1
|
Wang F, Sun H, Kang C, Yan J, Chen J, Feng X, Yang B. Genomic island-encoded regulatory proteins in enterohemorrhagic Escherichia coli O157:H7. Virulence 2024; 15:2313407. [PMID: 38357901 PMCID: PMC10877973 DOI: 10.1080/21505594.2024.2313407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important zoonotic pathogen that is a major cause of foodborne diseases in most developed and developing countries and can cause uncomplicated diarrhoea, haemorrhagic colitis, and haemolytic uraemic syndrome. O islands (OIs), which are unique genomic islands in EHEC O157:H7, are composed of 177 isolated genomic features and harbour 26% of the total genes that are absent in the non-pathogenic E. coli K-12 genome. In the last twenty years, many OI-encoded proteins have been characterized, including proteins regulating virulence, motility, and acid resistance. Given the critical role of regulatory proteins in the systematic and hierarchical regulation of bacterial biological processes, this review summarizes the OI-encoded regulatory proteins in EHEC O157:H7 characterized to date, emphasizing OI-encoded regulatory proteins for bacterial virulence, motility, and acid resistance. This summary will be significant for further exploration and understanding of the virulence and pathogenesis of EHEC O157:H7.
Collapse
Affiliation(s)
- Fang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Intensive Care Unit, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Xuequan Feng
- Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
3
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
4
|
van Heesch T, van de Lagemaat EM, Vreede J. Deciphering Sequence-Specific DNA Binding by H-NS Using Molecular Simulation. Methods Mol Biol 2024; 2819:585-609. [PMID: 39028525 DOI: 10.1007/978-1-0716-3930-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
H-NS is a DNA organizing protein that occurs in Gram-negative bacteria. It can form long filaments between two DNA duplexes by first binding to a high-affinity AT-rich nucleotide sequence and extending from there. Using molecular dynamics simulations and steered molecular dynamics, we are able to determine the free energy of formation and dissociation of a protein-DNA complex comprising an H-NS DNA-binding domain and a specific nucleotide sequence. The molecular dynamics simulations allow detailed characterization of the interactions between the protein and a specific nucleotide sequence. To quantify the strength of the interaction, we employ an additional potential based on protein-DNA contacts to speed up dissociation of the protein-DNA complex. The work required for the dissociation results in an estimate of the free energy of dissociation/complex formation. Our protocol can provide quantitative prediction of protein-DNA complex stability, while also providing high-resolution insights into recognition mechanisms. In this chapter, we have used this approach to quantify the sequence specificity of H-NS DNA-binding domains to various nucleotide sequences, thus elucidating the mechanism with which H-NS can specifically bind to AT-rich DNA.
Collapse
Affiliation(s)
- Thor van Heesch
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eline M van de Lagemaat
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
van Heesch T, Bolhuis PG, Vreede J. Decoding dissociation of sequence-specific protein-DNA complexes with non-equilibrium simulations. Nucleic Acids Res 2023; 51:12150-12160. [PMID: 37953329 PMCID: PMC10711434 DOI: 10.1093/nar/gkad1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Sequence-specific protein-DNA interactions are crucial in processes such as DNA organization, gene regulation and DNA replication. Obtaining detailed insights into the recognition mechanisms of protein-DNA complexes through experiments is hampered by a lack of resolution in both space and time. Here, we present a molecular simulation approach to quantify the sequence specificity of protein-DNA complexes, that yields results fast, and is generally applicable to any protein-DNA complex. The approach is based on molecular dynamics simulations in combination with a sophisticated steering potential and results in an estimate of the free energy difference of dissociation. We provide predictions of the nucleotide specific binding affinity of the minor groove binding Histone-like Nucleoid Structuring (H-NS) protein, that are in agreement with experimental data. Furthermore, our approach offers mechanistic insight into the process of dissociation. Applying our approach to the major groove binding ETS domain in complex with three different nucleotide sequences identified the high affinity consensus sequence, quantitatively in agreement with experiments. Our protocol facilitates quantitative prediction of protein-DNA complex stability, while also providing high resolution insights into recognition mechanisms. As such, our simulation approach has the potential to yield detailed and quantitative insights into biological processes involving sequence-specific protein-DNA interactions.
Collapse
Affiliation(s)
- Thor van Heesch
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Netherlands
| | - Peter G Bolhuis
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Netherlands
| | - Jocelyne Vreede
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Netherlands
| |
Collapse
|
6
|
Bravo A, Moreno-Blanco A, Espinosa M. One Earth: The Equilibrium between the Human and the Bacterial Worlds. Int J Mol Sci 2023; 24:15047. [PMID: 37894729 PMCID: PMC10606248 DOI: 10.3390/ijms242015047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Misuse and abuse of antibiotics on humans, cattle, and crops have led to the selection of multi-resistant pathogenic bacteria, the most feared 'superbugs'. Infections caused by superbugs are progressively difficult to treat, with a subsequent increase in lethality: the toll on human lives is predicted to reach 10 million by 2050. Here we review three concepts linked to the growing resistance to antibiotics, namely (i) the Resistome, which refers to the collection of bacterial genes that confer resistance to antibiotics, (ii) the Mobilome, which includes all the mobile genetic elements that participate in the spreading of antibiotic resistance among bacteria by horizontal gene transfer processes, and (iii) the Nichome, which refers to the set of genes that are expressed when bacteria try to colonize new niches. We also discuss the strategies that can be used to tackle bacterial infections and propose an entente cordiale with the bacterial world so that instead of war and destruction of the 'fierce enemy' we can achieve a peaceful coexistence (the One Earth concept) between the human and the bacterial worlds. This, in turn, will contribute to microbial biodiversity, which is crucial in a globally changing climate due to anthropogenic activities.
Collapse
Affiliation(s)
- Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
7
|
Canals A, Pieretti S, Muriel-Masanes M, El Yaman N, Plecha SC, Thomson JJ, Fàbrega-Ferrer M, Pérez-Luque R, Krukonis ES, Coll M. ToxR activates the Vibrio cholerae virulence genes by tethering DNA to the membrane through versatile binding to multiple sites. Proc Natl Acad Sci U S A 2023; 120:e2304378120. [PMID: 37428913 PMCID: PMC10629549 DOI: 10.1073/pnas.2304378120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/12/2023] Open
Abstract
ToxR, a Vibrio cholerae transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in V. cholerae, here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the toxT and ompU promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.
Collapse
Affiliation(s)
- Albert Canals
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Simone Pieretti
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Mireia Muriel-Masanes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Nour El Yaman
- Department of Biology, University of Detroit Mercy, Detroit, MI48221
| | - Sarah C. Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Montserrat Fàbrega-Ferrer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Rosa Pérez-Luque
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| | - Eric S. Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI48208
| | - Miquel Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028Barcelona, Spain
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028Barcelona, Spain
| |
Collapse
|
8
|
Zhao X, Remington JM, Schneebeli ST, Arold ST, Li J. Molecular Basis for Environment Sensing by a Nucleoid-Structuring Bacterial Protein Filament. J Phys Chem Lett 2021; 12:7878-7884. [PMID: 34382809 PMCID: PMC9346976 DOI: 10.1021/acs.jpclett.1c01710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The histone-like nucleoid structuring (H-NS) protein controls the expression of hundreds of genes in Gram-positive bacteria through its capability to coat and condense DNA. This mechanism requires the formation of superhelical H-NS protein filaments that are sensitive to temperature and salinity, allowing H-NS to act as an environment sensor. We use multiscale modeling and simulations to obtain detailed insights into the mechanism of H-NS filament's sensitivity to environmental changes. Through the simulations of the superhelical H-NS filament, we reveal how different environments induce heterogeneity of H-NS monomers. Further, we observe that transient self-association within the H-NS filament creates temperature-inducible strain and might mildly oppose DNA binding. We also probe different H-NS-DNA complex architectures and show that complexation enhances the stability of both DNA and H-NS superhelices. Overall, our results provide unprecedented molecular insights into the environmental sensing and DNA interactions of a prototypical nucleoid-structuring bacterial protein filament.
Collapse
Affiliation(s)
- Xiaochuan Zhao
- Departments of Chemistry and Materials Science, University of Vermont, Burlington VT 05405
| | - Jacob M. Remington
- Departments of Chemistry and Materials Science, University of Vermont, Burlington VT 05405
| | - Severin T. Schneebeli
- Departments of Chemistry and Materials Science, University of Vermont, Burlington VT 05405
| | - Stefan T. Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Jianing Li
- Departments of Chemistry and Materials Science, University of Vermont, Burlington VT 05405
| |
Collapse
|
9
|
Lilic M, Darst SA, Campbell EA. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Mol Cell 2021; 81:2875-2886.e5. [PMID: 34171296 PMCID: PMC8311663 DOI: 10.1016/j.molcel.2021.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 01/25/2023]
Abstract
In pathogenic mycobacteria, transcriptional responses to antibiotics result in induced antibiotic resistance. WhiB7 belongs to the Actinobacteria-specific family of Fe-S-containing transcription factors and plays a crucial role in inducible antibiotic resistance in mycobacteria. Here, we present cryoelectron microscopy structures of Mycobacterium tuberculosis transcriptional regulatory complexes comprising RNA polymerase σA-holoenzyme, global regulators CarD and RbpA, and WhiB7, bound to a WhiB7-regulated promoter. The structures reveal how WhiB7 interacts with σA-holoenzyme while simultaneously interacting with an AT-rich sequence element via its AT-hook. Evidently, AT-hooks, rare elements in bacteria yet prevalent in eukaryotes, bind to target AT-rich DNA sequences similarly to the nuclear chromosome binding proteins. Unexpectedly, a subset of particles contained a WhiB7-stabilized closed promoter complex, revealing this intermediate's structure, and we apply kinetic modeling and biochemical assays to rationalize how WhiB7 activates transcription. Altogether, our work presents a comprehensive view of how WhiB7 serves to activate gene expression leading to antibiotic resistance.
Collapse
Affiliation(s)
- Mirjana Lilic
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
10
|
Andreozzi E, Uhlich GA. PchE Regulation of Escherichia coli O157:H7 Flagella, Controlling the Transition to Host Cell Attachment. Int J Mol Sci 2020; 21:ijms21134592. [PMID: 32605187 PMCID: PMC7369912 DOI: 10.3390/ijms21134592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins and intimate adhesion controlled by the locus of enterocyte effacement are major enterohemorrhagic Escherichia coli (EHEC) virulence factors. Curli fimbriae also contribute to cell adhesion and are essential biofilm components. The transcriptional regulator PchE represses the expression of curli and their adhesion to HEp-2 cells. Past studies indicate that pchE also represses additional adhesins that contribute to HEp-2 cell attachment. In this study, we tested for pchE regulation of several tissue adhesins and their regulators. Three adhesin-encoding genes (eae, lpfA1, fliC) and four master regulators (csgD, stpA, ler, flhDC) were controlled by pchE. pchE over-expression strongly up-regulated fliC but the marked flagella induction reduced the attachment of O157:H7 clinical isolate PA20 to HEp-2 cells, indicating that flagella were blocking cell attachments rather than functioning as an adhesin. Chemotaxis, motor, structural, and regulatory genes in the flagellar operons were all increased by pchE expression, as was PA20 motility. This study identifies new members in the pchE regulon and shows that pchE stimulates flagellar motility while repressing cell adhesion, likely to support EHEC movement to the intestinal surface early in infection. However, induced or inappropriate pchE-dependent flagellar expression could block cell attachments later during disease progression.
Collapse
|
11
|
Borges PT, Brissos V, Hernandez G, Masgrau L, Lucas MF, Monza E, Frazão C, Cordeiro TN, Martins LO. Methionine-Rich Loop of Multicopper Oxidase McoA Follows Open-to-Close Transitions with a Role in Enzyme Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Emanuele Monza
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
12
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
13
|
Predicting the mechanism and rate of H-NS binding to AT-rich DNA. PLoS Comput Biol 2019; 15:e1006845. [PMID: 30845209 PMCID: PMC6424460 DOI: 10.1371/journal.pcbi.1006845] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/19/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
Abstract
Bacteria contain several nucleoid-associated proteins that organize their genomic DNA into the nucleoid by bending, wrapping or bridging DNA. The Histone-like Nucleoid Structuring protein H-NS found in many Gram-negative bacteria is a DNA bridging protein and can structure DNA by binding to two separate DNA duplexes or to adjacent sites on the same duplex, depending on external conditions. Several nucleotide sequences have been identified to which H-NS binds with high affinity, indicating H-NS prefers AT-rich DNA. To date, highly detailed structural information of the H-NS DNA complex remains elusive. Molecular simulation can complement experiments by modelling structures and their time evolution in atomistic detail. In this paper we report an exploration of the different binding modes of H-NS to a high affinity nucleotide sequence and an estimate of the associated rate constant. By means of molecular dynamics simulations, we identified three types of binding for H-NS to AT-rich DNA. To further sample the transitions between these binding modes, we performed Replica Exchange Transition Interface Sampling, providing predictions of the mechanism and rate constant of H-NS binding to DNA. H-NS interacts with the DNA through a conserved QGR motif, aided by a conserved arginine at position 93. The QGR motif interacts first with phosphate groups, followed by the formation of hydrogen bonds between acceptors in the DNA minor groove and the sidechains of either Q112 or R114. After R114 inserts into the minor groove, the rest of the QGR motif follows. Full insertion of the QGR motif in the minor groove is stable over several tens of nanoseconds, and involves hydrogen bonds between the bases and both backbone and sidechains of the QGR motif. The rate constant for the process of H-NS binding to AT-rich DNA resulting in full insertion of the QGR motif is in the order of 106 M−1s−1, which is rate limiting compared to the non-specific association of H-NS to the DNA backbone at a rate of 108 M−1s−1. The Histone-like Nucleoid Structuring protein (H-NS) occurs in enterobacteria, such as Salmonella typhimurium and Escherichia coli, and structures DNA by forming filaments along DNA duplexes. Several nucleotide sequences have been identified to which H-NS binds with high affinity. Yet, obtaining highly detailed structural information of the H-NS DNA complex has proven to be a major challenge, which has not been yet resolved. By employing molecular dynamics simulations we were able to provide high resolution insights into the mechanism of DNA binding by H-NS. We identified various ways in which H-NS can bind to DNA. In all binding events, a conserved region in the protein initiates the association of H-NS to DNA. Our results show that H-NS binds in the minor groove of AT-rich DNA via a series of intermediate steps. Using advanced molecular simulation methods we predicted that the process of H-NS binding to the DNA backbone to full insertion into the minor groove occurs in the order of a million times per second, which is slower than the non-specific association of H-NS to the DNA backbone.
Collapse
|
14
|
Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation. Sci Rep 2018; 8:17238. [PMID: 30467359 PMCID: PMC6250670 DOI: 10.1038/s41598-018-35432-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
MucR is a member of the Ros/MucR family of prokaryotic zinc-finger proteins found in the α-proteobacteria which regulate the expression of genes required for the successful pathogenic and symbiotic interactions of these bacteria with the eukaryotic hosts. The structure and function of their distinctive zinc-finger domain has been well-studied, but only recently the quaternary structure of the full length proteins was investigated demonstrating their ability to form higher-order oligomers. The aim of this study was to identify the region of MucR involved in higher-order oligomer formation by analysing deletion and point mutants of this protein by Light Scattering, and to determine the role that MucR oligomerization plays in the regulatory function of this protein. Here we demonstrate that a conserved hydrophobic region at the N-terminus of MucR is responsible for higher-order oligomer formation and that MucR oligomerization is essential for its regulatory function in Brucella. All these features of MucR are shared by the histone-like nucleoid structuring protein, (H-NS), leading us to propose that the prokaryotic zinc-finger proteins in the MucR/Ros family control gene expression employing a mechanism similar to that used by the H-NS proteins, rather than working as classical transcriptional regulators.
Collapse
|
15
|
Platenkamp A, Mellies JL. Environment Controls LEE Regulation in Enteropathogenic Escherichia coli. Front Microbiol 2018; 9:1694. [PMID: 30140259 PMCID: PMC6094958 DOI: 10.3389/fmicb.2018.01694] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a significant cause of infant morbidity and mortality in developing regions of the world. Horizontally acquired genetic elements encode virulence structures, effectors, and regulators that promote bacterial colonization and disease. One such genetic element, the locus of enterocyte effacement (LEE), encodes the type three secretion system (T3SS) which acts as a bridge between bacterial and host cells to pass effector molecules that exert changes on the host. Due to its importance in EPEC virulence, regulation of the LEE has been of high priority and its investigation has elucidated many virulence regulators, including master regulator of the LEE Ler, H-NS, other nucleoid-associated proteins, GrlA, and PerC. Media type, environmental signals, sRNA signaling, metabolic processes, and stress responses have profound, strain-specific effects on regulators and LEE expression, and thus T3SS formation. Here we review virulence gene regulation in EPEC, which includes approaches for lessening disease by exploiting the elucidated regulatory pathways.
Collapse
Affiliation(s)
- Amy Platenkamp
- Department of Biology, Reed College, Portland, OR, United States
| | - Jay L Mellies
- Department of Biology, Reed College, Portland, OR, United States
| |
Collapse
|
16
|
Käppel S, Melzer R, Rümpler F, Gafert C, Theißen G. The floral homeotic protein SEPALLATA3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:341-357. [PMID: 29744943 DOI: 10.1111/tpj.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
SEPALLATA3 of Arabidopsis thaliana is a MADS-domain transcription factor (TF) and a key regulator of flower development. MADS-domain proteins bind to sequences termed 'CArG-boxes' [consensus 5'-CC(A/T)6 GG-3']. Because only a fraction of the CArG-boxes in the Arabidopsis genome are bound by SEPALLATA3, more elaborate principles have to be discovered to better understand which features turn CArG-boxes into genuine recognition sites. Here, we investigate to what extent the shape of the DNA is involved in a 'shape readout' that contributes to the binding of SEPALLATA3. We determined in vitro binding affinities of SEPALLATA3 to DNA probes that all contain the CArG-box motif, but differ in their predicted DNA shape. We found that binding affinity correlates well with a narrow minor groove of the DNA. Substitution of canonical bases with non-standard bases supports the hypothesis of minor groove shape readout by SEPALLATA3. Analysis of mutant SEPALLATA3 proteins further revealed that a highly conserved arginine residue, which is expected to contact the DNA minor groove, contributes significantly to the shape readout. Our studies show that the specific recognition of cis-regulatory elements by a plant MADS-domain TF, and by inference probably also of other TFs of this type, heavily depends on shape readout mechanisms.
Collapse
Affiliation(s)
- Sandra Käppel
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Florian Rümpler
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Christian Gafert
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743, Jena, Germany
| |
Collapse
|
17
|
Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018; 46:5525-5546. [PMID: 29718386 PMCID: PMC6009659 DOI: 10.1093/nar/gky265] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.
Collapse
Affiliation(s)
- Beth A Boudreau
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Liang Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Ramon A van der Valk
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, Netherlands
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells. Proc Natl Acad Sci U S A 2017; 114:12560-12565. [PMID: 29109287 DOI: 10.1073/pnas.1716721114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.
Collapse
|
19
|
Structure and function of bacterial H-NS protein. Biochem Soc Trans 2017; 44:1561-1569. [PMID: 27913665 DOI: 10.1042/bst20160190] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023]
Abstract
The histone-like nucleoid structuring (H-NS) protein is a major component of the folded chromosome in Escherichia coli and related bacteria. Functions attributed to H-NS include management of genome evolution, DNA condensation, and transcription. The wide-ranging influence of H-NS is remarkable given the simplicity of the protein, a small peptide, possessing rudimentary determinants for self-association, hetero-oligomerisation and DNA binding. In this review, I will discuss our understanding of H-NS with a focus on these structural elements. In particular, I will consider how these interaction surfaces allow H-NS to exert its different effects.
Collapse
|
20
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
21
|
Shin M. The mechanism underlying Ler-mediated alleviation of gene repression by H-NS. Biochem Biophys Res Commun 2016; 483:392-396. [PMID: 28013045 DOI: 10.1016/j.bbrc.2016.12.132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Secretion of effector proteins in Enteropathogeneic Escherichia coli (EPEC) and Enterohemorrhagic Escherichia coli (EHEC) is mediated by a specialized type III secretion system, components of which are encoded in the LEE operons 1 to 5. H-NS, a global repressor in E. coli, silences the expression of LEE operons. Ler, a master regulator in LEE operons, shares 24% amnio acid identity and 44% amino acid similarity to H-NS. Interestingly, rather than a gene silencer, its main role has been characterized as an antagonizing protein that relieves H-NS-mediated transcriptional silencing. In the previous study we reported molecular mechanism for the repression of LEE5 promoter in EPEC and EHEC by H-NS as a protein interaction between upstream DNA-bound H-NS and the αCTD of promoter-bound RNA polymerase. The mechanism underlying Ler-mediated alleviation of the genes repression by H-NS is largely unknown. We examined regulatory effect of these proteins on LEE5p activity using various in vitro tools. Our results revealed that binding affinity of Ler to the LEE5p DNA is about 40 folds greater than that of H-NS as determined by surface plasmon resonance. We verified that Ler binding removed H-NS bound to the same stretch of DNA on LEE5 promoter resulting in a derepression.
Collapse
Affiliation(s)
- Minsang Shin
- Department of Microbiology, Kyungpook National University School of Medicine, 680 Gukchaebosang-Ro, Jung-gu, Daegu, 41944, South Korea.
| |
Collapse
|
22
|
Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:89-100. [PMID: 28510216 DOI: 10.1007/s12551-016-0238-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthew J Dorman
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
23
|
Solano-Collado V, Hüttener M, Espinosa M, Juárez A, Bravo A. Mga Spn and H-NS: Two Unrelated Global Regulators with Similar DNA-Binding Properties. Front Mol Biosci 2016; 3:60. [PMID: 27747214 PMCID: PMC5040716 DOI: 10.3389/fmolb.2016.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/15/2016] [Indexed: 11/13/2022] Open
Abstract
Global regulators play an essential role in the adaptation of bacterial cells to specific niches. Bacterial pathogens thriving in the tissues and organs of their eukaryotic hosts are a well-studied example. Some of the proteins that recognize local DNA structures rather than specific nucleotide sequences act as global modulators in many bacteria, both Gram-negative and -positive. To this class of regulators belong the H-NS-like proteins, mainly identified in γ-Proteobacteria, and the MgaSpn-like proteins identified in Firmicutes. H-NS and MgaSpn from Escherichia coli and Streptococcus pneumoniae, respectively, neither have sequence similarity nor share structural domains. Nevertheless, they display common features in their interaction with DNA, namely: (i) they bind to DNA in a non-sequence-specific manner, (ii) they have a preference for intrinsically curved DNA regions, and (iii) they are able to form multimeric complexes on linear DNA. Using DNA fragments from the hemolysin operon regulatory region of the E. coli plasmid pHly152, we show in this work that MgaSpn is able to recognize particular regions on extended H-NS binding sites. Such regions are either located at or flanked by regions of potential bendability. Moreover, we show that the regulatory region of the pneumococcal P1623B promoter, which is recognized by MgaSpn, contains DNA motifs that are recognized by H-NS. These motifs are adjacent to regions of potential bendability. Our results suggest that both regulatory proteins recognize similar structural characteristics of DNA.
Collapse
Affiliation(s)
- Virtu Solano-Collado
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Mário Hüttener
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Antonio Juárez
- Departament de Microbiologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain; Institut de Bioenginyeria de CatalunyaBarcelona, Spain
| | - Alicia Bravo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
24
|
Abstract
The H-NS family of DNA-binding proteins is the subject of intense study due to its important roles in the regulation of horizontally acquired genes critical for virulence, antibiotic resistance, and metabolism. Xenogeneic silencing proteins, typified by the H-NS protein of Escherichia coli, specifically target and downregulate expression from AT-rich genes by selectively recognizing specific structural features unique to the AT-rich minor groove. In doing so, these proteins facilitate bacterial evolution; enabling these cells to engage in horizontal gene transfer while buffering potential any detrimental fitness consequences that may result from it. Xenogeneic silencing and counter-silencing explain how bacterial cells can evolve effective gene regulatory strategies in the face of rampant gene gain and loss and it has extended our understanding of bacterial gene regulation beyond the classic operon model. Here we review the structures and mechanisms of xenogeneic silencers as well as their impact on bacterial evolution. Several H-NS-like proteins appear to play a role in facilitating gene transfer by other mechanisms including by regulating transposition, conjugation, and participating in the activation of virulence loci like the locus of enterocyte effacement pathogenicity island of pathogenic strains of E. coli. Evidence suggests that the critical determinants that dictate whether an H-NS-like protein will be a silencer or will perform a different function do not lie in the DNA-binding domain but, rather, in the domains that control oligomerization. This suggests that H-NS-like proteins are transcription factors that both recognize and alter the shape of DNA to exert specific effects that include but are not limited to gene silencing.
Collapse
|
25
|
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J. Silencing of cryptic prophages in Corynebacterium glutamicum. Nucleic Acids Res 2016; 44:10117-10131. [PMID: 27492287 PMCID: PMC5137423 DOI: 10.1093/nar/gkw692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
DNA of viral origin represents a ubiquitous element of bacterial genomes. Its integration into host regulatory circuits is a pivotal driver of microbial evolution but requires the stringent regulation of phage gene activity. In this study, we describe the nucleoid-associated protein CgpS, which represents an essential protein functioning as a xenogeneic silencer in the Gram-positive Corynebacterium glutamicum. CgpS is encoded by the cryptic prophage CGP3 of the C. glutamicum strain ATCC 13032 and was first identified by DNA affinity chromatography using an early phage promoter of CGP3. Genome-wide profiling of CgpS binding using chromatin affinity purification and sequencing (ChAP-Seq) revealed its association with AT-rich DNA elements, including the entire CGP3 prophage region (187 kbp), as well as several other elements acquired by horizontal gene transfer. Countersilencing of CgpS resulted in a significantly increased induction frequency of the CGP3 prophage. In contrast, a strain lacking the CGP3 prophage was not affected and displayed stable growth. In a bioinformatics approach, cgpS orthologs were identified primarily in actinobacterial genomes as well as several phage and prophage genomes. Sequence analysis of 618 orthologous proteins revealed a strong conservation of the secondary structure, supporting an ancient function of these xenogeneic silencers in phage-host interaction.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ovidiu Popa
- Quantitative and Theoretical Biology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tino Polen
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
26
|
Abstract
The H-NS (heat-stable nucleoid structuring) protein affects both nucleoid compaction and global gene regulation. H-NS appears to act primarily as a silencer of AT-rich genetic material acquired by horizontal gene transfer. As such, it is key in the regulation of most genes involved in virulence and in adaptation to new environmental niches. Here we review recent progress in understanding the biochemistry of H-NS and how xenogeneic silencing affects bacterial evolution. We highlight the strengths and weaknesses of some of the models proposed in H-NS-mediated nucleoprotein complex formation. Based on recent single-molecule studies, we also propose a novel mode of DNA compaction by H-NS termed intrabridging to explain over two decades of observations of the H-NS molecule.
Collapse
Affiliation(s)
- Kamna Singh
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada;
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Ontario L5L 1C6, Canada.,Department of Physics, University of Toronto, Ontario M5S 1A7, Canada
| | | |
Collapse
|
27
|
DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:209-220. [PMID: 28510224 DOI: 10.1007/s12551-016-0205-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
|
28
|
Wan B, Zhang Q, Tao J, Zhou A, Yao YF, Ni J. Global transcriptional regulation by H-NS and its biological influence on the virulence of Enterohemorrhagic Escherichia coli. Gene 2016; 588:115-23. [PMID: 27173635 DOI: 10.1016/j.gene.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
As a global transcriptional regulator, H-NS, the histone-like nucleoid-associated DNA-binding and bridging protein, plays a wide range of biological roles in bacteria. In order to determine the role of H-NS in regulating gene transcription and further find out the biological significance of this protein in Enterohemorrhagic Escherichia coli (EHEC), we conducted transcriptome analysis of hns mutant by RNA sequencing. A total of 983 genes were identified to be regulated by H-NS in EHEC. 213 and 770 genes were down-regulated and up-regulated in the deletion mutant of hns, respectively. Interestingly, 34 of 97 genes on virulence plasmid pO157 were down-regulated by H-NS. Although the deletion mutant of hns showed a decreased survival rate in macrophage compared with the wild type strain, it exhibited the higher ability to colonize mice gut and became more virulent to BALB/c mice. The BALB/c mice infected with the deletion mutant of hns showed a lower survival rate, and a higher bacterial burden in the gut, compared with those infected with wild type strain, especially when the gut microbiota was not disturbed by antibiotic administration. These findings suggest that H-NS plays an important role in virulence of EHEC by interacting with host gut microbiota.
Collapse
Affiliation(s)
- Baoshan Wan
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufen Zhang
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Department of Microbiology and Immunology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
van der Maarel JRC, Guttula D, Arluison V, Egelhaaf SU, Grillo I, Forsyth VT. Structure of the H-NS-DNA nucleoprotein complex. SOFT MATTER 2016; 12:3636-3642. [PMID: 26976786 DOI: 10.1039/c5sm03076e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleoid associated proteins (NAPs) play a key role in the compaction and expression of the prokaryotic genome. Here we report the organisation of a major NAP, the protein H-NS on a double stranded DNA fragment. For this purpose we have carried out a small angle neutron scattering study in conjunction with contrast variation to obtain the contributions to the scattering (structure factors) from DNA and H-NS. The H-NS structure factor agrees with a heterogeneous, two-state binding model with sections of the DNA duplex surrounded by protein and other sections having protein bound to the major groove. In the presence of magnesium chloride, we observed a structural rearrangement through a decrease in cross-sectional diameter of the nucleoprotein complex and an increase in fraction of major groove bound H-NS. The two observed binding modes and their modulation by magnesium ions provide a structural basis for H-NS-mediated genome organisation and expression regulation.
Collapse
Affiliation(s)
| | - Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin UMR 12 CEA, CNRS, Université Paris Saclay, CEA-Saclay, Gif sur Yvette Cedex 91191, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Stefan U Egelhaaf
- Heinrich-Heine University, Condensed Matter Physics Laboratory, Düsseldorf, 40225, Germany
| | | | - V Trevor Forsyth
- Institut Laue-Langevin, 38042 Grenoble, France and Keele University, Faculty of Natural Sciences, Staffordshire, ST5 5BG, UK
| |
Collapse
|
30
|
Cordeiro TN, García J, Bernadó P, Millet O, Pons M. A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing. J Biol Chem 2015; 290:21200-12. [PMID: 26085102 DOI: 10.1074/jbc.m114.630400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/31/2022] Open
Abstract
The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related.
Collapse
Affiliation(s)
- Tiago N Cordeiro
- From the Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain, Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, 34092 Montpellier, France
| | - Jesús García
- Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain, and
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, 34092 Montpellier, France
| | - Oscar Millet
- the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Elexalde, Derio, Spain
| | - Miquel Pons
- From the Biomolecular NMR Laboratory, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain,
| |
Collapse
|
31
|
Ding P, McFarland KA, Jin S, Tong G, Duan B, Yang A, Hughes TR, Liu J, Dove SL, Navarre WW, Xia B. A Novel AT-Rich DNA Recognition Mechanism for Bacterial Xenogeneic Silencer MvaT. PLoS Pathog 2015; 11:e1004967. [PMID: 26068099 PMCID: PMC4466236 DOI: 10.1371/journal.ppat.1004967] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial xenogeneic silencing proteins selectively bind to and silence expression from many AT rich regions of the chromosome. They serve as master regulators of horizontally acquired DNA, including a large number of virulence genes. To date, three distinct families of xenogeneic silencers have been identified: H-NS of Proteobacteria, Lsr2 of the Actinomycetes, and MvaT of Pseudomonas sp. Although H-NS and Lsr2 family proteins are structurally different, they all recognize the AT-rich DNA minor groove through a common AT-hook-like motif, which is absent in the MvaT family. Thus, the DNA binding mechanism of MvaT has not been determined. Here, we report the characteristics of DNA sequences targeted by MvaT with protein binding microarrays, which indicates that MvaT prefers binding flexible DNA sequences with multiple TpA steps. We demonstrate that there are clear differences in sequence preferences between MvaT and the other two xenogeneic silencer families. We also determined the structure of the DNA-binding domain of MvaT in complex with a high affinity DNA dodecamer using solution NMR. This is the first experimental structure of a xenogeneic silencer in complex with DNA, which reveals that MvaT recognizes the AT-rich DNA both through base readout by an "AT-pincer" motif inserted into the minor groove and through shape readout by multiple lysine side chains interacting with the DNA sugar-phosphate backbone. Mutations of key MvaT residues for DNA binding confirm their importance with both in vitro and in vivo assays. This novel DNA binding mode enables MvaT to better tolerate GC-base pair interruptions in the binding site and less prefer A tract DNA when compared to H-NS and Lsr2. Comparison of MvaT with other bacterial xenogeneic silencers provides a clear picture that nature has evolved unique solutions for different bacterial genera to distinguish foreign from self DNA.
Collapse
Affiliation(s)
- Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kirsty A. McFarland
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shujuan Jin
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Grace Tong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bo Duan
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ally Yang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R. Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SLD); (WWN); (BX)
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (SLD); (WWN); (BX)
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, School of Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (SLD); (WWN); (BX)
| |
Collapse
|
32
|
Melekhov VV, Shvyreva US, Timchenko AA, Tutukina MN, Preobrazhenskaya EV, Burkova DV, Artiukhov VG, Ozoline ON, Antipov SS. Modes of Escherichia coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy. PLoS One 2015; 10:e0126504. [PMID: 25978038 PMCID: PMC4433220 DOI: 10.1371/journal.pone.0126504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.
Collapse
Affiliation(s)
- Vladislav V. Melekhov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Uliana S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander A. Timchenko
- Department of Physics of Nucleoproteids, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Maria N. Tutukina
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | | | - Diana V. Burkova
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Valiriy G. Artiukhov
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Olga N. Ozoline
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| | - Sergey S. Antipov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| |
Collapse
|
33
|
Chintakayala K, Sellars LE, Singh SS, Shahapure R, Westerlaken I, Meyer AS, Dame RT, Grainger DC. DNA recognition by Escherichia coli CbpA protein requires a conserved arginine-minor-groove interaction. Nucleic Acids Res 2015; 43:2282-92. [PMID: 25670677 PMCID: PMC4344490 DOI: 10.1093/nar/gkv012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Curved DNA binding protein A (CbpA) is a co-chaperone and nucleoid associated DNA binding protein conserved in most γ-proteobacteria. Best studied in Escherichia coli, CbpA accumulates to >2500 copies per cell during periods of starvation and forms aggregates with DNA. However, the molecular basis for DNA binding is unknown; CbpA lacks motifs found in other bacterial DNA binding proteins. Here, we have used a combination of genetics and biochemistry to elucidate the mechanism of DNA recognition by CbpA. We show that CbpA interacts with the DNA minor groove. This interaction requires a highly conserved arginine side chain. Substitution of this residue, R116, with alanine, specifically disrupts DNA binding by CbpA, and its homologues from other bacteria, whilst not affecting other CbpA activities. The intracellular distribution of CbpA alters dramatically when DNA binding is negated. Hence, we provide a direct link between DNA binding and the behaviour of CbpA in cells.
Collapse
Affiliation(s)
- Kiran Chintakayala
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura E Sellars
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shivani S Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rajesh Shahapure
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - Ilja Westerlaken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Anne S Meyer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Remus T Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands
| | - David C Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
34
|
H-NS and RNA polymerase: a love-hate relationship? Curr Opin Microbiol 2015; 24:53-9. [PMID: 25638302 DOI: 10.1016/j.mib.2015.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/24/2014] [Accepted: 01/10/2015] [Indexed: 01/23/2023]
Abstract
Histone-like nucleoid structuring (H-NS) protein is a component of bacterial chromatin and influences gene expression both locally and on a global scale. Although H-NS is broadly considered a silencer of transcription, the mechanisms by which H-NS inhibits gene expression remain poorly understood. Here we discuss recent advances in the context of a 'love-hate' relationship between H-NS and RNA polymerase, in which these factors recognise similar DNA sequences but interfere with each other's activity. Understanding the complex relationship between H-NS and RNA polymerase may unite the multiple models that have been proposed to describe gene silencing by H-NS.
Collapse
|
35
|
Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. eLife 2015; 4. [PMID: 25594903 PMCID: PMC4337669 DOI: 10.7554/elife.04970] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
Bacterial H-NS forms nucleoprotein filaments that spread on DNA and bridge distant DNA sites. H-NS filaments co-localize with sites of Rho-dependent termination in Escherichia coli, but their direct effects on transcriptional pausing and termination are untested. In this study, we report that bridged H-NS filaments strongly increase pausing by E. coli RNA polymerase at a subset of pause sites with high potential for backtracking. Bridged but not linear H-NS filaments promoted Rho-dependent termination by increasing pause dwell times and the kinetic window for Rho action. By observing single H-NS filaments and elongating RNA polymerase molecules using atomic force microscopy, we established that bridged filaments surround paused complexes. Our results favor a model in which H-NS-constrained changes in DNA supercoiling driven by transcription promote pausing at backtracking-susceptible sites. Our findings provide a mechanistic rationale for H-NS stimulation of Rho-dependent termination in horizontally transferred genes and during pervasive antisense and noncoding transcription in bacteria.
Collapse
Affiliation(s)
- Matthew V Kotlajich
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Daniel R Hron
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Beth A Boudreau
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
36
|
Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014; 75:1-11. [DOI: 10.1016/j.plasmid.2014.06.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
|
37
|
DNA looping-dependent autorepression of LEE1 P1 promoters by Ler in enteropathogenic Escherichia coli (EPEC). Proc Natl Acad Sci U S A 2014; 111:E2586-95. [PMID: 24920590 DOI: 10.1073/pnas.1322033111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of enterocyte effacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS-mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position -111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex (RPO) at these promoters during transcription initiation.
Collapse
|
38
|
Winardhi RS, Gulvady R, Mellies JL, Yan J. Locus of enterocyte effacement-encoded regulator (Ler) of pathogenic Escherichia coli competes off histone-like nucleoid-structuring protein (H-NS) through noncooperative DNA binding. J Biol Chem 2014; 289:13739-50. [PMID: 24668810 DOI: 10.1074/jbc.m113.545954] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The locus of enterocyte effacement-encoded regulator (Ler) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) functions to activate transcription of virulence genes silenced by the histone-like nucleoid-structuring protein (H-NS). Despite its important role in the bacterial gene regulation, the binding mode of Ler to DNA and its mechanism in alleviating genes repressed by H-NS are largely unknown. In this study, we use magnetic tweezers to demonstrate that Ler binds extended DNA through a largely noncooperative process, which results in DNA stiffening and DNA folding depending on protein concentration. We also show that Ler can replace prebound H-NS on DNA over a range of potassium and magnesium concentrations. Our findings reveal the DNA binding properties of Ler and shed light to further understand the anti-silencing activity of Ler.
Collapse
Affiliation(s)
- Ricksen S Winardhi
- From the NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore, the Mechanobiology Institute, Singapore 117411, Singapore, the Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ranjit Gulvady
- the Mechanobiology Institute, Singapore 117411, Singapore, the Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jay L Mellies
- the Biology Department, Reed College, Portland, Oregon 97202, and
| | - Jie Yan
- the Mechanobiology Institute, Singapore 117411, Singapore, the Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore, the Department of Physics, National University of Singapore, Singapore 117542, Singapore
| |
Collapse
|
39
|
Bhat AP, Shin M, Choy HE. Identification of high-specificity H-NS binding site in LEE5 promoter of enteropathogenic Esherichia coli (EPEC). J Microbiol 2014; 52:626-9. [PMID: 24610333 DOI: 10.1007/s12275-014-3562-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022]
Abstract
Histone-like nucleoid structuring protein (H-NS) is a small but abundant protein present in enteric bacteria and is involved in compaction of the DNA and regulation of the transcription. Recent reports have suggested that H-NS binds to a specific AT rich DNA sequence than to intrinsically curved DNA in sequence independent manner. We detected two high-specificity H-NS binding sites in LEE5 promoter of EPEC centered at -110 and -138, which were close to the proposed consensus H-NS binding motif. To identify H-NS binding sequence in LEE5 promoter, we took a random mutagenesis approach and found the mutations at around -138 were specifically defective in the regulation by H-NS. It was concluded that H-NS exerts maximum repression via the specific sequence at around -138 and subsequently contacts a subunit of RNAP through oligomerization.
Collapse
Affiliation(s)
- Abhay Prasad Bhat
- Center for Host Defense against Enteropathogenic Bacteria Infection, Chonnam National University Medical School, Kwangju, 501-746, Republic of Korea
| | | | | |
Collapse
|
40
|
Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B, Landon C. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea. PLoS One 2014; 9:e88809. [PMID: 24558431 PMCID: PMC3928310 DOI: 10.1371/journal.pone.0088809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
- * E-mail:
| | - Olivier Delalande
- Faculté des Sciences Pharmaceutiques et Biologiques, Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique UMR 6290, Université de Rennes1, Rennes, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| |
Collapse
|
41
|
Levine JA, Hansen AM, Michalski JM, Hazen TH, Rasko DA, Kaper JB. H-NST induces LEE expression and the formation of attaching and effacing lesions in enterohemorrhagic Escherichia coli. PLoS One 2014; 9:e86618. [PMID: 24466172 PMCID: PMC3897749 DOI: 10.1371/journal.pone.0086618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. Results We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. Conclusions H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.
Collapse
Affiliation(s)
- Jonathan A. Levine
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Bingle LEH, Constantinidou C, Shaw RK, Islam MS, Patel M, Snyder LAS, Lee DJ, Penn CW, Busby SJW, Pallen MJ. Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains. PLoS One 2014; 9:e80160. [PMID: 24454682 PMCID: PMC3891560 DOI: 10.1371/journal.pone.0080160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
The type III protein secretion system is an important pathogenicity factor of enteropathogenic and enterohaemorrhagic Escherichia coli pathotypes. The genes encoding this apparatus are located on a pathogenicity island (the locus of enterocyte effacement) and are transcriptionally activated by the master regulator Ler. In each pathotype Ler is also known to regulate genes located elsewhere on the chromosome, but the full extent of the Ler regulon is unclear, especially for enteropathogenic E. coli. The Ler regulon was defined for two strains of E. coli: E2348/69 (enteropathogenic) and EDL933 (enterohaemorrhagic) in mid and late log phases of growth by DNA microarray analysis of the transcriptomes of wild-type and ler mutant versions of each strain. In both strains the Ler regulon is focused on the locus of enterocyte effacement - all major transcriptional units of which are activated by Ler, with the sole exception of the LEE1 operon during mid-log phase growth in E2348/69. However, the Ler regulon does extend more widely and also includes unlinked pathogenicity genes: in E2348/69 more than 50 genes outside of this locus were regulated, including a number of known or potential pathogenicity determinants; in EDL933 only 4 extra-LEE genes, again including known pathogenicity factors, were activated. In E2348/69, where the Ler regulon is clearly growth phase dependent, a number of genes including the plasmid-encoded regulator operon perABC, were found to be negatively regulated by Ler. Negative regulation by Ler of PerC, itself a positive regulator of the ler promoter, suggests a negative feedback loop involving these proteins.
Collapse
Affiliation(s)
- Lewis E. H. Bingle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Robert K. Shaw
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Md. Shahidul Islam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mala Patel
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lori A. S. Snyder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David J. Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Charles W. Penn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Stephen J. W. Busby
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mark J. Pallen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Zhitnikova MY, Boryskina OP, Shestopalova AV. Sequence-specific transitions of the torsion angle gamma change the polar-hydrophobic profile of the DNA grooves: implication for indirect protein-DNA recognition. J Biomol Struct Dyn 2013; 32:1670-85. [PMID: 23998351 DOI: 10.1080/07391102.2013.830579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5'-C5'-C4'-C3') are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein-nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein-DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.
Collapse
Affiliation(s)
- Mariia Yu Zhitnikova
- a O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine , Acad. Proskura Street, 12, Kharkiv , 61085 , Ukraine
| | | | | |
Collapse
|
44
|
On the Origin of the Selectivity of Plasmidic H-NS towards Horizontally Acquired DNA: Linking H-NS Oligomerization and Cooperative DNA Binding. J Mol Biol 2013; 425:2347-58. [DOI: 10.1016/j.jmb.2013.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 11/24/2022]
|
45
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
46
|
Renault M, García J, Cordeiro TN, Baldus M, Pons M. Protein oligomers studied by solid-state NMR--the case of the full-length nucleoid-associated protein histone-like nucleoid structuring protein. FEBS J 2013; 280:2916-28. [PMID: 23601147 DOI: 10.1111/febs.12297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 04/03/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Members of the histone-like nucleoid structuring protein (H-NS) family play roles both as architectural proteins and as modulators of gene expression in Gram-negative bacteria. The H-NS protein participates in modulatory processes that respond to environmental changes in osmolarity, pH, or temperature. H-NS oligomerization is essential for its activity. Structural models of different truncated forms are available. However, high-resolution structural details of full-length H-NS and its DNA-bound state have largely remained elusive. We report on progress in characterizing the biologically active H-NS oligomers with solid-state NMR. We compared uniformly ((13)C,(15)N)-labeled ssNMR preparations of the isolated N-terminal region (H-NS 1-47) and full-length H-NS (H-NS 1-137). In both cases, we obtained ssNMR spectra of good quality and characteristic of well-folded proteins. Analysis of the results of 2D and 3D (13)C-(13)C and (15)N-(13)C correlation experiments conducted at high magnetic field led to assignments of residues located in different topological regions of the free full-length H-NS. These findings confirm that the structure of the N-terminal dimerization domain is conserved in the oligomeric full-length protein. Small changes in the dimerization interface suggested by localized chemical shift variations between solution and solid-state spectra may be relevant for DNA recoginition.
Collapse
Affiliation(s)
- Marie Renault
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 2013; 81:2574-83. [PMID: 23649094 DOI: 10.1128/iai.00065-13] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has become a major problem in the clinical setting with the prevalence of infections caused by multidrug-resistant strains on the increase. Nevertheless, only a limited number of molecular mechanisms involved in the success of A. baumannii as a human pathogen have been described. In this study, we examined the virulence features of a hypermotile derivative of A. baumannii strain ATCC 17978, which was found to display enhanced adherence to human pneumocytes and elevated levels of lethality toward Caenorhabditis elegans nematodes. Analysis of cellular lipids revealed modifications to the fatty acid composition, providing a possible explanation for the observed changes in hydrophobicity and subsequent alteration in adherence and motility. Comparison of the genome sequences of the hypermotile variant and parental strain revealed that an insertion sequence had disrupted an hns-like gene in the variant. This gene encodes a homologue of the histone-like nucleoid structuring (H-NS) protein, a known global transcriptional repressor. Transcriptome analysis identified the global effects of this mutation on gene expression, with major changes seen in the autotransporter Ata, a type VI secretion system, and a type I pilus cluster. Interestingly, isolation and analysis of a second independent hypermotile ATCC 17978 variant revealed a mutation to a residue within the DNA binding region of H-NS. Taken together, these mutants indicate that the phenotypic and transcriptomic differences seen are due to loss of regulatory control effected by H-NS.
Collapse
|
48
|
Czapla L, Grosner MA, Swigon D, Olson WK. Interplay of protein and DNA structure revealed in simulations of the lac operon. PLoS One 2013; 8:e56548. [PMID: 23457581 PMCID: PMC3572996 DOI: 10.1371/journal.pone.0056548] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.
Collapse
Affiliation(s)
- Luke Czapla
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Michael A. Grosner
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - David Swigon
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
49
|
García J, Cordeiro TN, Prieto MJ, Pons M. Oligomerization and DNA binding of Ler, a master regulator of pathogenicity of enterohemorrhagic and enteropathogenic Escherichia coli. Nucleic Acids Res 2012; 40:10254-62. [PMID: 22965122 PMCID: PMC3488262 DOI: 10.1093/nar/gks846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ler is a DNA-binding, oligomerizable protein that regulates pathogenicity islands in enterohemorrhagic and enteropathogenic Escherichia coli strains. Ler counteracts the transcriptional silencing effect of H-NS, another oligomerizable nucleoid-associated protein. We studied the oligomerization of Ler in the absence and presence of DNA by atomic force microscopy. Ler forms compact particles with a multimodal size distribution corresponding to multiples of 3–5 units of Ler. DNA wraps around Ler particles that contain more than 15–16 Ler monomers. The resulting shortening of the DNA contour length is in agreement with previous measurements of the length of DNA protected by Ler in footprinting assays. We propose that the repetition unit corresponds to the number of monomers per turn of a tight helical Ler oligomer. While the repressor (H-NS) and anti-repressor (Ler) have similar DNA-binding domains, their oligomerization domains are unrelated. We suggest that the different oligomerization behavior of the two proteins explains the opposite results of their interaction with the same or proximal regions of DNA.
Collapse
Affiliation(s)
- Jesús García
- Structural and Computational Biology, Institute for Research in Biomedicine, Department of Microbiology, University of Barcelona, Barcelona 08028, Spain.
| | | | | | | |
Collapse
|
50
|
Rosselli-Murai LK, Sforça ML, Sassonia RC, Azzoni AR, Murai MJ, de Souza AP, Zeri AC. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA. Arch Biochem Biophys 2012; 526:22-8. [PMID: 22772065 DOI: 10.1016/j.abb.2012.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023]
Abstract
The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures.
Collapse
|