1
|
Liu W, Nestorovich EM. Anthrax toxin channel: What we know based on over 30 years of research. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183715. [PMID: 34332985 DOI: 10.1016/j.bbamem.2021.183715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Protective antigen channel is the central component of the deadly anthrax exotoxin responsible for binding and delivery of the toxin's enzymatic lethal and edema factor components into the cytosol. The channel, which is more than three times longer than the lipid bilayer membrane thickness and has a 6-Å limiting diameter, is believed to provide a sophisticated unfoldase and translocase machinery for the foreign protein transport into the host cell cytosol. The tripartite toxin can be reengineered, one component at a time or collectively, to adapt it for the targeted cancer therapeutic treatments. In this review, we focus on the biophysical studies of the protective antigen channel-forming activity, small ion transport properties, enzymatic factor translocation, and blockage comparing it with the related clostridial binary toxin channels. We address issues linked to the anthrax toxin channel structural dynamics and lipid dependence, which are yet to become generally recognized as parts of the toxin translocation machinery.
Collapse
Affiliation(s)
- Wenxing Liu
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave, Washington, DC 20064, USA.
| |
Collapse
|
2
|
Abstract
Anthrax toxin is a major virulence factor of Bacillus anthracis, a Gram-positive bacterium which can form highly stable spores that are the causative agents of the disease, anthrax. While chiefly a disease of livestock, spores can be "weaponized" as a bio-terrorist agent, and can be deadly if not recognized and treated early with antibiotics. The intracellular pathways affected by the enzymes are broadly understood and are not discussed here. This chapter focuses on what is known about the assembly of secreted toxins on the host cell surface and how the toxin is delivered into the cytosol. The central component is the "Protective Antigen", which self-oligomerizes and forms complexes with its pay-load, either Lethal Factor or Edema Factor. It binds a host receptor, CMG2, or a close relative, triggering receptor-mediated endocytosis, and forms a remarkably elegant yet powerful machine that delivers toxic enzymes into the cytosol, powered only by the pH gradient across the membrane. We now have atomic structures of most of the starting, intermediate and final assemblies in the infectious process. Together with a major body of biophysical, mutational and biochemical work, these studies reveal a remarkable story of both how toxin assembly is choreographed in time and space.
Collapse
|
3
|
Momben Abolfath S, Kolberg M, Karginov VA, Leppla SH, Nestorovich EM. Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophys J 2019; 117:1751-1763. [PMID: 31587826 PMCID: PMC6838753 DOI: 10.1016/j.bpj.2019.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.
Collapse
Affiliation(s)
| | - Michelle Kolberg
- Department of Biology, The Catholic University of America, Washington DC
| | | | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
4
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
5
|
Human monoclonal anti-protective antigen antibody for the low-dose post-exposure prophylaxis and treatment of Anthrax. BMC Infect Dis 2018; 18:640. [PMID: 30526504 PMCID: PMC6288905 DOI: 10.1186/s12879-018-3542-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Background Disease caused by Bacillus anthracis is often accompanied by high mortality primarily due to toxin-mediated injury. In the early disease course, anthrax toxins are secreted; thus, antibiotic use is limited to the early stage. In this regard, antibodies against the toxin component, protective antigen (PA), play an important role in protecting against anthrax. Therefore, we developed PA21, a fully human anti-PA immunoglobulin G monoclonal antibody. Methods Combining human Fab was screened from a phage library with human heavy constant regions. Enzyme-linked immune sorbent assay, Western blot analysis and immunoprecipitation test evaluated the binding ability of PA21. Moreover, the affinity and neutralizing activity of the antibody was detected in vitro while the protective effectiveness in 60 rats was also examined in vivo. Results The Fischer 344 rats challenged with the lethal toxin can be protected by PA21 at a concentration of 0.067 mg/kg. All six rats remained alive although PA21 was injected 24 h before the toxin challenge. PA21 did not influence the binding of PA to cell receptors and that of a lethal factor to PA. Conclusion The PA21 monoclonal antibody against PA can be used for emergency prophylaxis and anthrax treatment.
Collapse
|
6
|
Kalu N, Atsmon-Raz Y, Momben Abolfath S, Lucas L, Kenney C, Leppla SH, Tieleman DP, Nestorovich EM. Effect of late endosomal DOBMP lipid and traditional model lipids of electrophysiology on the anthrax toxin channel activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2192-2203. [PMID: 30409515 DOI: 10.1016/j.bbamem.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 08/19/2018] [Indexed: 01/26/2023]
Abstract
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Yoav Atsmon-Raz
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Laura Lucas
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda 20892, MD, USA
| | - D Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA.
| |
Collapse
|
7
|
Kalu N, Alcaraz A, Yamini G, Momben Abolfath S, Lucas L, Kenney C, Aguilella VM, Nestorovich EM. Effect of endosomal acidification on small ion transport through the anthrax toxin PA 63 channel. FEBS Lett 2017; 591:3481-3492. [PMID: 28963849 DOI: 10.1002/1873-3468.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022]
Abstract
Tight regulation of pH is critical for the structure and function of cells and organelles. The pH environment changes dramatically along the endocytic pathway, an internalization transport process that is 'hijacked' by many intracellularly active bacterial exotoxins, including the anthrax toxin. Here, we investigate the role of pH on single-channel properties of the anthrax toxin protective antigen (PA63 ). Using conductance and current noise analysis, blocker binding, ion selectivity, and poly(ethylene glycol) partitioning measurements, we show that the channel exists in two different open states ('maximum' and 'main') at pH ≥ 5.5, while only a maximum conductance state is detected at pH < 5.5. We describe two substantially distinct patterns of PA63 conductance dependence on KCl concentration uncovered at pH 6.5 and 4.5.
Collapse
Affiliation(s)
- Nnanya Kalu
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón, Spain
| | - Goli Yamini
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | | | - Laura Lucas
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Clare Kenney
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Castellón, Spain
| | | |
Collapse
|
8
|
Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study. Toxins (Basel) 2016; 8:toxins8110337. [PMID: 27854272 PMCID: PMC5127133 DOI: 10.3390/toxins8110337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC50 values of the G2-OH/PA63 and G2-NH₂/PA63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis-negative voltage increase. We also describe kinetics of the PA63 ion current modulation by two different types of the "imperfect" PAMAM dendrimers, the mixed-surface G2 75% OH 25% NH₂ dendrimer and G3-NH₂ dendron. At low voltages, both "imperfect" dendrimers show similar rate constants but significantly weaker voltage sensitivity when compared with the intact G2-NH₂ PAMAM dendrimer.
Collapse
|
9
|
Sun J, Jacquez P. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation. Toxins (Basel) 2016; 8:34. [PMID: 26805886 PMCID: PMC4773787 DOI: 10.3390/toxins8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/04/2022] Open
Abstract
Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA) binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2) plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig)-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Pedro Jacquez
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
10
|
Xiong S, Tang Q, Liang X, Zhou T, Yang J, Liu P, Chen Y, Wang C, Feng Z, Zhu J. A Novel Chimeric Anti-PA Neutralizing Antibody for Postexposure Prophylaxis and Treatment of Anthrax. Sci Rep 2015; 5:11776. [PMID: 26134518 PMCID: PMC4488766 DOI: 10.1038/srep11776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Anthrax is a highly lethal infectious disease caused by the bacterium Bacillus anthracis, and the associated shock is closely related to the lethal toxin (LeTx) produced by the bacterium. The central role played by the 63 kDa protective antigen (PA63) region of LeTx in the pathophysiology of anthrax makes it an excellent therapeutic target. In the present study, a human/murine chimeric IgG mAb, hmPA6, was developed by inserting murine antibody variable regions into human constant regions using antibody engineering technology. hmPA6 expressed in 293F cells could neutralize LeTx both in vitro and in vivo. At a dose of 0.3 mg/kg, it could protect all tested rats from a lethal dose of LeTx. Even administration of 0.6 mg/kg hmPA6 48 h before LeTx challenge protected all tested rats. The results indicate that hmPA6 is a potential candidate for clinical application in anthrax treatment.
Collapse
Affiliation(s)
- Siping Xiong
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Xudong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 China
| | - Tingting Zhou
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Jin Yang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Peng Liu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Ya Chen
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| | - Zhenqing Feng
- 1] Department of Pathology, Nanjing Medical University, Nanjing 210029, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| | - Jin Zhu
- 1] Huadong Medical Institute of Biotechniques, Nanjing 210002, China [2] Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
11
|
Jacquez P, Avila G, Boone K, Altiyev A, Puschhof J, Sauter R, Arigi E, Ruiz B, Peng X, Almeida I, Sherman M, Xiao C, Sun J. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore. PLoS One 2015; 10:e0130832. [PMID: 26107617 PMCID: PMC4479931 DOI: 10.1371/journal.pone.0130832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Gustavo Avila
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Kyle Boone
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Agamyrat Altiyev
- Bioinformatics Program of University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Jens Puschhof
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Roland Sauter
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Emma Arigi
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Blanca Ruiz
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Xiuli Peng
- China National Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan, 430070, P. R. China
| | - Igor Almeida
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
| | - Michael Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, 77555, United States of America
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| | - Jianjun Sun
- Department of Biological Sciences & Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, 79968, United States of America
- * E-mail: (CX); (JS)
| |
Collapse
|
12
|
Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem 2015; 290:14031-44. [PMID: 25882847 DOI: 10.1074/jbc.m115.650523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 12/17/2022] Open
Abstract
CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin.
Collapse
Affiliation(s)
- Sarah Hemmasi
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie
| | - Bernd A Czulkies
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Hermann Staudinger Graduate School
| | - Björn Schorch
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie, the Spemann Graduate School of Biology and Medicine, and
| | - Antonia Veit
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
| | - Klaus Aktories
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
13
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
14
|
Ye L, Sun PH, Sanders AJ, Martin TA, Lane J, Mason MD, Jiang WG. Therapeutic potential of capillary morphogenesis gene 2 extracellular vWA domain in tumour‑related angiogenesis. Int J Oncol 2014; 45:1565-73. [PMID: 24993339 DOI: 10.3892/ijo.2014.2533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/14/2014] [Indexed: 11/05/2022] Open
Abstract
Capillary morphogenesis gene 2 (CMG2) is a receptor of anthrax toxin and plays an important role in angiogenesis. It has been shown to be involved in the cell adhesion and motility of various cell types, including epithelia and endothelia. The present study aimed to examine the therapeutic potential of targeting CMG2 to prevent tumour‑related new vasculature. The full-length coding sequence of the human CMG2 gene and different fragments of the CMG2 vWA domain were amplified and constructed into a mammalian expression plasmid vector. The effect of CMG2 and its vWA domain on endothelial cells and angiogenesis was assessed using relevant in vitro, ex vivo and in vivo models. The overexpression of CMG2 enhanced the adhesion of endothelial cells to extracellular matrix, but was negatively associated with cell migration. Overexpression of CMG2 and the vWA domain fragments inhibited the tubule formation and migration of endothelial cells. Small peptides based on the amino acid sequence of the CMG2 vWA domain fragments potently inhibited in vitro tubule formation and ex vivo angiogenesis. One of the polypeptides, LG20, showed an inhibitory effect on in vivo tumour growth of cancer cells which were co-inoculated with the vascular endothelial cells. CMG2 is a potential target for treating tumour‑related angiogenesis. The polypeptides based on the CMG2 vWA domain can potently inhibit in vitro and ex vivo angiogenesis, which may contribute to the inhibitory effect on in vivo tumour growth. Further investigations are required to shed light on the machinery and may provide a novel therapeutic approach for inhibition of angiogenesis in cancer management.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Ping-Hui Sun
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew J Sanders
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Tracey A Martin
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Jane Lane
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Malcolm D Mason
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
15
|
Dennis MK, Mogridge J. A protective antigen mutation increases the pH threshold of anthrax toxin receptor 2-mediated pore formation. Biochemistry 2014; 53:2166-71. [PMID: 24641616 PMCID: PMC3985898 DOI: 10.1021/bi5000756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Anthrax toxin protective antigen
(PA) binds cellular receptors
and self-assembles into oligomeric prepores. A prepore converts to
a protein translocating pore after it has been transported to an endosome
where the low pH triggers formation of a membrane-spanning β-barrel
channel. Formation of this channel occurs after some PA–receptor
contacts are broken to allow pore formation, while others are retained
to preserve receptor association. The interaction between PA and anthrax
toxin receptor 1 (ANTXR1) is weaker than its interaction with ANTXR2
such that the pH threshold of ANTXR1-mediated pore formation is higher
by 1 pH unit. Here we examine receptor-specific differences in toxin
binding and pore formation by mutating PA residue G342 that selectively
abuts ANTXR2. Mutation of G342 to valine, leucine, isoleucine, or
tryptophan increased the amount of PA bound to ANTXR1-expressing cells
and decreased the amount of PA bound to ANTXR2-expressing cells. The
more conservative G342A mutation did not affect the level of binding
to ANTXR2, but ANTXR2-bound PA-G342A prepores exhibited a pH threshold
higher than that of wild-type prepores. Mixtures of wild-type PA and
PA-G342A were functional in toxicity assays, and the pH threshold
of ANTXR2-mediated pore formation was dictated by the relative amounts
of the two proteins in the hetero-oligomers. These results suggest
that PA subunits within an oligomer do not have to be triggered simultaneously
for a productive membrane insertion event to occur.
Collapse
Affiliation(s)
- Melissa K Dennis
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
16
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
17
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|
18
|
Naik S, Brock S, Akkaladevi N, Tally J, Mcginn-Straub W, Zhang N, Gao P, Gogol EP, Pentelute BL, Collier RJ, Fisher MT. Monitoring the kinetics of the pH-driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance. Biochemistry 2013; 52:6335-47. [PMID: 23964683 PMCID: PMC3790466 DOI: 10.1021/bi400705n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å β barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.
Collapse
Affiliation(s)
- Subhashchandra Naik
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS
| | - Susan Brock
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS
| | - Narahari Akkaladevi
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS
| | - Jon Tally
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS
| | | | - Na Zhang
- Protein Production Facility, University of Kansas, Lawrence KS
| | - Phillip Gao
- Protein Production Facility, University of Kansas, Lawrence KS
| | - E. P. Gogol
- School of Biological Sciences, University of Missouri Kansas City, Kansas City, MO
| | - B. L. Pentelute
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA
| | - R. John Collier
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA
| | - Mark T. Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City KS
| |
Collapse
|
19
|
Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, Meier BH, Riek R. The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 2012; 10:e1001451. [PMID: 23300377 PMCID: PMC3531502 DOI: 10.1371/journal.pbio.1001451] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022] Open
Abstract
The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the β-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins.
Collapse
Affiliation(s)
- Carolin Seuring
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christian Wasmer
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roger Wepf
- Electron Microscopy ETH Zurich (EMEZ), Zürich, Switzerland
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, Institut de Biochimie et Génétique Cellulaires, UMR-5095 CNRS/Université de Bordeaux 2, Bordeaux, France
| | - Beat H. Meier
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|
21
|
Anthrax toxin protective antigen integrates poly-γ-D-glutamate and pH signals to sense the optimal environment for channel formation. Proc Natl Acad Sci U S A 2012; 109:18378-83. [PMID: 23100533 DOI: 10.1073/pnas.1208280109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many toxins assemble into oligomers on the surface of cells. Local chemical cues signal and trigger critical rearrangements of the oligomer, inducing the formation of a membrane-fused or channel state. Bacillus anthracis secretes two virulence factors: a tripartite toxin and a poly-γ-d-glutamic acid capsule (γ-DPGA). The toxin's channel-forming component, protective antigen (PA), oligomerizes to create a prechannel that forms toxic complexes upon binding the two other enzyme components, lethal factor (LF) and edema factor (EF). Following endocytosis into host cells, acidic pH signals the prechannel to form the channel state, which translocates LF and EF into the host cytosol. We report γ-DPGA binds to PA, LF, and EF, exhibiting nanomolar avidity for the PA prechannel oligomer. We show PA channel formation requires the pH-dependent disruption of the intra-PA domain-2-domain-4 (D2-D4) interface. γ-DPGA stabilizes the D2-D4 interface, preventing channel formation both in model membranes and cultured mammalian cells. A 1.9-Å resolution X-ray crystal structure of a D2-D4-interface mutant and corresponding functional studies reveal how stability at the intra-PA interface governs channel formation. We also pinpoint the kinetic pH trigger for channel formation to a residue within PA's membrane-insertion loop at the inter-PA D2-D4 interface. Thus, γ-DPGA may function as a chemical cue, signaling that the local environment is appropriate for toxin assembly but inappropriate for channel formation.
Collapse
|
22
|
Rajapaksha M, Lovell S, Janowiak BE, Andra KK, Battaile KP, Bann JG. pH effects on binding between the anthrax protective antigen and the host cellular receptor CMG2. Protein Sci 2012; 21:1467-80. [PMID: 22855243 DOI: 10.1002/pro.2136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/11/2022]
Abstract
The anthrax protective antigen (PA) binds to the host cellular receptor capillary morphogenesis protein 2 (CMG2) with high affinity. To gain a better understanding of how pH may affect binding to the receptor, we have investigated the kinetics of binding as a function of pH to the full-length monomeric PA and to two variants: a 2-fluorohistidine-labeled PA (2-FHisPA), which is ∼1 pH unit more stable to variations in pH than WT, and an ∼1 pH unit less stable variant in which Trp346 in the domain 2β(3) -2β(4) loop is substituted with a Phe (W346F). We show using stopped-flow fluorescence that the binding rate increases as the pH is lowered for all proteins, with little influence on the rate of dissociation. In addition, we have crystallized PA and the two variants and examine the influence of pH on structure. In contrast to previous X-ray studies, the domain 2β(3) -2β(4) loop undergoes little change in structure from pH ∼8 to 5.5 for the WT protein, but for the 2-FHis labeled and W346F mutant there are changes in structure consistent with previous X-ray studies. In accord with pH stability studies, we find that the average B-factor values increase by ∼20-30% for all three proteins at low pH. Our results suggest that for the full-length PA, low pH increases the binding affinity, likely through a change in structure that favors a more "bound-like" conformation.
Collapse
|
23
|
Göttle M, Dove S, Seifert R. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Toxins (Basel) 2012; 4:505-35. [PMID: 22852066 PMCID: PMC3407890 DOI: 10.3390/toxins4070505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/15/2012] [Accepted: 06/27/2012] [Indexed: 12/20/2022] Open
Abstract
Since the isolation of Bacillus anthracis exotoxins in the 1960s, the detrimental activity of edema factor (EF) was considered as adenylyl cyclase activity only. Yet the catalytic site of EF was recently shown to accomplish cyclization of cytidine 5'-triphosphate, uridine 5'-triphosphate and inosine 5'-triphosphate, in addition to adenosine 5'-triphosphate. This review discusses the broad EF substrate specificity and possible implications of intracellular accumulation of cyclic cytidine 3':5'-monophosphate, cyclic uridine 3':5'-monophosphate and cyclic inosine 3':5'-monophosphate on cellular functions vital for host defense. In particular, cAMP-independent mechanisms of action of EF on host cell signaling via protein kinase A, protein kinase G, phosphodiesterases and CNG channels are discussed.
Collapse
Affiliation(s)
- Martin Göttle
- Department of Neurology, Emory University School of Medicine, 6302 Woodruff Memorial Research Building, 101 Woodruff Circle, Atlanta, GA 30322, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-404-727-1678; Fax: +1-404-727-3157
| | - Stefan Dove
- Department of Medicinal/Pharmaceutical Chemistry II, University of Regensburg, D-93040 Regensburg, Germany;
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany;
| |
Collapse
|
24
|
Thomas D, Naughton J, Cote C, Welkos S, Manchester M, Young JAT. Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment. PLoS One 2012; 7:e34611. [PMID: 22511955 PMCID: PMC3325282 DOI: 10.1371/journal.pone.0034611] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/21/2022] Open
Abstract
Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.
Collapse
Affiliation(s)
- Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John Naughton
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Christopher Cote
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Susan Welkos
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (MM); (JATY)
| |
Collapse
|
25
|
Bucci M. The pore of the matter. Nat Chem Biol 2012. [DOI: 10.1038/nchembio.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Fischer A. Synchronized Chaperone Function of Botulinum Neurotoxin Domains Mediates Light Chain Translocation into Neurons. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|