1
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Santiago ML, Lozano MM, Dudley JP. Apobec-mediated retroviral hypermutation in vivo is dependent on mouse strain. PLoS Pathog 2024; 20:e1012505. [PMID: 39208378 PMCID: PMC11389910 DOI: 10.1371/journal.ppat.1012505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo, we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain that is defective in Rem and its cleavage product Rem-CT (TBLV-SD). Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. Furthermore, unlike MMTV, TBLV induced T-cell tumors in B6 μMT mice, which lack membrane-bound IgM and conventional B-2 cells. At limiting viral doses, loss of Rem expression in TBLV-SD-infected B6 mice accelerated tumorigenesis compared to TBLV-WT in either wild-type B6 or AID-knockout mice. Unlike BALB/c results, high-throughput sequencing indicated that proviral G-to-A or C-to-T mutations were unchanged regardless of Rem expression in B6 tumors. However, knockout of both AID and mA3 reduced G-to-A mutations. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, and effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to TBLV-WT-induced tumors, consistent with another Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Gurvani B Singh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Wendy Kaichun Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alejandro Reyes
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Anna Battenhouse
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dennis C Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mario L Santiago
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mary M Lozano
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
3
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
4
|
Tsukimoto S, Hakata Y, Tsuji-Kawahara S, Enya T, Tsukamoto T, Mizuno S, Takahashi S, Nakao S, Miyazawa M. Distinctive High Expression of Antiretroviral APOBEC3 Protein in Mouse Germinal Center B Cells. Viruses 2022; 14:v14040832. [PMID: 35458563 PMCID: PMC9029289 DOI: 10.3390/v14040832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Tissue and subcellular localization and its changes upon cell activation of virus-restricting APOBEC3 at protein levels are important to understanding physiological functions of this cytidine deaminase, but have not been thoroughly analyzed in vivo. To precisely follow the possible activation-induced changes in expression levels of APOBEC3 protein in different mouse tissues and cell populations, genome editing was utilized to establish knock-in mice that express APOBEC3 protein with an in-frame FLAG tag. Flow cytometry and immunohistochemical analyses were performed prior to and after an immunological stimulation. Cultured B cells expressed higher levels of APOBEC3 protein than T cells. All differentiation and activation stages of freshly prepared B cells expressed significant levels of APOBEC3 protein, but germinal center cells possessed the highest levels of APOBEC3 protein localized in their cytoplasm. Upon immunological stimulation with sheep red blood cells in vivo, germinal center cells with high levels of APOBEC3 protein expression increased in their number, but FLAG-specific fluorescence intensity in each cell did not change. T cells, even those in germinal centers, did not express significant levels of APOBEC3 protein. Thus, mouse APOBEC3 protein is expressed at distinctively high levels in germinal center B cells. Antigenic stimulation did not affect expression levels of cellular APOBEC3 protein despite increased numbers of germinal center cells.
Collapse
Affiliation(s)
- Shota Tsukimoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Yoshiyuki Hakata
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Sachiyo Tsuji-Kawahara
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Takuji Enya
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Department of Pediatrics, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Laboratory Animal Science, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan;
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511, Osaka, Japan; (S.T.); (Y.H.); (S.T.-K.); (T.E.); or (T.T.)
- Anti-Aging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Correspondence:
| |
Collapse
|
5
|
Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms 2020; 8:microorganisms8121965. [PMID: 33322320 PMCID: PMC7764263 DOI: 10.3390/microorganisms8121965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
The evolutionary conflict between retroviruses and their vertebrate hosts over millions of years has led to the emergence of cellular innate immune proteins termed restriction factors as well as their viral antagonists. Evidence accumulated in the last two decades has substantially increased our understanding of the elaborate mechanisms utilized by these restriction factors to inhibit retroviral replication, mechanisms that either directly block viral proteins or interfere with the cellular pathways hijacked by the viruses. Analyses of these complex interactions describe patterns of accelerated evolution for these restriction factors as well as the acquisition and evolution of their virus-encoded antagonists. Evidence is also mounting that many restriction factors identified for their inhibition of specific retroviruses have broader antiviral activity against additional retroviruses as well as against other viruses, and that exposure to these multiple virus challenges has shaped their adaptive evolution. In this review, we provide an overview of the restriction factors that interfere with different steps of the retroviral life cycle, describing their mechanisms of action, adaptive evolution, viral targets and the viral antagonists that evolved to counter these factors.
Collapse
|
6
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
7
|
Mouse APOBEC3 Restriction of Retroviruses. Viruses 2020; 12:v12111217. [PMID: 33121095 PMCID: PMC7692085 DOI: 10.3390/v12111217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic peptide 3 (APOBEC3) proteins are critical host proteins that counteract and prevent the replication of retroviruses. Unlike the genome of humans and other species, the mouse genome encodes a single Apobec3 gene, which has undergone positive selection, as reflected by the allelic variants found in different inbred mouse strains. This positive selection was likely due to infection by various mouse retroviruses, which have persisted in their hosts for millions of years. While mouse retroviruses are inhibited by APOBEC3, they nonetheless still remain infectious, likely due to the actions of different viral proteins that counteract this host factor. The study of viruses in their natural hosts provides important insight into their co-evolution.
Collapse
|
8
|
Hakata Y, Li J, Fujino T, Tanaka Y, Shimizu R, Miyazawa M. Mouse APOBEC3 interferes with autocatalytic cleavage of murine leukemia virus Pr180gag-pol precursor and inhibits Pr65gag processing. PLoS Pathog 2019; 15:e1008173. [PMID: 31830125 PMCID: PMC6907756 DOI: 10.1371/journal.ppat.1008173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Mouse APOBEC3 (mA3) inhibits murine leukemia virus (MuLV) replication by a deamination-independent mechanism in which the reverse transcription is considered the main target process. However, other steps in virus replication that can be targeted by mA3 have not been examined. We have investigated the possible effect of mA3 on MuLV protease-mediated processes and found that mA3 binds both mature viral protease and Pr180gag-pol precursor polyprotein. Using replication-competent MuLVs, we also show that mA3 inhibits the processing of Pr65 Gag precursor. Furthermore, we demonstrate that the autoprocessing of Pr180gag-pol is impeded by mA3, resulting in reduced production of mature viral protease. This reduction appears to link with the above inefficient Pr65gag processing in the presence of mA3. Two major isoforms of mA3, exon 5-containing and -lacking ones, equally exhibit this antiviral activity. Importantly, physiologically expressed levels of mA3 impedes both Pr180gag-pol autocatalysis and Pr65gag processing. This blockade is independent of the deaminase activity and requires the C-terminal region of mA3. These results suggest that the above impairment of Pr180gag-pol autoprocessing may significantly contribute to the deaminase-independent antiretroviral activity exerted by mA3. Soon after the identification of the polynucleotide cytidine deaminase APOBEC3 as a host restriction factor against vif-deficient HIV, it was noticed that deamination-independent mechanisms are involved in the inhibition of viral replication in addition to the deaminase-dependent mechanism. We previously showed that mouse APOBEC3 (mA3) physiologically restricted mouse retrovirus replication in their natural hosts without causing significant G-to-A hypermutations. Inhibition of reverse transcription is reported to be the most plausible mechanism for the deamination-independent antiretroviral function. However, it remains unknown whether the inhibition of reverse transcription is the only way to explain the whole picture of deamination-independent antiviral activity exerted by APOBEC3. Here we show that mA3 targets the autoprocessing of Pr180gag-pol polyprotein. This activity does not require the deaminase catalytic center and mainly exerted by the C-terminal half of mA3. mA3 physically interacts with murine retroviral protease and its precursor Pr180gag-pol. mA3-induced disruption of the autocatalytic Pr180gag-pol cleavage leads to a significant reduction of mature viral protease, resulting in the inhibition of Pr65gag processing to mature Gag proteins. As the Pr180gag-pol autoprocessing is necessary for the maturation of other viral enzymes including the reverse transcriptase, its inhibition by host APOBEC3 may precede the previously described impairment of reverse transcription. Our discovery may lead to the development of novel antiretroviral drugs through the future identification of detailed molecular interfaces between retroviral Gag-Pol polyprotein and APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- * E-mail: (YH); (MM)
| | - Jun Li
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Ijunkai Medical Oncology, Endoscopy Clinic, Sakai-ku, Sakai, Osaka, Japan
| | - Takahiro Fujino
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Tanaka
- Division of Analytical Bio-Medicine, Advanced Research Support Center (ADRES), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Rie Shimizu
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Kindai University Anti-Aging Center, Higashiosaka, Osaka, Japan
- * E-mail: (YH); (MM)
| |
Collapse
|
9
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
10
|
In Vivo Examination of Mouse APOBEC3- and Human APOBEC3A- and APOBEC3G-Mediated Restriction of Parvovirus and Herpesvirus Infection in Mouse Models. J Virol 2016; 90:8005-12. [PMID: 27356895 DOI: 10.1128/jvi.00973-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED APOBEC3 knockout and human APOBEC3A and -3G transgenic mice were tested for their ability to be infected by the herpesviruses herpes simplex virus 1 and murine herpesvirus 68 and the parvovirus minute virus of mice (MVM). Knockout, APOBEC3A and APOBEC3G transgenic, and wild-type mice were equally infected by the herpesviruses, while APOBEC3A but not mouse APOBEC3 conferred resistance to MVM. No viruses showed evidence of cytidine deamination by mouse or human APOBEC3s. These data suggest that in vitro studies implicating APOBEC3 proteins in virus resistance may not reflect their role in vivo IMPORTANCE It is well established that APOBEC3 proteins in different species are a critical component of the host antiretroviral defense. Whether these proteins also function to inhibit other viruses is not clear. There have been a number of in vitro studies suggesting that different APOBEC3 proteins restrict herpesviruses and parvoviruses, among others, but whether they also work in vivo has not been demonstrated. Our studies looking at the role of mouse and human APOBEC3 proteins in transgenic and knockout mouse models of viral infection suggest that these restriction factors are not broadly antiviral and demonstrate the importance of testing their activity in vivo.
Collapse
|
11
|
A Naturally Occurring Domestic Cat APOBEC3 Variant Confers Resistance to Feline Immunodeficiency Virus Infection. J Virol 2015; 90:474-85. [PMID: 26491161 PMCID: PMC4702554 DOI: 10.1128/jvi.02612-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/13/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) DNA cytosine deaminases can be incorporated into progeny virions and inhibit lentiviral replication. On the other hand, viral infectivity factor (Vif) of lentiviruses antagonizes A3-mediated antiviral activities by degrading A3 proteins. It is known that domestic cat (Felis catus) APOBEC3Z3 (A3Z3), the ortholog of human APOBEC3H, potently suppresses the infectivity of vif-defective feline immunodeficiency virus (FIV). Although a recent report has shown that domestic cat encodes 7 haplotypes (hap I to hap VII) of A3Z3, the relevance of A3Z3 polymorphism in domestic cats with FIV Vif has not yet been addressed. In this study, we demonstrated that these feline A3Z3 variants suppress vif-defective FIV infectivity. We also revealed that codon 65 of feline A3Z3 is a positively selected site and that A3Z3 hap V is subject to positive selection during evolution. It is particularly noteworthy that feline A3Z3 hap V is resistant to FIV Vif-mediated degradation and still inhibits vif-proficient viral infection. Moreover, the side chain size, but not the hydrophobicity, of the amino acid at position 65 determines the resistance to FIV Vif-mediated degradation. Furthermore, phylogenetic analyses have led to the inference that feline A3Z3 hap V emerged approximately 60,000 years ago. Taken together, these findings suggest that feline A3Z3 hap V may have been selected for escape from an ancestral FIV. This is the first evidence for an evolutionary “arms race” between the domestic cat and its cognate lentivirus.
IMPORTANCE Gene diversity and selective pressure are intriguing topics in the field of evolutionary biology. A direct interaction between a cellular protein and a viral protein can precipitate an evolutionary arms race between host and virus. One example is primate APOBEC3G, which potently restricts the replication of primate lentiviruses (e.g., human immunodeficiency virus type 1 [HIV-1] and simian immunodeficiency virus [SIV]) if its activity is not counteracted by the viral Vif protein. Here we investigate the ability of 7 naturally occurring variants of feline APOBEC3, APOBEC3Z3 (A3Z3), to inhibit FIV replication. Interestingly, one feline A3Z3 variant is dominant, restrictive, and naturally resistant to FIV Vif-mediated degradation. Phylogenetic analyses revealed that the ancestral change that generated this variant could have been caused by positive Darwinian selection, presumably due to an ancestral FIV infection. The experimental-phylogenetic investigation sheds light on the evolutionary history of the domestic cat, which was likely influenced by lentiviral infection.
Collapse
|
12
|
Harris RS, Dudley JP. APOBECs and virus restriction. Virology 2015; 479-480:131-45. [PMID: 25818029 PMCID: PMC4424171 DOI: 10.1016/j.virol.2015.03.012] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/10/2015] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
The APOBEC family of single-stranded DNA cytosine deaminases comprises a formidable arm of the vertebrate innate immune system. Pre-vertebrates express a single APOBEC, whereas some mammals produce as many as 11 enzymes. The APOBEC3 subfamily displays both copy number variation and polymorphisms, consistent with ongoing pathogenic pressures. These enzymes restrict the replication of many DNA-based parasites, such as exogenous viruses and endogenous transposable elements. APOBEC1 and activation-induced cytosine deaminase (AID) have specialized functions in RNA editing and antibody gene diversification, respectively, whereas APOBEC2 and APOBEC4 appear to have different functions. Nevertheless, the APOBEC family protects against both periodic viral zoonoses as well as exogenous and endogenous parasite replication. This review highlights viral pathogens that are restricted by APOBEC enzymes, but manage to escape through unique mechanisms. The sensitivity of viruses that lack counterdefense measures highlights the need to develop APOBEC-enabling small molecules as a new class of anti-viral drugs.
Collapse
Affiliation(s)
- Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Disease, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
13
|
Zheng CL, Wilmot B, Walter NA, Oberbeck D, Kawane S, Searles RP, McWeeney SK, Hitzemann R. Splicing landscape of the eight collaborative cross founder strains. BMC Genomics 2015; 16:52. [PMID: 25652416 PMCID: PMC4320832 DOI: 10.1186/s12864-015-1267-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. Results We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with ~65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of ~3000 and ~500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. Conclusions Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding the utilization of the CC populations in the study of complex traits. This report is also the first to establish guidelines in defining and identifying strain-specific splicing across different mouse strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1267-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina L Zheng
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Beth Wilmot
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Nicole Ar Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA. .,Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| | - Denesa Oberbeck
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | - Sunita Kawane
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | - Robert P Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
| | - Shannon K McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Division of Bioinformatics and Computational Biology, Oregon Health & Science University, Portland, Oregon, USA. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA. .,Department of Public Health and Preventative Medicine, Division of Biostatistics, Oregon Health & Science University, Portland, Oregon, USA.
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA. .,Veterans Affairs Research Service, Portland, OR, USA.
| |
Collapse
|
14
|
Mouse knockout models for HIV-1 restriction factors. Cell Mol Life Sci 2014; 71:3749-66. [PMID: 24854580 PMCID: PMC4160573 DOI: 10.1007/s00018-014-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Infection of cells with human immunodeficiency virus 1 (HIV-1) is controlled by restriction factors, host proteins that counteract a variety of steps in the life cycle of this lentivirus. These include SAMHD1, APOBEC3G and tetherin, which block reverse transcription, hypermutate viral DNA and prevent progeny virus release, respectively. These and other HIV-1 restriction factors are conserved and have clear orthologues in the mouse. This review summarises studies in knockout mice lacking HIV-1 restriction factors. In vivo experiments in such animals have not only validated in vitro data obtained from cultured cells, but have also revealed new findings about the biology of these proteins. Indeed, genetic ablation of HIV-1 restriction factors in the mouse has provided evidence that restriction factors control retroviruses and other viruses in vivo and has led to new insights into the mechanisms by which these proteins counteract infection. For example, in vivo experiments in knockout mice demonstrate that virus control exerted by restriction factors can shape adaptive immune responses. Moreover, the availability of animals lacking restriction factors opens the possibility to study the function of these proteins in other contexts such as autoimmunity and cancer. Further in vivo studies of more recently identified HIV-1 restriction factors in gene targeted mice are, therefore, justified.
Collapse
|
15
|
Hassan MA, Butty V, Jensen KDC, Saeij JPJ. The genetic basis for individual differences in mRNA splicing and APOBEC1 editing activity in murine macrophages. Genome Res 2013; 24:377-89. [PMID: 24249727 PMCID: PMC3941103 DOI: 10.1101/gr.166033.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Alternative splicing and mRNA editing are known to contribute to transcriptome diversity. Although alternative splicing is pervasive and contributes to a variety of pathologies, including cancer, the genetic context for individual differences in isoform usage is still evolving. Similarly, although mRNA editing is ubiquitous and associated with important biological processes such as intracellular viral replication and cancer development, individual variations in mRNA editing and the genetic transmissibility of mRNA editing are equivocal. Here, we have used linkage analysis to show that both mRNA editing and alternative splicing are regulated by the macrophage genetic background and environmental cues. We show that distinct loci, potentially harboring variable splice factors, regulate the splicing of multiple transcripts. Additionally, we show that individual genetic variability at the Apobec1 locus results in differential rates of C-to-U(T) editing in murine macrophages; with mouse strains expressing mostly a truncated alternative transcript isoform of Apobec1 exhibiting lower rates of editing. As a proof of concept, we have used linkage analysis to identify 36 high-confidence novel edited sites. These results provide a novel and complementary method that can be used to identify C-to-U editing sites in individuals segregating at specific loci and show that, beyond DNA sequence and structural changes, differential isoform usage and mRNA editing can contribute to intra-species genomic and phenotypic diversity.
Collapse
Affiliation(s)
- Musa A Hassan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
16
|
Differential requirements of cellular and humoral immune responses for Fv2-associated resistance to erythroleukemia and for regulation of retrovirus-induced myeloid leukemia development. J Virol 2013; 87:13760-74. [PMID: 24109240 DOI: 10.1128/jvi.02506-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To assess the possible contribution of host immune responses to the exertion of Fv2-associated resistance to Friend virus (FV)-induced disease development, we inoculated C57BL/6 (B6) mice that lacked various subsets of lymphocytes with FV containing no lactate dehydrogenase-elevating virus. Fv2(r) B6 mice lacking CD4(+) T cells developed early polycythemia and fatal erythroleukemia, while B6 mice lacking CD8(+) T cells remained resistant. Erythroid progenitor cells infected with spleen focus-forming virus (SFFV) were eliminated, and no polycythemia was observed in B cell-deficient B6 mice, but they later developed myeloid leukemia associated with oligoclonal integration of ecotropic Friend murine leukemia virus. Additional depletion of natural killer and/or CD8(+) T cells from B cell-deficient B6 mice resulted in the expansion of SFFV proviruses and the development of polycythemia, indicating that SFFV-infected erythroid cells are not only restricted in their growth but are actively eliminated in Fv2(r) mice through cellular immune responses.
Collapse
|
17
|
Kozak CA. Evolution of different antiviral strategies in wild mouse populations exposed to different gammaretroviruses. Curr Opin Virol 2013; 3:657-63. [PMID: 23992668 DOI: 10.1016/j.coviro.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/28/2023]
Abstract
Laboratory mice carry three host range groups of gammaretroviruses all of which are linked to leukemia induction. Although polytropic mouse leukemia viruses (P-MLVs) are generally recognized as the proximate cause of MLV-induced leukemias in laboratory mice, wild mice that carry only endogenous P-MLVs do not produce infectious virus and are not prone to disease; these mice carry the permissive XPR1 retroviral receptor and an attenuated variant of the retroviral restriction factor, APOBEC3. In contrast, Eurasian mice carrying ecotropic and xenotropic MLVs have evolved multiple restrictive XPR1 variants, other factors that interfere with MLV entry, and more effectively antiviral variants of APOBEC3. These different antiviral restrictions in Mus musculus subspecies suggest that the different virus types found in these natural populations may pose different but largely uncharacterized survival risks in their host subspecies.
Collapse
Affiliation(s)
- Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States.
| |
Collapse
|
18
|
Abstract
Major conceptual roadblocks impede the development of an HIV-1 vaccine that can stimulate a potent neutralizing antibody response. Animal models that support HIV-1 replication and allow for host genetic manipulation would be an ideal platform for testing various immunological hypotheses, but progress on this research front has been slow and disappointing. In contrast, many valuable concepts emerged from more than 50 years of studying the Friend retrovirus model. This was recently exemplified by the identification of an innate restriction gene, Apobec3, that could promote the retrovirus-specific neutralizing antibody response. Here we review both classical and recent data on humoral immunity against Friend retrovirus infection, and highlight the potential of this model for unraveling novel aspects of the retrovirus-specific antibody response that may guide HIV-1 vaccine development efforts.
Collapse
|
19
|
Murine leukemia virus glycosylated Gag blocks apolipoprotein B editing complex 3 and cytosolic sensor access to the reverse transcription complex. Proc Natl Acad Sci U S A 2013; 110:9078-83. [PMID: 23671100 DOI: 10.1073/pnas.1217399110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic retroviruses have evolved multiple means for evading host restriction factors such as apolipoprotein B editing complex (APOBEC3) proteins. Here, we show that murine leukemia virus (MLV) has a unique means of counteracting APOBEC3 and other cytosolic sensors of viral nucleic acid. Using virus isolated from infected WT and APOBEC3 KO mice, we demonstrate that the MLV glycosylated Gag protein (glyco-Gag) enhances viral core stability. Moreover, in vitro endogenous reverse transcription reactions of the glyco-Gag mutant virus were substantially inhibited compared with WT virus, but only in the presence of APOBEC3. Thus, glyco-Gag rendered the reverse transcription complex in the viral core resistant to APOBEC3. Glyco-Gag in the virion also rendered MLV resistant to other cytosolic sensors of viral reverse transcription products in newly infected cells. Strikingly, glyco-Gag mutant virus reverted to glyco-Gag-containing virus only in WT and not APOBEC3 KO mice, indicating that counteracting APOBEC3 is the major function of glyco-Gag. Thus, in contrast to the HIV viral infectivity factor protein, which prevents APOBEC3 packaging in the virion, the MLV glyco-Gag protein uses a unique mechanism to counteract the antiviral action of APOBEC3 in vivo--namely, protecting the reverse transcription complex in viral cores from APOBEC3. These data suggest that capsid integrity may play a critical role in virus resistance to intrinsic cellular antiviral resistance factors that act at the early stages of infection.
Collapse
|
20
|
Halemano K, Barrett BS, Li SX, Harper MS, Smith DS, Heilman KJ, Santiago ML. Fv1 restriction and retrovirus vaccine immunity in Apobec3-deficient 129P2 mice. PLoS One 2013; 8:e60500. [PMID: 23533681 PMCID: PMC3606284 DOI: 10.1371/journal.pone.0060500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding the host genetics of the immune response in retrovirus infection models could provide insights for basic HIV vaccine discovery. In Friend retrovirus (FV) infection of mice, Fv1 differentially inhibits N-tropic versus B-tropic FV infection by mediating a capsid-dependent post-entry block, Fv2 susceptibility governs splenomegaly induction, and Rfv3 resistance primes a stronger neutralizing antibody response due to more potent Apobec3 activity. Apobec3 polymorphisms in inbred mouse strains correlate with Rfv3 resistance and susceptibility, with one unresolved exception. The 129/OlaHsd (129P2) mouse strain is Fv2 and Rfv3 susceptible based on genotyping, but infection of 129P2 mice with B-tropic FV resulted in strong neutralizing antibody responses and no splenomegaly. Here we confirm that 129P2 mice are Fv1nr/nr, explaining its resistance to B-tropic FV. Infection of 129P2 mice with NB-tropic FV, which can efficiently infect mice independent of Fv1 genotype, resulted in severe splenomegaly, high levels of viremia and weak neutralizing antibody responses regardless of Apobec3 status. Notably, high-dose B-tropic FV infection of 129P2 Apobec3-deficient mice induced significant adaptive immune responses and conferred high levels of protection following challenge with pathogenic NB-tropic FV. This immunological protection complemented previous studies that N-tropic FV can act as a live-attenuated vaccine in Fv1b/b mice. Altogether, the results obtained in 129P2 mice strengthen the conclusion that Rfv3 is encoded by Apobec3, and highlight Fv1 incompatibility as a retroviral vaccine paradigm in mice. Due to its susceptibility to disease that allows for pathogenic challenge studies, B-tropic FV infection of 129P2 mice may be a useful model to study the immunological pathways induced by retroviral capsid restriction.
Collapse
Affiliation(s)
- Kalani Halemano
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Bradley S. Barrett
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sam X. Li
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael S. Harper
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Diana S. Smith
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Karl J. Heilman
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
APOBEC3 inhibition of mouse mammary tumor virus infection: the role of cytidine deamination versus inhibition of reverse transcription. J Virol 2013; 87:4808-17. [PMID: 23449789 DOI: 10.1128/jvi.00112-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The apolipoprotein B editing complex 3 (APOBEC3) family of proteins is a group of intrinsic antiviral factors active against a number of retroviral pathogens, including HIV in humans and mouse mammary tumor virus (MMTV) in mice. APOBEC3 restricts its viral targets through cytidine deamination of viral DNA during reverse transcription or via deaminase-independent means. Here, we used virions from the mammary tissue of MMTV-infected inbred wild-type mice with different allelic APOBEC3 variants (APOBEC3(BALB) and APOBEC3(BL/6)) and knockout mice to determine whether cytidine deamination was important for APOBEC3's anti-MMTV activity. First, using anti-murine APOBEC3 antiserum, we showed that both APOBEC3 allelic variants are packaged into the cores of milk-borne virions produced in vivo. Next, using an in vitro deamination assay, we determined that virion-packaged APOBEC3 retains its deamination activity and that allelic differences in APOBEC3 affect the sequence specificity. In spite of this in vitro activity, cytidine deamination by virion-packaged APOBEC3 of MMTV early reverse transcription DNA occurred only at low levels. Instead, the major means by which in vivo virion-packaged APOBEC3 restricted virus was through inhibition of early reverse transcription in both cell-free virions and in vitro infection assays. Moreover, the different wild-type alleles varied in their ability to inhibit this step. Our data suggest that while APOBEC3-mediated cytidine deamination of MMTV may occur, it is not the major means by which APOBEC3 restricts MMTV infection in vivo. This may reflect the long-term coexistence of MMTV and APOBEC3 in mice.
Collapse
|
22
|
Harper MS, Barrett BS, Smith DS, Li SX, Gibbert K, Dittmer U, Hasenkrug KJ, Santiago ML. IFN-α treatment inhibits acute Friend retrovirus replication primarily through the antiviral effector molecule Apobec3. THE JOURNAL OF IMMUNOLOGY 2013; 190:1583-90. [PMID: 23315078 DOI: 10.4049/jimmunol.1202920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Therapeutic administration of IFN-α in clinical trials significantly reduced HIV-1 plasma viral load and human T-lymphotropic virus type I proviral load in infected patients. The mechanism may involve the concerted action of multiple antiretroviral effectors collectively known as "restriction factors," which could vary in relative importance according to the magnitude of transcriptional induction. However, direct genetic approaches to identify the relevant IFN-α restriction factors will not be feasible in humans in vivo. Meanwhile, mice encode an analogous set of restriction factor genes and could be used to obtain insights on how IFN-α could inhibit retroviruses in vivo. As expected, IFN-α treatment of mice significantly upregulated the transcription of multiple restriction factors including Tetherin/BST2, SAMHD1, Viperin, ISG15, OAS1, and IFITM3. However, a dominant antiretroviral factor, Apobec3, was only minimally induced. To determine whether Apobec3 was necessary for direct IFN-α antiretroviral action in vivo, wild-type and Apobec3-deficient mice were infected with Friend retrovirus, then treated with IFN-α. Treatment of infected wild-type mice with IFN-α significantly reduced acute plasma viral load 28-fold, splenic proviral load 5-fold, bone marrow proviral load 14-fold, and infected bone marrow cells 7-fold, but no inhibition was observed in Apobec3-deficient mice. These findings reveal that IFN-α inhibits acute Friend retrovirus infection primarily through the antiviral effector Apobec3 in vivo, demonstrate that transcriptional induction levels did not predict the mechanism of IFN-α-mediated control, and highlight the potential of the human APOBEC3 proteins as therapeutic targets against pathogenic retrovirus infections.
Collapse
Affiliation(s)
- Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
APOBEC3 versus Retroviruses, Immunity versus Invasion: Clash of the Titans. Mol Biol Int 2012; 2012:974924. [PMID: 22720156 PMCID: PMC3375093 DOI: 10.1155/2012/974924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/01/2012] [Indexed: 11/17/2022] Open
Abstract
Since the identification of APOBEC3G (A3G) as a potent restriction factor of HIV-1, a tremendous amount of effort has led to a broadened understanding of both A3G and the APOBEC3 (A3) family to which it belongs. In spite of the fine-tuned viral counterattack to A3 activity, in the form of the HIV-1 Vif protein, enthusiasm for leveraging the Vif : A3G axis as a point of clinical intervention remains high. In an impressive explosion of information over the last decade, additional A3 family members have been identified as antiviral proteins, mechanistic details of the restrictive capacity of these proteins have been elucidated, structure-function studies have revealed important molecular details of the Vif : A3G interaction, and clinical cohorts have been scrutinized for correlations between A3 expression and function and viral pathogenesis. In the last year, novel and unexpected findings regarding the role of A3G in immunity have refocused efforts on exploring the potential of harnessing the natural power of this immune defense. These most recent reports allude to functions of the A3 proteins that extend beyond their well-characterized designation as restriction factors. The emerging story implicates the A3 family as not only defense proteins, but also as participants in the broader innate immune response.
Collapse
|
24
|
Miyazawa M. [Molecular evolution of physiologically functioning anti-retroviral APOBEC3 deaminases]. Uirusu 2012; 62:27-38. [PMID: 23189822 DOI: 10.2222/jsv.62.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Recent in vivo findings clearly indicate that mammalian cytidine deaminase APOBEC3 can function as a physiological restriction factor to retrotransposons and infectious retroviruses. However, some retroviruses, including primate lentiviruses, have evolved to counter their natural host's APOBEC3. To survive this arms race, primates seem to have acquired multiple copies of APOBEC3 genes. Surprisingly, however, during the process of the diversification of rodent species, as well as the human race, some ancestral individuals acquired genetic variants that reduced the protein levels of APOBEC3 expression, and these variants currently show unexpectedly wide geographic distributions. These data suggest that in the absence of a heavy burden of infectious retroviruses, high-level expression of APOBEC3 cytidine deaminase might be costly to the integrity of the host genome.
Collapse
Affiliation(s)
- Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|