1
|
Zhan Q, Tiedje K, Day KP, Pascual M. From multiplicity of infection to force of infection for sparsely sampled Plasmodium falciparum populations at high transmission. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.12.24302148. [PMID: 38853963 PMCID: PMC11160831 DOI: 10.1101/2024.02.12.24302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
High multiplicity of infection or MOI, the number of genetically distinct parasite strains co-infecting a single human host, characterizes infectious diseases including falciparum malaria at high transmission. This high MOI accompanies high asymptomatic Plasmodium falciparum prevalence despite high exposure, creating a large transmission reservoir challenging intervention. High MOI and asymptomatic prevalence are enabled by immune evasion of the parasite achieved via vast antigenic diversity. Force of infection or FOI, the number of new infections acquired by an individual host over a given time interval, is the dynamic sister quantity of MOI, and a key epidemiological parameter for monitoring antimalarial interventions and assessing vaccine or drug efficacy in clinical trials. FOI remains difficult, expensive, and labor-intensive to accurately measure, especially in high-transmission regions, whether directly via cohort studies or indirectly via the fitting of epidemiological models to repeated cross-sectional surveys. We propose here the application of queuing theory to obtain FOI from MOI, in the form of either a two-moment approximation method or Little's Law. We illustrate these two methods with MOI estimates obtained under sparse sampling schemes with the " var coding" approach. The two methods use infection duration data from naive malaria therapy patients with neurosyphilis. Consequently, they are suitable for FOI inference in subpopulations with a similar immune profile and the highest vulnerability, for example, infants or toddlers. Both methods are evaluated with simulation output from a stochastic agent-based model, and are applied to an interrupted time-series study from Bongo District in northern Ghana before and immediately after a three-round transient indoor residual spraying (IRS) intervention. The sampling of the simulation output incorporates limitations representative of those encountered in the collection of field data, including under-sampling of var genes, missing data, and antimalarial drug treatment. We address these limitations in MOI estimates with a Bayesian framework and an imputation bootstrap approach. Both methods yield good and replicable FOI estimates across various simulated scenarios. Applying these methods to the subpopulation of children aged 1-5 years in Ghana field surveys shows over a 70% reduction in annual FOI immediately post-intervention. The proposed methods should be applicable to geographical locations lacking cohort or cross-sectional studies with regular and frequent sampling but having single-time-point surveys under sparse sampling schemes, and for MOI estimates obtained in different ways. They should also be relevant to other pathogens whose immune evasion strategies are based on large antigenic variation resulting in high MOI.
Collapse
|
2
|
Frooman MB, Choi K, Kahn MZ, Yang LY, Cunningham A, RisCassi JM, McShan AC. Identification and biophysical characterization of Plasmodium peptide binding by common African HLAs. Sci Rep 2025; 15:8614. [PMID: 40074802 PMCID: PMC11903679 DOI: 10.1038/s41598-025-92191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Human Leukocyte Antigens (HLA) are immunoreceptors that present peptide antigens at the cell surface to T cells as a primary mechanism of immune surveillance. Malaria, a disease associated with the Plasmodium parasite, claims > 600,000 lives per year globally with most deaths occurring in Africa. Development of efficacious prophylactic vaccines or therapeutic treatments for malaria has been hindered by the lack of a basic understanding of the role of HLA-mediated peptide antigen presentation during Plasmodium infection. In particular, there is (i) little understanding of which peptide antigens are presented by HLAs in the context of malaria, and (ii) a lack of structural insights into Plasmodium peptide antigen presentation by HLAs, which underpins peptide/HLA stability, specificity, cross-presentation across HLA alleles, and recognition by T cell receptors. To begin to address these knowledge gaps, we identify and characterize candidate peptide antigens derived from Plasmodium falciparum with potential for presentation by common class I HLA alleles. We computationally screen nine proteins from the P. falciparum proteome to predict eight peptides with potential for cross-presentation by common alleles in African populations, HLA-A*02:01 and HLA-B*08:01. We then validate the predictions by producing recombinant HLAs in complex with the eight identified peptides by in vitro refolding. We evaluate the folding and thermal stability of the resulting sixteen peptide/HLA complexes by CD spectroscopy and nanoDSF. In silico modeling of peptide/HLA complexes informs a plausible structural basis for mechanisms for cross-presentation of P. falciparum peptides across HLA-A*02:01 and HLA-B*08:01 alleles. Finally, we expand our identified P. falciparum peptides to cover a broader range of HLA alleles in malaria endemic populations with experimental validation provided for HLA-C*07:01 and HLA-E*01:03. Together, our results are a step forward towards a deeper understanding of the potential for multi-allele cross-presentation of peptides in malaria. These results further inform future development of multivalent vaccine strategies targeting HLA profiles in malaria endemic populations.
Collapse
Affiliation(s)
- Marielle B Frooman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Klara Choi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Maya Z Kahn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Li-Yen Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aubrielle Cunningham
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jenna M RisCassi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Horjales S, Sena F, Francia ME. Ultrastructure expansion microscopy: Enlarging our perspective on apicomplexan cell division. J Microsc 2025. [PMID: 39853753 DOI: 10.1111/jmi.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis. All the unique structural and evolutionary characteristics of apicomplexan parasites, the biology underlying life stage transitions, and the singular mechanisms of cell division alongside their associated biomedical relevance have captured the attention of parasitologists of all times. Traditional light and electron microscopy have set the fundamental foundations of our understanding of these parasites, including the distinction among their modes of cell division. This has been more recently complemented by microscopy advances through the implementation of superresolution fluorescence microscopy, and variants of electron microscopy, such as cryo-EM and tomography, revealing intricate details of organelles and cell division. Ultrastructure Expansion Microscopy has emerged as a transformative, accessible approach that enhances resolution by physically expanding samples isometrically, allowing nanoscale visualisation on standard light microscopes. In this work, we review the most recent contributions of U-ExM and its recent improvements and innovations, in providing unprecedented insights into apicomplexan ultrastructure and its associated mechanisms, focusing particularly on cell division. We highlight the power of U-ExM in combination with protein-specific labelling, in aiding the visualisation of long oversighted organelles and detailed insights into the assembly of parasite-specific structures, such as the conoid in Plasmodia, and the apical-basal axis in Toxoplasma, respectively, during new parasite assembly. Altogether, the contributions of U-ExM reveal conserved and unique structural features across species while nearing super resolution. The development of these methodologies and their combination with different technologies are crucial for advancing our mechanistic understanding of apicomplexan biology, offering new perspectives that may facilitate novel therapeutic strategies against apicomplexan-caused diseases.
Collapse
Affiliation(s)
- Sofía Horjales
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Innovación y Emprendimiento, Universidad Tecnológica, Uruguay
| | - Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Unidad Académica de Parasitología y Micología, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. PbARID-associated chromatin remodeling events are essential for gametocyte development in Plasmodium. Nucleic Acids Res 2024; 52:5624-5642. [PMID: 38554111 PMCID: PMC11162789 DOI: 10.1093/nar/gkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Gametocyte development of the Plasmodium parasite is a key step for transmission of the parasite. Male and female gametocytes are produced from a subpopulation of asexual blood-stage parasites, but the mechanisms that regulate the differentiation of sexual stages are still under investigation. In this study, we investigated the role of PbARID, a putative subunit of a SWI/SNF chromatin remodeling complex, in transcriptional regulation during the gametocyte development of P. berghei. PbARID expression starts in early gametocytes before the manifestation of male and female-specific features, and disruption of its gene results in the complete loss of gametocytes with detectable male features and the production of abnormal female gametocytes. ChIP-seq analysis of PbARID showed that it forms a complex with gSNF2, an ATPase subunit of the SWI/SNF chromatin remodeling complex, associating with the male cis-regulatory element, TGTCT. Further ChIP-seq of PbARID in gsnf2-knockout parasites revealed an association of PbARID with another cis-regulatory element, TGCACA. RIME and DNA-binding assays suggested that HDP1 is the transcription factor that recruits PbARID to the TGCACA motif. Our results indicated that PbARID could function in two chromatin remodeling events and paly essential roles in both male and female gametocyte development.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Izumi Kaneko
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Masao Yuda
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|
5
|
Fikadu M, Ashenafi E. Malaria: An Overview. Infect Drug Resist 2023; 16:3339-3347. [PMID: 37274361 PMCID: PMC10237628 DOI: 10.2147/idr.s405668] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Malaria is a global public health burden with an estimated 229 million cases reported worldwide in 2019. About 94% of the reported cases were recorded in the African region. About 200 different species of protozoa have been identified so far and among them, at least 13 species are known to be pathogenic to humans. The life cycle of the malaria parasite is a complex process comprising an Anopheles mosquito and a vertebrate host. Its pathophysiology is characterized by fever secondary to the rupture of erythrocytes, macrophage ingestion of merozoites, and/or the presence of antigen-presenting trophozoites in the circulation or spleen which mediates the release of tumor necrosis factor α (TNF-α). Malaria can be diagnosed through clinical observation of the signs and symptoms of the disease. Other diagnostic techniques used to diagnose malaria are the microscopic detection of parasites from blood smears and antigen-based rapid diagnostic tests. The management of malaria involves preventive and/or curative approaches. Since untreated uncomplicated malaria can progress to severe malaria. To prevent or delay the spread of antimalarial drug resistance, WHO recommends the use of combination therapy for all episodes of malaria with at least two effective antimalarial agents having a different mechanism of action. The Centers for Disease Control (CDC) emphasizes that there is no prophylactic agent that can prevent malaria 100%. Therefore, prophylaxis shall be augmented with the use of personal protective measures.
Collapse
Affiliation(s)
- Muluemebet Fikadu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Ashenafi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
PbAP2-FG2 and PbAP2R-2 function together as a transcriptional repressor complex essential for Plasmodium female development. PLoS Pathog 2023; 19:e1010890. [PMID: 36780562 PMCID: PMC9956629 DOI: 10.1371/journal.ppat.1010890] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Gametocyte development is a critical step in the life cycle of Plasmodium. Despite the number of studies on gametocyte development that have been conducted, the molecular mechanisms regulating this process remain to be fully understood. This study investigates the functional roles of two female-specific transcriptional regulators, PbAP2-FG2 and PbAP2R-2, in P. berghei. Knockout of pbap2-fg2 or pbap2r-2 impairs female gametocyte development, resulting in developmental arrest during ookinete development. ChIP-seq analyses of these two factors indicated their colocalization on the genome, suggesting that they function as a complex. These analyses also revealed that their target genes contained a variety of genes, including both male and female-enriched genes. Moreover, differential expression analyses showed that these target genes were upregulated through the disruption of pbap2-fg2 or pbap2r-2, indicating that these two factors function as a transcriptional repressor complex in female gametocytes. Formation of a complex between PbAP2-FG2 and PbAP2R-2 was confirmed by RIME, a method that combines ChIP and MS analysis. In addition, the analysis identified a chromatin regulator PbMORC as an interaction partner of PbAP2-FG2. Comparative target analysis between PbAP2-FG2 and PbAP2-G demonstrated a significant overlap between their target genes, suggesting that repression of early gametocyte genes activated by PbAP2-G is one of the key roles for this female transcriptional repressor complex. Our results indicate that the PbAP2-FG2-PbAP2R-2 complex-mediated repression of the target genes supports the female differentiation from early gametocytes.
Collapse
|
7
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. Identification of a novel AP2 transcription factor in zygotes with an essential role in Plasmodium ookinete development. PLoS Pathog 2022; 18:e1010510. [PMID: 35947628 PMCID: PMC9394825 DOI: 10.1371/journal.ppat.1010510] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The sexual phase of Plasmodium represents a crucial step in malaria transmission, during which these parasites fertilize and form ookinetes to infect mosquitoes. Plasmodium development after fertilization is thought to proceed with female-stored mRNAs until the formation of a retort-form ookinete; thus, transcriptional activity in zygotes has previously been considered quiescent. In this study, we reveal the essential role of transcriptional activity in zygotes by investigating the function of a newly identified AP2 transcription factor, AP2-Z, in P. berghei. ap2-z was previously reported as a female transcriptional regulator gene whose disruption resulted in developmental arrest at the retort stage of ookinetes. In this study, although ap2-z was transcribed in females, we show that it was translationally repressed by the DOZI complex and translated after fertilization with peak expression at the zygote stage. ChIP-seq analysis of AP2-Z shows that it binds on specific DNA motifs, targeting the majority of genes known as an essential component of ookinetes, which largely overlap with the AP2-O targets, as well as genes that are unique among the targets of other sexual transcription factors. The results of this study also indicate the existence of a cascade of transcription factors, beginning with AP2-G, that proceeds from gametocytogenesis to ookinete formation. Sexual development in Plasmodium parasites, a causative agent of malaria, is essential for their transmission from vertebrate hosts to mosquitoes. This important developmental process proceeds as follows: formation of a gametocyte/gamete, fertilization and conversion of the zygote into the mosquito midgut invasive stage, called the ookinete. As a target of transmission blocking strategies, it is important to understand the mechanisms regulating Plasmodium sexual development. In this study, we assessed transcriptional regulation after fertilization by investigating the function of a novel transcription factor, AP2-Z. The results revealed the essential role of de novo transcription activated by AP2-Z in zygotes for promoting ookinete development. As transcriptional activity during the zygote stage has previously been considered silent in Plasmodium, novel genes important for ookinete formation can now be explored in the target genes of AP2-Z. Investigating the functions of these genes can help us understand the mechanisms of Plasmodium zygote/ookinete development and identify new targets for transmission blocking vaccines.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Laboratory of Medical Zoology, Department of Medicine, Mie University
| | - Izumi Kaneko
- Laboratory of Medical Zoology, Department of Medicine, Mie University
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University
| | - Masao Yuda
- Laboratory of Medical Zoology, Department of Medicine, Mie University
- * E-mail:
| |
Collapse
|
8
|
ApiAP2 Gene-Network Regulates Gametocytogenesis in Plasmodium Parasites. Cell Microbiol 2022. [DOI: 10.1155/2022/5796578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Malaria is a mosquito-borne infectious disease, caused by unicellular Apicomplexan protozoa of the genus Plasmodium. The sexual stage of Plasmodium is one of the most fascinating aspects of the Plasmodium life cycle, yet relatively less explored until now. The production of sexually fit gametocytes through gametocytogenesis is essential to the transmission of the Plasmodium parasite into an anopheline mosquito vector. Understanding how gametocytogenesis is regulated promotes the identification of novel drug targets and also the development of transmission-blocking vaccines that would help reduce the disease burden in endemic areas. Transcriptional regulation in Plasmodium parasites is primarily controlled by a family of twenty-seven Apicomplexan Apetela 2 (ApiAP2) genes which act in a cascade to enable the parasite to progress through its asexual replication as well as gametocytogenesis. Here, we review the latest progress made on members of the ApiAP2 family characterized as key players of the transcriptional machinery of gametocytes. Further, we will highlight the transcriptional regulation network of ApiAP2 genes at each stage of gametocytogenesis.
Collapse
|
9
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
10
|
Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, Rutvisuttinunt W, Pollett S, Talundzic E, Morton L, Jarman RG. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis 2021; 221:S292-S307. [PMID: 31612214 DOI: 10.1093/infdis/jiz286] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing (NGS) combined with bioinformatics has successfully been used in a vast array of analyses for infectious disease research of public health relevance. For instance, NGS and bioinformatics approaches have been used to identify outbreak origins, track transmissions, investigate epidemic dynamics, determine etiological agents of a disease, and discover novel human pathogens. However, implementation of high-quality NGS and bioinformatics in research and public health laboratories can be challenging. These challenges mainly include the choice of the sequencing platform and the sequencing approach, the choice of bioinformatics methodologies, access to the appropriate computation and information technology infrastructure, and recruiting and retaining personnel with the specialized skills and experience in this field. In this review, we summarize the most common NGS and bioinformatics workflows in the context of infectious disease genomic surveillance and pathogen discovery, and highlight the main challenges and considerations for setting up an NGS and bioinformatics-focused infectious disease research public health laboratory. We describe the most commonly used sequencing platforms and review their strengths and weaknesses. We review sequencing approaches that have been used for various pathogens and study questions, as well as the most common difficulties associated with these approaches that should be considered when implementing in a public health or research setting. In addition, we provide a review of some common bioinformatics tools and procedures used for pathogen discovery and genome assembly, along with the most common challenges and solutions. Finally, we summarize the bioinformatics of advanced viral, bacterial, and parasite pathogen characterization, including types of study questions that can be answered when utilizing NGS and bioinformatics.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
11
|
Comparative proteomic analysis of kinesin-8B deficient Plasmodium berghei during gametogenesis. J Proteomics 2021; 236:104118. [PMID: 33486016 DOI: 10.1016/j.jprot.2021.104118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
Plasmodium blood stages, responsible for human to vector transmission, termed gametocytes, are the precursor cells that develop into gametes in the mosquito. Male gametogenesis works as a bottleneck for the parasite life cycle, where, during a peculiar and rapid exflagellation, a male gametocyte produces 8 intracellular axonemes that generate by budding 8 motile gametes. Understanding the molecular mechanisms of gametogenesis is key to design strategies for controlling malaria transmission. In the rodent P. berghei, the microtubule-based motor kinesin-8B (PbKIN8B) is essential for flagellum assembly during male gametogenesis and its gene disruption impacts on completion of the parasitic life cycle. In efforts to improve our knowledge about male gametogenesis, we performed an iTRAQ-based quantitative proteomic comparison of P. berghei mutants with disrupted kinesin-8B gene (ΔPbkin8B) and wild type parasites. During the 15 min of gametogenesis, ΔPbkin8B parasites exhibited important motor protein dysregulation that suggests an essential role of PbKIN8B for the correct interaction or integration of axonemal proteins within the growing axoneme. The energy metabolism of ΔPbkin8B mutants was further affected, as well as the response to stress proteins, protein synthesis, as well as chromatin organisation and DNA processes, although endomitoses seemed to occur. SIGNIFICANCE: Malaria continues to be a global scourge, mainly in subtropical and tropical areas. The disease is caused by parasites from the Plasmodium genus. Plasmodium life cycle alternates between female Anopheles mosquitoes and vertebrate hosts through bites. Gametocytes are the parasite blood forms responsible for transmission from vertebrates to vectors. Inside the mosquito midgut, after stimulation, male and female gametocytes transform into gametes resulting in fertilization. During male gametogenesis, one gametocyte generates eight intracytoplasmic axonemes that generate, by budding, flagellated motile gametes involving a process termed exflagellation. Sexual development has a central role in ensuring malaria transmission. However, molecular data on male gametogenesis and particularly on intracytoplasmic axoneme assembly are still lacking. Since rodent malaria parasites permit the combination of in vivo and in vitro experiments and reverse genetic studies, our group investigated the molecular events in rodent P. berghei gametogenesis. The P. berghei motor ATPase kinesin-8B is proposed as an important component for male gametogenesis. We generated Pbkin8B gene-disrupted gametocytes (ΔPbkin8B) that were morphologically similar to the wild- type (WT) parasites. However, in mutants, male gametogenesis is impaired, male gametocytes are disabled in their ability to assemble axonemes and to exflagellate to release gametes, reducing fertilization drastically. Using a comparative quantitative proteomic analysis, we associated the nonfunctional axoneme of the mutants with the abnormal differential expression of proteins essential to axoneme organisation and stability. We also observed a differential dysregulation of proteins involved in protein biosynthesis and degradation, chromatin organisation and DNA processes in ΔPbkin8B parasites, although DNA condensation, mitotic spindle formation and endomitoses seem to occur. This is the first functional proteomic study of a kinesin gene-disrupted Plasmodium parasite providing new insights into Plasmodium male gametogenesis.
Collapse
|
12
|
Grasso F, Mochi S, Fratini F, Olivieri A, Currà C, Siden Kiamos I, Deligianni E, Birago C, Picci L, Pizzi E, Pace T, Ponzi M. A Comprehensive Gender-related Secretome of Plasmodium berghei Sexual Stages. Mol Cell Proteomics 2020; 19:1986-1997. [PMID: 32883804 PMCID: PMC7710150 DOI: 10.1074/mcp.ra120.002212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/06/2022] Open
Abstract
Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.
Collapse
Affiliation(s)
- Felicia Grasso
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Stefania Mochi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Federica Fratini
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Anna Olivieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Chiara Currà
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Inga Siden Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Cecilia Birago
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Leonardo Picci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Elisabetta Pizzi
- Istituto Superiore di Sanità, Servizio Grandi Strumentazioni e Core Facilities, Rome, Italy
| | - Tomasino Pace
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| | - Marta Ponzi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Rome, Italy
| |
Collapse
|
13
|
Pandey R, Abel S, Boucher M, Wall RJ, Zeeshan M, Rea E, Freville A, Lu XM, Brady D, Daniel E, Stanway RR, Wheatley S, Batugedara G, Hollin T, Bottrill AR, Gupta D, Holder AA, Le Roch KG, Tewari R. Plasmodium Condensin Core Subunits SMC2/SMC4 Mediate Atypical Mitosis and Are Essential for Parasite Proliferation and Transmission. Cell Rep 2020; 30:1883-1897.e6. [PMID: 32049018 PMCID: PMC7016506 DOI: 10.1016/j.celrep.2020.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Condensin is a multi-subunit protein complex regulating chromosome condensation and segregation during cell division. In Plasmodium spp., the causative agent of malaria, cell division is atypical and the role of condensin is unclear. Here we examine the role of SMC2 and SMC4, the core subunits of condensin, during endomitosis in schizogony and endoreduplication in male gametogenesis. During early schizogony, SMC2/SMC4 localize to a distinct focus, identified as the centromeres by NDC80 fluorescence and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, but do not form condensin I or II complexes. In mature schizonts and during male gametogenesis, there is a diffuse SMC2/SMC4 distribution on chromosomes and in the nucleus, and both condensin I and condensin II complexes form at these stages. Knockdown of smc2 and smc4 gene expression reveals essential roles in parasite proliferation and transmission. The condensin core subunits (SMC2/SMC4) form different complexes and may have distinct functions at various stages of the parasite life cycle.
Collapse
Affiliation(s)
- Rajan Pandey
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Matthew Boucher
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Aline Freville
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emilie Daniel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Sally Wheatley
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrew R Bottrill
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA.
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
14
|
Morse D. A Transcriptome-based Perspective of Meiosis in Dinoflagellates. Protist 2019; 170:397-403. [DOI: 10.1016/j.protis.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/31/2023]
|
15
|
van der Watt ME, Reader J, Churchyard A, Nondaba SH, Lauterbach SB, Niemand J, Abayomi S, van Biljon RA, Connacher JI, van Wyk RDJ, Le Manach C, Paquet T, González Cabrera D, Brunschwig C, Theron A, Lozano-Arias S, Rodrigues JFI, Herreros E, Leroy D, Duffy J, Street LJ, Chibale K, Mancama D, Coetzer TL, Birkholtz LM. Potent Plasmodium falciparum gametocytocidal compounds identified by exploring the kinase inhibitor chemical space for dual active antimalarials. J Antimicrob Chemother 2019; 73:1279-1290. [PMID: 29420756 DOI: 10.1093/jac/dky008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
Objectives Novel chemical tools to eliminate malaria should ideally target both the asexual parasites and transmissible gametocytes. Several imidazopyridazines (IMPs) and 2-aminopyridines (2-APs) have been described as potent antimalarial candidates targeting lipid kinases. However, these have not been extensively explored for stage-specific inhibition of gametocytes in Plasmodium falciparum parasites. Here we provide an in-depth evaluation of the gametocytocidal activity of compounds from these chemotypes and identify novel starting points for dual-acting antimalarials. Methods We evaluated compounds against P. falciparum gametocytes using several assay platforms for cross-validation and stringently identified hits that were further profiled for stage specificity, speed of action and ex vivo efficacy. Physicochemical feature extraction and chemogenomic fingerprinting were applied to explore the kinase inhibition susceptibility profile. Results We identified 34 compounds with submicromolar activity against late stage gametocytes, validated across several assay platforms. Of these, 12 were potent at <100 nM (8 were IMPs and 4 were 2-APs) and were also active against early stage gametocytes and asexual parasites, with >1000-fold selectivity towards the parasite over mammalian cells. Front-runner compounds targeted mature gametocytes within 48 h and blocked transmission to mosquitoes. The resultant chemogenomic fingerprint of parasites treated with the lead compounds revealed the importance of targeting kinases in asexual parasites and gametocytes. Conclusions This study encompasses an in-depth evaluation of the kinase inhibitor space for gametocytocidal activity. Potent lead compounds have enticing dual activities and highlight the importance of targeting the kinase superfamily in malaria elimination strategies.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Alisje Churchyard
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Sindisiwe H Nondaba
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Sonja B Lauterbach
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Sijuade Abayomi
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Riëtte A van Biljon
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Jessica I Connacher
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Roelof D J van Wyk
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Tanya Paquet
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Diego González Cabrera
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Christel Brunschwig
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Anjo Theron
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa
| | - Sonia Lozano-Arias
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Janneth F I Rodrigues
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Esperanza Herreros
- GlaxoSmithKline, Tres Cantos Medicines Development Campus, Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Didier Leroy
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - James Duffy
- Medicines for Malaria Venture, International Center Cointrin, Route de Pré-Bois 20, 1215, Geneva, Switzerland
| | - Leslie J Street
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dalu Mancama
- Biosciences, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa
| | - Theresa L Coetzer
- Plasmodium Molecular Research Unit, Wits Research Institute for Malaria, Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Institute for Sustainable Malaria Control and South African Medical Research Council Collaborating Centre for Malaria Research, University of Pretoria, Private Bag x20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
16
|
Berry ASF, Salazar-Sánchez R, Castillo-Neyra R, Borrini-Mayorí K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Náquira-Velarde C, Levy MZ, Brisson D. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl Trop Dis 2019; 13:e0007392. [PMID: 31107905 PMCID: PMC6544315 DOI: 10.1371/journal.pntd.0007392] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/31/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sexual reproduction provides an evolutionary advantageous mechanism that combines favorable mutations that have arisen in separate lineages into the same individual. This advantage is especially pronounced in microparasites as allelic reassortment among individuals caused by sexual reproduction promotes allelic diversity at immune evasion genes within individuals which is often essential to evade host immune systems. Despite these advantages, many eukaryotic microparasites exhibit highly-clonal population structures suggesting that genetic exchange through sexual reproduction is rare. Evidence supporting clonality is particularly convincing in the causative agent of Chagas disease, Trypanosoma cruzi, despite equally convincing evidence of the capacity to engage in sexual reproduction. Methodology/ Principle Findings In the present study, we investigated two hypotheses that can reconcile the apparent contradiction between the observed clonal population structure and the capacity to engage in sexual reproduction by analyzing the genome sequences of 123 T. cruzi isolates from a natural population in Arequipa, Peru. The distribution of polymorphic markers within and among isolates provides clear evidence of the occurrence of sexual reproduction. Large genetic segments are rearranged among chromosomes due to crossing over during meiosis leading to a decay in the genetic linkage among polymorphic markers compared to the expectations from a purely asexually-reproducing population. Nevertheless, the population structure appears clonal due to a high level of inbreeding during sexual reproduction which increases homozygosity, and thus reduces diversity, within each inbreeding lineage. Conclusions/ Significance These results effectively reconcile the apparent contradiction by demonstrating that the clonal population structure is derived not from infrequent sex in natural populations but from high levels of inbreeding. We discuss epidemiological consequences of this reproductive strategy on genome evolution, population structure, and phenotypic diversity of this medically important parasite. The rearrangement of alleles among individuals in a population during sexual reproduction maintains high allelic diversity within individuals in a population at polymorphic genes. Allelic diversity within individuals can be particularly important for parasites as it enhances their ability to evade host immune systems. Despite the potential benefits of sexual reproduction for parasites, natural populations of the protozoan parasite—and causative agent of human Chagas disease—Trypanosoma cruzi, exhibit clonal population structures indicative of asexual reproduction. This is particularly surprising as T. cruzi has the capacity for sexual reproduction. Here, we resolve this apparent contradiction by sequencing whole genomes of 123 T. cruzi isolates from a natural population in Arequipa, Peru. Evidence of past sexual reproduction and allelic rearrangements are common in this T. cruzi population. However, the majority of sexual reproduction events occur between close relatives resulting in an apparent clonal population structure. Sexual reproduction with distant relatives in areas with greater strain diversity has the potential to affect public health by increasing diversity in immune evasion genes within individuals and enhancing within-host survival, rapidly diversifying antigens that could affect the sensitivity of serological diagnostics, and by generating diversity in pathogenicity or drug resistance.
Collapse
Affiliation(s)
- Alexander S. F. Berry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renzo Salazar-Sánchez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Ricardo Castillo-Neyra
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katty Borrini-Mayorí
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Claudia Chipana-Ramos
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Melina Vargas-Maquera
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Jenny Ancca-Juarez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - César Náquira-Velarde
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
17
|
Roques M, Stanway RR, Rea EI, Markus R, Brady D, Holder AA, Guttery DS, Tewari R. Plasmodium centrin PbCEN-4 localizes to the putative MTOC and is dispensable for malaria parasite proliferation. Biol Open 2019; 8:bio.036822. [PMID: 30541825 PMCID: PMC6361220 DOI: 10.1242/bio.036822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Centrins are calmodulin-like phosphoproteins present in the centrosome and play an active role in the duplication, separation and organization of centrosomal structures such as the microtubule-organizing centre (MTOC) during mitosis. They are also major components of the basal body of flagella and cilia. In Plasmodium spp., the parasite that causes malaria, mitosis is closed during asexual replication and the MTOC is embedded within the intact nuclear membrane. The MTOC has been named the centriolar plaque and is similar to the spindle pole body in yeast. In all phases of asexual replication, repeated rounds of nuclear division precede cell division. However, our knowledge of the location and function of centrins during this process is limited. Previous studies have identified four putative centrins in the human parasite Plasmodiumfalciparum. We report here the cellular localization of an alveolate-specific centrin (PbCEN-4) during the atypical cell division of asexual replicative stages, using live cell imaging with the rodent malaria parasite P. berghei as a model system. We show that this centrin forms a multi-protein complex with other centrins, but is dispensable for parasite proliferation. Summary: This study examines the localization of malaria parasite centrin PbCEN4 at the parasite MTOC during closed endomitosis and shows it to be dispensable for proliferation.
Collapse
Affiliation(s)
- Magali Roques
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Edward I Rea
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Robert Markus
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - David S Guttery
- The Leicester Cancer Research Centre, College of Life Sciences, University of Leicester, Leicester LE2 7LX, UK
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
18
|
Abstract
This article attempts to draw together current knowledge on the biology of Plasmodium and experience gained from past control campaigns to interpret and guide current efforts to discover and develop exciting new strategies targeting the parasite with the objective of interrupting transmission. Particular note is made of the advantages of targeting often unappreciated small, yet vital, bottleneck populations to enhance both the impact and the useful lifetime of hard-won interventions. A case is made for the standardization of methods to measure transmission blockade to permit the rational comparison of how diverse interventions (drugs, vaccines, insecticides, Genetically Modified technologies) targeting disparate aspects of parasite biology may impact upon the commonly used parameter of parasite prevalence in the human population.
Collapse
Affiliation(s)
- R E Sinden
- The Jenner Institute, Oxford, United Kingdom.
| |
Collapse
|
19
|
Feng H, Gupta B, Wang M, Zheng W, Zheng L, Zhu X, Yang Y, Fang Q, Luo E, Fan Q, Tsuboi T, Cao Y, Cui L. Genetic diversity of transmission-blocking vaccine candidate Pvs48/45 in Plasmodium vivax populations in China. Parasit Vectors 2015; 8:615. [PMID: 26627683 PMCID: PMC4665908 DOI: 10.1186/s13071-015-1232-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 11/16/2022] Open
Abstract
Background The male gamete fertilization factor P48/45 in malaria parasites is a prime transmission-blocking vaccine (TBV) candidate. Efforts to develop antimalarial vaccines are often thwarted by genetic diversity of the target antigens. Here we evaluated the genetic diversity of Pvs48/45 gene in global Plasmodium vivax populations. Methods We determined 200 Pvs48/45 sequences collected from temperate and subtropical parasite populations in China. Population genetic and evolutionary analyses were performed to determine the levels of genetic diversity, potential signature of selection, and population differentiation. Results Analysis of the Pvs48/45 sequences from 200 P. vivax parasites collected in a temperate and a tropical region revealed a low level of genetic diversity (π = 0.0012) with 14 single nucleotide polymorphisms, of which 11 were nonsynonymous. Analysis of 344 Pvs48/45 sequences from nine worldwide P. vivax populations detected a total of 38 haplotypes, of which 13 haplotypes were present only once. Multiple tests for selection confirmed a signature of positive selection on Pvs48/45 with selection skewed to the second cysteine domain. Haplotype network analysis and Wright’s fixation index showed large geographical differentiation with the presence of continent-or region-specific mutations in this gene. Conclusions Pvs48/45 displays low levels of genetic diversity with the presence of region-specific mutations. Some of the mutations may be potential epitope targets based on their positions in the predicted structure, highlighting the need for future evaluation of these mutations in designing Pvs48/45-based TBV. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1232-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Bhavna Gupta
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| | - Meilian Wang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Wenqi Zheng
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Yimei Yang
- Department of Parasitology, College of Basic Medical Sciences, Dali Medical College, Dali, Yunnan, China.
| | - Qiang Fang
- Department of Parasitology, Bengbu Medical College, Anhui, China.
| | - Enjie Luo
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China.
| | - Takafumi Tsuboi
- Cell-free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China. .,Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, USA.
| |
Collapse
|
20
|
Guttery DS, Roques M, Holder AA, Tewari R. Commit and Transmit: Molecular Players in Plasmodium Sexual Development and Zygote Differentiation. Trends Parasitol 2015; 31:676-685. [PMID: 26440790 DOI: 10.1016/j.pt.2015.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 11/27/2022]
Abstract
During each cycle of asexual endomitotic division in erythrocytes, the malaria parasite makes a fundamental and crucial decision: to continue to invade and proliferate or to differentiate into gametocytes ready for continuation of sexual development. The proteins and regulatory pathways involved in Plasmodium sexual development have been of great interest in recent years as targets for blocking malaria transmission. However, the 'Holy Grail', the master switch orchestrating asexual-to-sexual commitment and further differentiation, has remained elusive - until now. Here we highlight the recent studies identifying the epigenetic and transcriptional master regulators of sexual commitment and discuss the key players in reversible phosphorylation pathways involved in sexual and zygote differentiation.
Collapse
Affiliation(s)
- David S Guttery
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK; Department of Cancer Studies and Cancer Research UK Leicester Centre, University of Leicester, Robert Kilpatrick Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Magali Roques
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Anthony A Holder
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Rita Tewari
- Cell and Developmental Biology Group, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK.
| |
Collapse
|
21
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Kim JJ, Flueck C, Franz E, Sanabria-Figueroa E, Thompson E, Lorenz R, Bertinetti D, Baker DA, Herberg FW, Kim C. Crystal structures of the carboxyl cGMP binding domain of the Plasmodium falciparum cGMP-dependent protein kinase reveal a novel capping triad crucial for merozoite egress. PLoS Pathog 2015; 11:e1004639. [PMID: 25646845 PMCID: PMC4412288 DOI: 10.1371/journal.ppat.1004639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/20/2014] [Indexed: 01/05/2023] Open
Abstract
The Plasmodium falciparum cGMP-dependent protein kinase (PfPKG) is a key regulator across the malaria parasite life cycle. Little is known about PfPKG’s activation mechanism. Here we report that the carboxyl cyclic nucleotide binding domain functions as a “gatekeeper” for activation by providing the highest cGMP affinity and selectivity. To understand the mechanism, we have solved its crystal structures with and without cGMP at 2.0 and 1.9 Å, respectively. These structures revealed a PfPKG-specific capping triad that forms upon cGMP binding, and disrupting the triad reduces kinase activity by 90%. Furthermore, mutating these residues in the parasite prevents blood stage merozoite egress, confirming the essential nature of the triad in the parasite. We propose a mechanism of activation where cGMP binding allosterically triggers the conformational change at the αC-helix, which bridges the regulatory and catalytic domains, causing the capping triad to form and stabilize the active conformation. Malaria causes up to a million fatalities per year worldwide. Most of these deaths are caused by Plasmodium falciparum, which has a complex life cycle in both humans and mosquitoes. One key regulator of this process is P. falciparum cGMP-dependent protein kinase (PfPKG), the main effector of the cGMP-signaling pathway. Specifically blocking this kinase stops both replication and transmission of the parasites, suggesting that PfPKG is a promising drug target. Here we identified the carboxyl cGMP-binding domain of PfPKG serving as a gatekeeper for activation of the entire kinase by having the highest affinity and selectivity for cGMP. High-resolution crystal structures with and without cGMP allowed us to identify a novel cGMP capping triad that dynamically forms upon binding cGMP and stabilizes the activated conformation. Mutation of the capping triad forming residues not only reduces its kinase activity, but also prevents blood stage merozoite egress, demonstrating its crucial role in PfPKG activation.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Christian Flueck
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Eugen Franz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | | | - Eloise Thompson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
24
|
Marques SR, Ramakrishnan C, Carzaniga R, Blagborough AM, Delves MJ, Talman AM, Sinden RE. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission. Cell Microbiol 2014; 17:191-206. [PMID: 25154861 PMCID: PMC4441282 DOI: 10.1111/cmi.12355] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023]
Abstract
Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions.
Collapse
Affiliation(s)
- Sara R Marques
- Department of Life Sciences, Imperial College of London, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Rios-Velásquez CM, Martins-Campos KM, Simões RC, Izzo T, dos Santos EV, Pessoa FAC, Lima JBP, Monteiro WM, Secundino NFC, Lacerda MVG, Tadei WP, Pimenta PFP. Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon. Malar J 2013; 12:460. [PMID: 24359307 PMCID: PMC3878095 DOI: 10.1186/1475-2875-12-460] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023] Open
Abstract
Background Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined. Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be difficult and presently An. aquasalis is the only available autonomous colony. Methods Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes were blood-fed using a membrane-feeding device containing infected blood from malarial patients. The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters: (a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P. vivax of four field-collected Anopheles species with colonized An. aquasalis. Results All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis s.l., An. aquasalis and An. nuneztovari s.l. had higher infection rates than An. darlingi. Conclusion All field-collected Anopheles species, as well as colonized An. aquasalis are susceptible to experimental P. vivax infections by membrane feeding assays. Anopheles darlingi, An. albitarsis s.l. and An. aquasalis are very susceptible to P. vivax infection. However, colonized An. aquasalis mosquitoes showed the higher infection intensity represented by infection rate and oocyst numbers. This study is the first to characterize experimental development of Plasmodium infections in Amazon Anopheles vectors and also to endorse that P. vivax infection of colonized An. aquasalis is a feasible laboratory model.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Paulo F P Pimenta
- Fundação de Medicina Tropical Dr, Heitor Vieira Dourado, Manaus, AM, Brazil.
| |
Collapse
|
26
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Molecular evolution and phylogenetics of rodent malaria parasites. BMC Evol Biol 2012; 12:219. [PMID: 23151308 PMCID: PMC3538709 DOI: 10.1186/1471-2148-12-219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
Background Over the last 6 decades, rodent Plasmodium species have become key model systems for understanding the basic biology of malaria parasites. Cell and molecular parasitology have made much progress in identifying genes underpinning interactions between malaria parasites, hosts, and vectors. However, little attention has been paid to the evolutionary genetics of parasites, which provides context for identifying potential therapeutic targets and for understanding the selective forces shaping parasites in natural populations. Additionally, understanding the relationships between species, subspecies, and strains, is necessary to maximize the utility of rodent malaria parasites as medically important infectious disease models, and for investigating the evolution of host-parasite interactions. Results Here, we collected multi-locus sequence data from 58 rodent malaria genotypes distributed throughout 13 subspecies belonging to P. berghei, P. chabaudi, P. vinckei, and P. yoelii. We employ multi-locus methods to infer the subspecies phylogeny, and use population-genetic approaches to elucidate the selective patterns shaping the evolution of these organisms. Our results reveal a time-line for the evolution of rodent Plasmodium and suggest that all the subspecies are independently evolving lineages (i.e. species). We show that estimates of species-level polymorphism are inflated if subspecies are not explicitly recognized, and detect purifying selection at most loci. Conclusions Our work resolves previous inconsistencies in the phylogeny of rodent malaria parasites, provides estimates of important parameters that relate to the parasite’s natural history and provides a much-needed evolutionary context for understanding diverse biological aspects from the cross-reactivity of immune responses to parasite mating patterns.
Collapse
|
28
|
Guttery DS, Poulin B, Ferguson DJP, Szöőr B, Wickstead B, Carroll PL, Ramakrishnan C, Brady D, Patzewitz EM, Straschil U, Solyakov L, Green JL, Sinden RE, Tobin AB, Holder AA, Tewari R. A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog 2012; 8:e1002948. [PMID: 23028336 PMCID: PMC3447748 DOI: 10.1371/journal.ppat.1002948] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl− mutants, with global phosphorylation studies of ookinete differentiation from 1.5–24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission. Malaria parasites are single-celled organisms, which alternate their life-cycle between vertebrate and mosquito hosts. In the mosquito, the malaria parasite undergoes sexual development, whereby a male and female gamete fuse to form a zygote. This zygote then elongates into an invasive stage, termed an ookinete, which can glide to and penetrate the mosquito's gut wall in order to form a cyst (called an oocyst). Protein phosphorylation is known to play a vital role during this process; however, the role of Plasmodium kinases (which phosphorylate proteins) during zygote/ookinete maturation is better understood than the completely uncharacterised plasmodial phosphatases (which dephosphorylate proteins). Using a malaria parasite which infects mice, Plasmodium berghei, we show that a unique protein phosphatase containing kelch-like domains (called PPKL) plays a vital role in ookinete maturation and motility. Deleting this gene produces ookinetes whose shape is grossly abnormal, resulting in non-motile parasites that cannot penetrate the lining of the mosquito gut wall. Overall, PPKL is an essential phosphatase that is critical to ookinete development, motility and invasion.
Collapse
Affiliation(s)
- David S. Guttery
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Benoit Poulin
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Balázs Szöőr
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bill Wickstead
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Paula L. Carroll
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Chandra Ramakrishnan
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Declan Brady
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Eva-Maria Patzewitz
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ursula Straschil
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Lev Solyakov
- Medical Research Council Toxicology Unit, Leicester, United Kingdom
| | - Judith L. Green
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Robert E. Sinden
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Andrew B. Tobin
- Medical Research Council Toxicology Unit, Leicester, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|