transcribing Kaposi's sarcoma-associated herpesvirus (KSHV) episomes. By staining KSHV latency-associated nuclear antigen (LANA), it is possible to locate where viral episomes exist within the nucleus. In addition, by designing RNA-FISH probes to target the intron region of a viral gene, which is expressed only during productive infection, nascent RNA transcripts can be located. Using this combination of molecular probes, it is possible to visualize the assembly of large viral transcription factories and analyze the spatial regulation of viral gene expression during KSHV reactivation. By including anti-RNA polymerase II antibody staining, one can also visualize the association between RNA polymerase II (RNAPII) aggregation and KSHV transcription during reactivation.
Collapse
Affiliation(s)
- Christopher P Chen
- Department of Dermatology, University of California Davis School of Medicine, University of California, Davis
| | - Frank Chuang
- Center for Biophotonics, Department of Biochemistry and Molecular Medicine, University of California, Davis
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis School of Medicine, University of California, Davis;
| |
Collapse
|
48
|
Rausch JW, Sztuba-Solinska J, Le Grice SFJ. Probing the Structures of Viral RNA Regulatory Elements with SHAPE and Related Methodologies. Front Microbiol 2018; 8:2634. [PMID: 29375504 PMCID: PMC5767303 DOI: 10.3389/fmicb.2017.02634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/18/2017] [Indexed: 01/18/2023] Open
Abstract
Viral RNAs were selected by evolution to possess maximum functionality in a minimal sequence. Depending on the classification of the virus and the type of RNA in question, viral RNAs must alternately be replicated, spliced, transcribed, transported from the nucleus into the cytoplasm, translated and/or packaged into nascent virions, and in most cases, provide the sequence and structural determinants to facilitate these processes. One consequence of this compact multifunctionality is that viral RNA structures can be exquisitely complex, often involving intermolecular interactions with RNA or protein, intramolecular interactions between sequence segments separated by several thousands of nucleotides, or specialized motifs such as pseudoknots or kissing loops. The fluidity of viral RNA structure can also present a challenge when attempting to characterize it, as genomic RNAs especially are likely to sample numerous conformations at various stages of the virus life cycle. Here we review advances in chemoenzymatic structure probing that have made it possible to address such challenges with respect to cis-acting elements, full-length viral genomes and long non-coding RNAs that play a major role in regulating viral gene expression.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Joanna Sztuba-Solinska
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States.,Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
49
|
Watanabe T, Sugimoto A, Hosokawa K, Fujimuro M. Signal Transduction Pathways Associated with KSHV-Related Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:321-355. [PMID: 29896674 DOI: 10.1007/978-981-10-7230-7_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction pathways play a key role in the regulation of cell growth, cell differentiation, cell survival, apoptosis, and immune responses. Bacterial and viral pathogens utilize the cell signal pathways by encoding their own proteins or noncoding RNAs to serve their survival and replication in infected cells. Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is classified as a rhadinovirus in the γ-herpesvirus subfamily and was the eighth human herpesvirus to be discovered from Kaposi's sarcoma specimens. KSHV is closely associated with an endothelial cell malignancy, Kaposi's sarcoma, and B-cell malignancies, primary effusion lymphoma, and multicentric Castleman's disease. Recent studies have revealed that KSHV manipulates the cellular signaling pathways to achieve persistent infection, viral replication, cell proliferation, anti-apoptosis, and evasion of immune surveillance in infected cells. This chapter summarizes recent developments in our understanding of the molecular mechanisms used by KSHV to interact with the cell signaling machinery.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Atsuko Sugimoto
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
50
|
Meng XY, Luo Y, Anwar MN, Sun Y, Gao Y, Zhang H, Munir M, Qiu HJ. Long Non-Coding RNAs: Emerging and Versatile Regulators in Host-Virus Interactions. Front Immunol 2017; 8:1663. [PMID: 29234324 PMCID: PMC5712331 DOI: 10.3389/fimmu.2017.01663] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNA molecules, which are involved in various biological processes, including chromatin modification, cell differentiation, pre-mRNA transcription and splicing, protein translation, etc. During the last decade, increasing evidence has suggested the involvement of lncRNAs in both immune and antiviral responses as positive or negative regulators. The immunity-associated lncRNAs modulate diverse and multilayered immune checkpoints, including activation or repression of innate immune signaling components, such as interleukin (IL)-8, IL-10, retinoic acid inducible gene I, toll-like receptors 1, 3, and 8, and interferon (IFN) regulatory factor 7, transcriptional regulation of various IFN-stimulated genes, and initiation of the cell apoptosis pathways. Additionally, some virus-encoded lncRNAs facilitate viral replication through individually or synergistically inhibiting the host antiviral responses or regulating multiple steps of the virus life cycle. Moreover, some viruses are reported to hijack host-encoded lncRNAs to establish persistent infections. Based on these amazing discoveries, lncRNAs are an emerging hotspot in host–virus interactions. In this review, we summarized the current findings of the host- or virus-encoded lncRNAs and the underlying mechanisms, discussed their impacts on immune responses and viral replication, and highlighted their critical roles in host–virus interactions.
Collapse
Affiliation(s)
- Xing-Yu Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Naveed Anwar
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Gao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huawei Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|