1
|
Lupo V, Roomans C, Royen E, Ongena L, Jacquemin O, Mullender C, Kerff F, Baurain D. Identification and characterization of archaeal pseudomurein biosynthesis genes through pangenomics. mSystems 2025; 10:e0140124. [PMID: 39936904 PMCID: PMC11915815 DOI: 10.1128/msystems.01401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The peptidoglycan (PG, or murein) is a mesh-like structure, which is made of glycan polymers connected by short peptides and surrounds the cell membrane of nearly all bacterial species. In contrast, there is no PG counterpart that would be universally found in Archaea but rather various polymers that are specific to some lineages. Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that harbor pseudomurein (PM), a structural analog of the bacterial PG. Owing to the differences between PG and PM biosynthesis, some have argued that the origin of both polymers is not connected. However, recent studies have revealed that the genomes of PM-containing Archaea encode homologs of the bacterial genes involved in PG biosynthesis, even though neither their specific functions nor the relationships within the corresponding inter-domain phylogenies have been investigated so far. In this work, we devised a pangenomic bioinformatic pipeline to identify proteins for PM biosynthesis in Archaea without prior genetic knowledge. The taxonomic distribution and evolutionary relationships of the candidate proteins were studied in detail in Archaea and Bacteria through HMM sequence mining and phylogenetic inference of the Mur domain-containing family, the ATP-grasp superfamily, and the MraY-like family. Our results show that archaeal muramyl ligases are of bacterial origin but diversified through a mixture of horizontal gene transfers and gene duplications. However, in the ATP-grasp and MraY-like families, the archaeal members were not found to originate from Bacteria. Our pangenomic approach further identified five new genes potentially involved in PM synthesis and that would deserve functional characterization.IMPORTANCEMethanobrevibacter smithii is an archaea commonly found in the human gut, but its presence alongside pathogenic bacteria during infections has led some researchers to consider it as an opportunistic pathogen. Fortunately, endoisopeptidases isolated from phages, such as PeiW and PeiP, can cleave the cell walls of M. smithii and other pseudomurein-containing archaea. However, additional research is required to identify effective anti-archaeal agents to combat these opportunistic microorganisms. A better understanding of the pseudomurein cell wall and its biosynthesis is necessary to achieve this goal. Our study sheds light on the origin of cell wall structures in those microorganisms, showing that the archaeal muramyl ligases responsible for its formation have bacterial origins. This discovery challenges the conventional view of the cell-wall architecture in the last archaeal common ancestor and shows that the distinction between "common origin" and "convergent evolution" can be blurred in some cases.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Célyne Roomans
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Edmée Royen
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Loïc Ongena
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Olivier Jacquemin
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Coralie Mullender
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Ludwig K, Puls JS, Matos de Opitz CL, Innocenti P, Daniel JM, Bornikoel J, Arts M, Krannich S, Straetener J, Brajtenbach D, Henrichfreise B, Sass P, Mueller A, Martin NI, Brötz-Oesterhelt H, Kubitscheck U, Grein F, Schneider T. The Dual Mode of Antibacterial Action of the Synthetic Small Molecule DCAP Involves Lipid II Binding. J Am Chem Soc 2024; 146:24855-24862. [PMID: 39197836 PMCID: PMC11403595 DOI: 10.1021/jacs.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The synthetic small molecule DCAP is a chemically well-characterized compound with antibiotic activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens. Until now, its mechanism of action was proposed to rely exclusively on targeting the bacterial membrane, thereby causing membrane depolarization, and increasing membrane permeability (Eun et al. 2012, J. Am. Chem. Soc. 134 (28), 11322-11325; Hurley et al. 2015, ACS Med. Chem. Lett. 6, 466-471). Here, we show that the antibiotic activity of DCAP results from a dual mode of action that is more targeted and multifaceted than previously anticipated. Using microbiological and biochemical assays in combination with fluorescence microscopy, we provide evidence that DCAP interacts with undecaprenyl pyrophosphate-coupled cell envelope precursors, thereby blocking peptidoglycan biosynthesis and impairing cell division site organization. Our work discloses a concise model for the mode of action of DCAP which involves the binding to a specific target molecule to exert pleiotropic effects on cell wall biosynthetic and divisome machineries.
Collapse
Affiliation(s)
- Kevin
C. Ludwig
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan-Samuel Puls
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Cruz L. Matos de Opitz
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Paolo Innocenti
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jan-Martin Daniel
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan Bornikoel
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Melina Arts
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Sebastian Krannich
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dominik Brajtenbach
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Beate Henrichfreise
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Peter Sass
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
| | - Anna Mueller
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrich Kubitscheck
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
3
|
Song Q, Wu H, Zhang P, Zhu H, Xie J, Liu J, Qiao J. The MarR family regulator RmaH mediates acid tolerance of Lactococcus lactis through regulating peptidoglycan modification genes. J Dairy Sci 2024:S0022-0302(24)01078-6. [PMID: 39154730 DOI: 10.3168/jds.2024-25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Lactococcus lactis, widely used in the food fermentation industry, has developed various ways to regulate acid adaptation in the process of evolution. The investigation into how peptidoglycan (PG) senses and responds to acid stress is an expanding field. Here, we addressed the regulation of murT-gatD genes which are responsible for the amidation of PG D-Glu. We found that lactic acid stress reduced murT-gatD expression, and overexpressing these genes notably decreased acid tolerance of L. lactis NZ9000, possibly due to a reduction in PG's negative charge, facilitating the influx of extracellular protons into the cell. Subsequently, using a combination of DNA pull-down assay and electrophoretic mobility shift assay (EMSA), we identified a novel MarR family regulator, RmaH, as an activator of murT-gatD transcription. Further MEME motif prediction, EMSA verification and fluorescent protein reporter assay showed that RmaH directly bound to the DNA motif 5'-KGVAWWTTTTGCT-3' located in the upstream region of murT-gatD. Beyond the mechanistic investigation of RmaH activation of murT-gatD, this study provides new insight into how peptidoglycan modification is regulated and responds to lactic acid stress.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China
| | - Peng Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiawei Xie
- Institute of New Energy and Low-Carbon Technology, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, China.
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;; Zhejiang Shaoxing research institute of Tianjin University, Shaoxing, 312300, China;; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, China;; SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
4
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
5
|
Shaku MT, Um PK, Ocius KL, Apostolos AJ, Pires MM, Bishai WR, Kana BD. A modified BCG with depletion of enzymes associated with peptidoglycan amidation induces enhanced protection against tuberculosis in mice. eLife 2024; 13:e89157. [PMID: 38639995 PMCID: PMC11132681 DOI: 10.7554/elife.89157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.
Collapse
Affiliation(s)
- Moagi Tube Shaku
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Peter K Um
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Karl L Ocius
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Alexis J Apostolos
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Marcos M Pires
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
6
|
Shaku MT, Ocius KL, Apostolos AJ, Pires MM, VanNieuwenhze MS, Dhar N, Kana BD. Amidation of glutamate residues in mycobacterial peptidoglycan is essential for cell wall cross-linking. Front Cell Infect Microbiol 2023; 13:1205829. [PMID: 37692163 PMCID: PMC10484409 DOI: 10.3389/fcimb.2023.1205829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Mycobacteria assemble a complex cell wall with cross-linked peptidoglycan (PG) which plays an essential role in maintenance of cell wall integrity and tolerance to osmotic pressure. We previously demonstrated that various hydrolytic enzymes are required to remodel PG during essential processes such as cell elongation and septal hydrolysis. Here, we explore the chemistry associated with PG cross-linking, specifically the requirement for amidation of the D-glutamate residue found in PG precursors. Methods Synthetic fluorescent probes were used to assess PG remodelling dynamics in live bacteria. Fluorescence microscopy was used to assess protein localization in live bacteria and CRISPR-interference was used to construct targeted gene knockdown strains. Time-lapse microscopy was used to assess bacterial growth. Western blotting was used to assess protein phosphorylation. Results and discussion In Mycobacterium smegmatis, we confirmed the essentiality for D-glutamate amidation in PG biosynthesis by labelling cells with synthetic fluorescent PG probes carrying amidation modifications. We also used CRISPRi targeted knockdown of genes encoding the MurT-GatD complex, previously implicated in D-glutamate amidation, and demonstrated that these genes are essential for mycobacterial growth. We show that MurT-rseGFP co-localizes with mRFP-GatD at the cell poles and septum, which are the sites of cell wall synthesis in mycobacteria. Furthermore, time-lapse microscopic analysis of MurT-rseGFP localization, in fluorescent D-amino acid (FDAA)-labelled mycobacterial cells during growth, demonstrated co-localization with maturing PG, suggestive of a role for PG amidation during PG remodelling and repair. Depletion of MurT and GatD caused reduced PG cross-linking and increased sensitivity to lysozyme and β-lactam antibiotics. Cell growth inhibition was found to be the result of a shutdown of PG biosynthesis mediated by the serine/threonine protein kinase B (PknB) which senses uncross-linked PG. Collectively, these data demonstrate the essentiality of D-glutamate amidation in mycobacterial PG precursors and highlight the MurT-GatD complex as a novel drug target.
Collapse
Affiliation(s)
- Moagi T. Shaku
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis (TB) Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Karl L. Ocius
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | | | - Neeraj Dhar
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bavesh D. Kana
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis (TB) Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
7
|
Domon H, Hirayama S, Isono T, Sasagawa K, Takizawa F, Maekawa T, Yanagihara K, Terao Y. Macrolides Decrease the Proinflammatory Activity of Macrolide-Resistant Streptococcus pneumoniae. Microbiol Spectr 2023; 11:e0014823. [PMID: 37191519 PMCID: PMC10269745 DOI: 10.1128/spectrum.00148-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Over the past 2 decades, the prevalence of macrolide-resistant Streptococcus pneumoniae (MRSP) has increased considerably, due to widespread macrolide use. Although macrolide usage has been proposed to be associated with treatment failure in patients with pneumococcal diseases, macrolides may be clinically effective for treating these diseases, regardless of the susceptibility of the causative pneumococci to macrolides. As we previously demonstrated that macrolides downregulate the transcription of various genes in MRSP, including the gene encoding the pore-forming toxin pneumolysin, we hypothesized that macrolides affect the proinflammatory activity of MRSP. Using HEK-Blue cell lines, we found that the supernatants from macrolide-treated MRSP cultures induced decreased NF-κB activation in cells expressing Toll-like receptor 2 and nucleotide-binding oligomerization domain 2 compared to the supernatants from untreated MRSP cells, suggesting that macrolides inhibit the release of these ligands from MRSP. Real-time PCR analysis revealed that macrolides significantly downregulated the transcription of various genes encoding peptidoglycan synthesis-, lipoteichoic acid synthesis-, and lipoprotein synthesis-related molecules in MRSP cells. The silkworm larva plasma assay demonstrated that the peptidoglycan concentrations in the supernatants from macrolide-treated MRSP cultures were significantly lower than those from untreated MRSP cultures. Triton X-114 phase separation revealed that lipoprotein expression decreased in macrolide-treated MRSP cells compared to the lipoprotein expression in untreated MRSP cells. Consequently, macrolides may decrease the expression of bacterial ligands of innate immune receptors, resulting in the decreased proinflammatory activity of MRSP. IMPORTANCE To date, the clinical efficacy of macrolides in pneumococcal disease is assumed to be linked to their ability to inhibit the release of pneumolysin. However, our previous study demonstrated that oral administration of macrolides to mice intratracheally infected with macrolide-resistant Streptococcus pneumoniae resulted in decreased levels of pneumolysin and proinflammatory cytokines in bronchoalveolar lavage fluid samples compared to the levels in samples from untreated infected control mice, without affecting the bacterial load in the fluid. This finding suggests that additional mechanisms by which macrolides negatively regulate proinflammatory cytokine production may be involved in their efficacy in vivo. Furthermore, in this study, we demonstrated that macrolides downregulated the transcription of various proinflammatory-component-related genes in S. pneumoniae, which provides an additional explanation for the clinical benefits of macrolides.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Fan SH, Proctor RA, Ersoy SC, Manna AC, Cheung AL, Götz F, Chambers HF, Bayer AS. Role of the NaHCO 3 Transporter MpsABC in the NaHCO 3-β-Lactam-Responsive Phenotype in Methicillin-Resistant Staphylococcus aureus. Microbiol Spectr 2023; 11:e0014123. [PMID: 37102972 PMCID: PMC10269494 DOI: 10.1128/spectrum.00141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are an increasing concern due to their intrinsic resistance to most standard-of-care β-lactam antibiotics. Recent studies of clinical isolates have documented a novel phenotype, termed NaHCO3 responsiveness, in which a substantial proportion of MRSA strains exhibit enhanced susceptibility to β-lactams such as cefazolin and oxacillin in the presence of NaHCO3. A bicarbonate transporter, MpsAB (membrane potential-generating system), was recently found in S. aureus, where it plays a role in concentrating NaHCO3 for anaplerotic pathways. Here, we investigated the role of MpsAB in mediating the NaHCO3 responsiveness phenotype. Radiolabeled NaH14CO3 uptake profiling revealed significantly higher accumulation in NaHCO3-responsive vs nonresponsive MRSA strains when grown in ambient air. In contrast, under 5% CO2 conditions, NaHCO3-responsive (but not nonresponsive) strains exhibited repressed uptake. Oxacillin MICs were measured in four prototype strains and their mpsABC deletion mutants in the presence of NaHCO3 supplementation under 5% CO2 conditions. NaHCO3-mediated reductions in oxacillin MICs were observed in the responsive parental strains but not in mpsABC deletion mutants. No significant impact on oxacillin MICs was observed in the nonresponsive strains under the same conditions. Transcriptional and translational studies were carried out using both quantitative reverse transcription-PCR (qRT-PCR) and mpsA-green fluorescent protein (GFP) fusion constructs; these investigations showed that mpsA expression and translation were significantly upregulated during mid-exponential-phase growth in oxacillin-NaHCO3-supplemented medium in responsive versus nonresponsive strains. Taken together, these data show that the NaHCO3 transporter MpsABC is a key contributor to the NaHCO3-β-lactam responsiveness phenotype in MRSA. IMPORTANCE MRSA infections are increasingly difficult to treat, due in part to their resistance to most β-lactam antibiotics. A novel and relatively common phenotype, termed NaHCO3 responsiveness, has been identified in which MRSA strains show increased susceptibility in vitro and in vivo to β-lactams in the presence of NaHCO3. A recently described S. aureus NaHCO3 transporter, MpsAB, is involved in intracellular NaHCO3 concentration for anaplerotic pathways. We investigated the role of MpsAB in mediating the NaHCO3 responsiveness phenotype in four prototype MRSA strains (two responsive and two nonresponsive). We demonstrated that MpsABC is an important contributor to the NaHCO3-β-lactam responsiveness phenotype. Our study adds to the growing body of well-defined characteristics of this novel phenotype, which could potentially translate to alternative targets for MRSA treatment using β-lactams.
Collapse
Affiliation(s)
- Sook-Ha Fan
- The Lundquist Institute, Torrance, California, USA
| | - Richard A. Proctor
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Adhar C. Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ambrose L. Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Germany
| | | | - Arnold S. Bayer
- The Lundquist Institute, Torrance, California, USA
- Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Shaku MT, Um P, Ocius KL, Apostolos AJ, Pires MM, Bishai WR, Kana BD. A modified BCG with depletion of enzymes associated with peptidoglycan amidation induces enhanced protection against tuberculosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539199. [PMID: 37205421 PMCID: PMC10187164 DOI: 10.1101/2023.05.03.539199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan sidechains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan sidechains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics and altered spatial localization of new peptidoglycan. In cell culture experiments, training of monocytes with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, resulting in unmasking of the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. This work demonstrates the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.
Collapse
|
10
|
Silveiro C, Marques M, Olivença F, Pires D, Mortinho D, Nunes A, Pimentel M, Anes E, Catalão MJ. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival. Front Cell Infect Microbiol 2023; 13:1089911. [PMID: 37009497 PMCID: PMC10050696 DOI: 10.3389/fcimb.2023.1089911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The lack of effective therapeutics against emerging multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) prompts the identification of novel anti-tuberculosis targets. The essential nature of the peptidoglycan (PG) layer of the mycobacterial cell wall, which features several distinctive modifications, such as the N-glycolylation of muramic acid and the amidation of D-iso-glutamate, makes it a target of particular interest. To understand their role in susceptibility to beta-lactams and in the modulation of host-pathogen interactions, the genes encoding the enzymes responsible for these PG modifications (namH and murT/gatD, respectively) were silenced in the model organism Mycobacterium smegmatis using CRISPR interference (CRISPRi). Although beta-lactams are not included in TB-therapy, their combination with beta-lactamase inhibitors is a prospective strategy to treat MDR-TB. To uncover synergistic effects between the action of beta-lactams and the depletion of these PG modifications, knockdown mutants were also constructed in strains lacking the major beta-lactamase of M. smegmatis BlaS, PM965 (M. smegmatis ΔblaS1) and PM979 (M. smegmatis ΔblaS1 ΔnamH). The phenotyping assays affirmed the essentiality of the amidation of D-iso-glutamate to the survival of mycobacteria, as opposed to the N-glycolylation of muramic acid. The qRT-PCR assays confirmed the successful repression of the target genes, along with few polar effects and differential knockdown level depending on PAM strength and target site. Both PG modifications were found to contribute to beta-lactam resistance. While the amidation of D-iso-glutamate impacted cefotaxime and isoniazid resistance, the N-glycolylation of muramic acid substantially promoted resistance to the tested beta-lactams. Their simultaneous depletion provoked synergistic reductions in beta-lactam MICs. Moreover, the depletion of these PG modifications promoted a significantly faster bacilli killing by J774 macrophages. Whole-genome sequencing revealed that these PG modifications are highly conserved in a set of 172 clinical strains of Mtb, demonstrating their potential as therapeutic targets against TB. Our results support the development of new therapeutic agents targeting these distinctive mycobacterial PG modifications.
Collapse
Affiliation(s)
- Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Diana Mortinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- Faculty of Veterinary Medicine, Universidade Lusófona, Lisbon, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Maria João Catalão,
| |
Collapse
|
11
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Apostolos AJ, Kelly JJ, Ongwae GM, Pires MM. Structure Activity Relationship of the Stem Peptide in Sortase A Mediated Ligation from Staphylococcus aureus. Chembiochem 2022; 23:e202200412. [PMID: 36018606 PMCID: PMC9632411 DOI: 10.1002/cbic.202200412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.
Collapse
Affiliation(s)
| | - Joey J. Kelly
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - George M. Ongwae
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| |
Collapse
|
13
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
15
|
Sun L, Rogiers G, Courtin P, Chapot-Chartier MP, Bierne H, Michiels CW. AsnB Mediates Amidation of Meso-Diaminopimelic Acid Residues in the Peptidoglycan of Listeria monocytogenes and Affects Bacterial Surface Properties and Host Cell Invasion. Front Microbiol 2021; 12:760253. [PMID: 34721369 PMCID: PMC8554201 DOI: 10.3389/fmicb.2021.760253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
A mutant of Listeria monocytogenes ScottA with a transposon in the 5' untranslated region of the asnB gene was identified to be hypersensitive to the antimicrobial t-cinnamaldehyde. Here, we report the functional characterization of AsnB in peptidoglycan (PG) modification and intracellular infection. While AsnB of Listeria is annotated as a glutamine-dependent asparagine synthase, sequence alignment showed that this protein is closely related to a subset of homologs that catalyze the amidation of meso-diaminopimelic acid (mDAP) residues in the peptidoglycan of other bacterial species. Structural analysis of peptidoglycan from an asnB mutant, compared to that of isogenic wild-type (WT) and complemented mutant strains, confirmed that AsnB mediates mDAP amidation in L. monocytogenes. Deficiency in mDAP amidation caused several peptidoglycan- and cell surface-related phenotypes in the asnB mutant, including formation of shorter but thicker cells, susceptibility to lysozyme, loss of flagellation and motility, and a strong reduction in biofilm formation. In addition, the mutant showed reduced invasion of human epithelial JEG-3 and Caco-2 cells. Analysis by immunofluorescence microscopy revealed that asnB inactivation abrogated the proper display at the listerial surface of the invasion protein InlA, which normally gets cross-linked to mDAP via its LPXTG motif. Together, this work shows that AsnB of L. monocytogenes, like several of its homologs in related Gram-positive bacteria, mediates the amidation of mDAP residues in the peptidoglycan and, in this way, affects several cell wall and cell surface-related properties. It also for the first time implicates the amidation of peptidoglycan mDAP residues in cell wall anchoring of InlA and in bacterial virulence.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| | - Gil Rogiers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| | - Pascal Courtin
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Hélène Bierne
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chris W Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S) and Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Subedi BP, Martin WF, Carbone V, Duin EC, Cronin B, Sauter J, Schofield LR, Sutherland-Smith AJ, Ronimus RS. Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. FEMS MICROBES 2021; 2:xtab012. [PMID: 37334239 PMCID: PMC10117817 DOI: 10.1093/femsmc/xtab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/19/2021] [Indexed: 08/29/2023] Open
Abstract
Bacteria near-universally contain a cell wall sacculus of murein (peptidoglycan), the synthesis of which has been intensively studied for over 50 years. In striking contrast, archaeal species possess a variety of other cell wall types, none of them closely resembling murein. Interestingly though, one type of archaeal cell wall termed pseudomurein found in the methanogen orders Methanobacteriales and Methanopyrales is a structural analogue of murein in that it contains a glycan backbone that is cross-linked by a L-amino acid peptide. Here, we present taxonomic distribution, gene cluster and phylogenetic analyses that confirm orthologues of 13 bacterial murein biosynthesis enzymes in pseudomurein-containing methanogens, most of which are distantly related to their bacterial counterparts. We also present the first structure of an archaeal pseudomurein peptide ligase from Methanothermus fervidus DSM1088 (Mfer336) to a resolution of 2.5 Å and show that it possesses a similar overall tertiary three domain structure to bacterial MurC and MurD type murein peptide ligases. Taken together the data strongly indicate that murein and pseudomurein biosynthetic pathways share a common evolutionary history.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
- Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University, Düsseldorf Universitätsstraße 1, D-40225, Germany
| | - Vincenzo Carbone
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Eduardus C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Julia Sauter
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Linley R Schofield
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | | | - Ron S Ronimus
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
17
|
York A, Lloyd AJ, Del Genio CI, Shearer J, Hinxman KJ, Fritz K, Fulop V, Dowson CG, Khalid S, Roper DI. Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure 2021; 29:731-742.e6. [PMID: 33740396 PMCID: PMC8280954 DOI: 10.1016/j.str.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Branched Lipid II, required for the formation of indirectly crosslinked peptidoglycan, is generated by MurM, a protein essential for high-level penicillin resistance in the human pathogen Streptococcus pneumoniae. We have solved the X-ray crystal structure of Staphylococcus aureus FemX, an isofunctional homolog, and have used this as a template to generate a MurM homology model. Using this model, we perform molecular docking and molecular dynamics to examine the interaction of MurM with the phospholipid bilayer and the membrane-embedded Lipid II substrate. Our model suggests that MurM is associated with the major membrane phospholipid cardiolipin, and experimental evidence confirms that the activity of MurM is enhanced by this phospholipid and inhibited by its direct precursor phosphatidylglycerol. The spatial association of pneumococcal membrane phospholipids and their impact on MurM activity may therefore be critical to the final architecture of peptidoglycan and the expression of clinically relevant penicillin resistance in this pathogen.
Collapse
Affiliation(s)
- Anna York
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Adrian J Lloyd
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Charo I Del Genio
- Centre for Fluid and Complex Systems, School of Computing, Electronics and Mathematics, University of Coventry, West Midlands CV1 5FB, UK
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Karen J Hinxman
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Konstantin Fritz
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Vilmos Fulop
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Christopher G Dowson
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK.
| | - David I Roper
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Ammam F, Patin D, Coullon H, Blanot D, Lambert T, Mengin-Lecreulx D, Candela T. AsnB is responsible for peptidoglycan precursor amidation in Clostridium difficile in the presence of vancomycin. MICROBIOLOGY-SGM 2021; 166:567-578. [PMID: 32375990 DOI: 10.1099/mic.0.000917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridium difficile 630 possesses a cryptic but functional gene cluster vanG Cd homologous to the vanG operon of Enterococcus faecalis. Expression of vanG Cd in the presence of subinhibitory concentrations of vancomycin is accompanied by peptidoglycan amidation on the meso-DAP residue. In this paper, we report the presence of two potential asparagine synthetase genes named asnB and asnB2 in the C. difficile genome whose products were potentially involved in this peptidoglycan structure modification. We found that asnB expression was only induced when C. difficile was grown in the presence of vancomycin, yet independently from the vanG Cd resistance and regulation operons. In addition, peptidoglycan precursors were not amidated when asnB was inactivated. No change in vancomycin MIC was observed in the asnB mutant strain. In contrast, overexpression of asnB resulted in the amidation of most of the C. difficile peptidoglycan precursors and in a weak increase of vancomycin susceptibility. AsnB activity was confirmed in E. coli. In contrast, the expression of the second asparagine synthetase, AsnB2, was not induced in the presence of vancomycin. In summary, our results demonstrate that AsnB is responsible for peptidoglycan amidation of C. difficile in the presence of vancomycin.
Collapse
Affiliation(s)
- Fariza Ammam
- Present address: Department of Engineering Science, University of Oxford, Parks Road, Oxford,OX1 3PJ, UK.,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Delphine Patin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Héloise Coullon
- Present address: Division of Infectious Diseases, Department of Medicine, Washington University, School of Medicine, St. Louis, MO, USA.,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Didier Blanot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Thierry Lambert
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Thomas Candela
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| |
Collapse
|
19
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
20
|
Maitra A, Nukala S, Dickman R, Martin LT, Munshi T, Gupta A, Shepherd AJ, Arnvig KB, Tabor AB, Keep NH, Bhakta S. Characterization of the MurT/GatD complex in Mycobacterium tuberculosis towards validating a novel anti-tubercular drug target. JAC Antimicrob Resist 2021; 3:dlab028. [PMID: 34223102 PMCID: PMC8210147 DOI: 10.1093/jacamr/dlab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Identification and validation of novel therapeutic targets is imperative to tackle the rise of drug resistance in tuberculosis. An essential Mur ligase-like gene (Rv3712), expected to be involved in cell-wall peptidoglycan (PG) biogenesis and conserved across mycobacteria, including the genetically depleted Mycobacterium leprae, was the primary focus of this study. METHODS Biochemical analysis of Rv3712 was performed using inorganic phosphate release assays. The operon structure was identified using reverse-transcriptase PCR and a transcription/translation fusion vector. In vivo mycobacterial protein fragment complementation assays helped generate the interactome. RESULTS Rv3712 was found to be an ATPase. Characterization of its operon revealed a mycobacteria-specific promoter driving the co-transcription of Rv3712 and Rv3713. The two gene products were found to interact with each other in vivo. Sequence-based functional assignments reveal that Rv3712 and Rv3713 are likely to be the mycobacterial PG precursor-modifying enzymes MurT and GatD, respectively. An in vivo network involving Mtb-MurT, regulatory proteins and cell division proteins was also identified. CONCLUSIONS Understanding the role of the enzyme complex in the context of PG metabolism and cell division, and the implications for antimicrobial resistance and host immune responses will facilitate the design of therapeutics that are targeted specifically to M. tuberculosis.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Syamasundari Nukala
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Rachael Dickman
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Antima Gupta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Adrian J Shepherd
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kristine B Arnvig
- Research Department of Structural Molecular Biology, Division of Biosciences, University College London, Gower Place, London WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
21
|
Shaku M, Ealand C, Kana BD. Cell Surface Biosynthesis and Remodeling Pathways in Mycobacteria Reveal New Drug Targets. Front Cell Infect Microbiol 2020; 10:603382. [PMID: 33282752 PMCID: PMC7688586 DOI: 10.3389/fcimb.2020.603382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains the leading cause of death from an infectious bacterium and is responsible for 1.8 million deaths annually. The emergence of drug resistance, together with the need for a shorter more effective regimen, has prompted the drive to identify novel therapeutics with the bacterial cell surface emerging as a tractable area for drug development. Mtb assembles a unique, waxy, and complex cell envelope comprised of the mycolyl-arabinogalactan-peptidoglycan complex and an outer capsule like layer, which are collectively essential for growth and pathogenicity while serving as an inherent barrier against antibiotics. A detailed understanding of the biosynthetic pathways required to assemble the polymers that comprise the cell surface will enable the identification of novel drug targets as these structures provide a diversity of biochemical reactions that can be targeted. Herein, we provide an overview of recently described mycobacterial cell wall targeting compounds, novel drug combinations and their modes of action. We anticipate that this summary will enable prioritization of the best pathways to target and triage of the most promising molecules to progress for clinical assessment.
Collapse
Affiliation(s)
- Moagi Shaku
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Ealand
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Bavesh D Kana
- National Health Laboratory Service, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
22
|
Maitra A, Munshi T, Healy J, Martin LT, Vollmer W, Keep NH, Bhakta S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles' heel for the TB-causing pathogen. FEMS Microbiol Rev 2020; 43:548-575. [PMID: 31183501 PMCID: PMC6736417 DOI: 10.1093/femsre/fuz016] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Tulika Munshi
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Jess Healy
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Liam T Martin
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicholas H Keep
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
23
|
Shaku M, Ealand C, Matlhabe O, Lala R, Kana BD. Peptidoglycan biosynthesis and remodeling revisited. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:67-103. [PMID: 32762868 DOI: 10.1016/bs.aambs.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bacterial peptidoglycan layer forms a complex mesh-like structure that surrounds the cell, imparting rigidity to withstand cytoplasmic turgor and the ability to tolerate stress. As peptidoglycan has been the target of numerous clinically successful antimicrobials such as penicillin, the biosynthesis, remodeling and recycling of this polymer has been the subject of much interest. Herein, we review recent advances in the understanding of peptidoglycan biosynthesis and remodeling in a variety of different organisms. In order for bacterial cells to grow and divide, remodeling of cross-linked peptidoglycan is essential hence, we also summarize the activity of important peptidoglycan hydrolases and how their functions differ in various species. There is a growing body of evidence highlighting complex regulatory mechanisms for peptidoglycan metabolism including protein interactions, phosphorylation and protein degradation and we summarize key recent findings in this regard. Finally, we provide an overview of peptidoglycan recycling and how components of this pathway mediate resistance to drugs. In the face of growing antimicrobial resistance, these recent advances are expected to uncover new drug targets in peptidoglycan metabolism, which can be used to develop novel therapies.
Collapse
Affiliation(s)
- Moagi Shaku
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Ofentse Matlhabe
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Rushil Lala
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
24
|
Zhang X, Ruan Y, Liu W, Chen Q, Gu L, Guo A. Transcriptome Analysis of Gene Expression in Dermacoccus abyssi HZAU 226 under Lysozyme Stress. Microorganisms 2020; 8:microorganisms8050707. [PMID: 32403298 PMCID: PMC7286019 DOI: 10.3390/microorganisms8050707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Lysozyme acts as a kind of cationic antimicrobial protein and effectively hydrolyzes bacterial peptidoglycan to have a bactericidal effect, which also plays an important role in protecting eggs from microbial contamination. Dermacoccus abyssi HZAU 226, a Gram-positive bacterium isolated from spoiled eggs, has egg white and lysozyme tolerance, but its survival mechanism is unknown, especially from a transcriptomics point of view. In this study, the high lysozyme tolerance of D. abyssi HZAU 226 was characterized by three independent experiments, and then the Illumina RNA-seq was used to compare the transcriptional profiles of this strain in Luria–Bertani (LB) medium with and without 5 mg/mL lysozyme to identify differentially expressed genes (DEGs); 1024 DEGs were identified by expression analysis, including 544 up-regulated genes and 480 down-regulated genes in response to lysozyme treatment. The functional annotation analysis results of DEGs showed that these genes were mainly involved in glutathione biosynthesis and metabolism, ion transport, energy metabolism pathways, and peptidoglycan biosynthesis. This study is the first report of bacterial-related lysozyme RNA-seq, and our results help in understanding the lysozyme-tolerance mechanism of bacteria from a new perspective and provide transcriptome resources for subsequent research in related fields.
Collapse
Affiliation(s)
- Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
| | - Yao Ruan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
| | - Qian Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
| | - Lihong Gu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; (X.Z.); (Y.R.); (W.L.); (Q.C.); (L.G.)
- National Research and Development Center for Egg Processing, Wuhan 430000, China
- Correspondence: ; Tel.: +86-1534-224-1896
| |
Collapse
|
25
|
Role of MurT C-Terminal Domain in the Amidation of Staphylococcus aureus Peptidoglycan. Antimicrob Agents Chemother 2019; 63:AAC.00957-19. [PMID: 31358586 DOI: 10.1128/aac.00957-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022] Open
Abstract
Glutamate amidation, a secondary modification of the peptidoglycan, was first identified in Staphylococcus aureus It is catalyzed by the protein products of the murT and gatD genes, which are conserved and colocalized in the genomes of most sequenced Gram-positive bacterial species. The MurT-GatD complex is required for cell viability, full resistance to β-lactam antibiotics, and resistance to human lysozyme and is recognized as an attractive target for new antimicrobials. Great effort has been invested in the study of this step, culminating recently in three independent reports addressing the structural elucidation of the MurT-GatD complex. In this work, we demonstrate through the use of nonstructural approaches the critical and multiple roles of the C-terminal domain of MurT, annotated as DUF1727, in the MurT-GatD enzymatic complex. This domain provides the physical link between the two enzymatic activities and is essential for the amidation reaction. Copurification of recombinant MurT and GatD proteins and bacterial two-hybrid assays support the observation that the MurT-GatD interaction occurs through this domain. Most importantly, we provide in vivo evidence of the effect of substitutions at specific residues in DUF1727 on cell wall peptidoglycan amidation and on the phenotypes of oxacillin resistance and bacterial growth.
Collapse
|
26
|
Unsleber S, Wohlleben W, Stegmann E. Diversity of peptidoglycan structure—Modifications and their physiological role in resistance in antibiotic producers. Int J Med Microbiol 2019; 309:151332. [DOI: 10.1016/j.ijmm.2019.151332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
|
27
|
Nöldeke ER, Stehle T. Unraveling the mechanism of peptidoglycan amidation by the bifunctional enzyme complex GatD/MurT: A comparative structural approach. Int J Med Microbiol 2019; 309:151334. [PMID: 31383542 DOI: 10.1016/j.ijmm.2019.151334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022] Open
Abstract
The bacterial cell wall provides structural integrity to the cell and protects the cell from internal pressure and the external environment. During the course of the twelve-year funding period of the Collaborative Research Center 766, our work has focused on conducting structure-function studies of enzymes that modify (synthesize or cleave) cell wall components of a range of bacteria including Staphylococcus aureus, Staphylococcus epidermidis, and Nostoc punctiforme. Several of our structures represent promising targets for interference. In this review, we highlight a recent structure-function analysis of an enzyme complex that is responsible for the amidation of Lipid II, a peptidoglycan precursor, in S. aureus.
Collapse
Affiliation(s)
- Erik R Nöldeke
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076 Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| |
Collapse
|
28
|
Medeiros‐Silva J, Jekhmane S, Breukink E, Weingarth M. Towards the Native Binding Modes of Antibiotics that Target Lipid II. Chembiochem 2019; 20:1731-1738. [PMID: 30725496 PMCID: PMC6767406 DOI: 10.1002/cbic.201800796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 12/22/2022]
Abstract
The alarming rise of antimicrobial resistance (AMR) imposes severe burdens on healthcare systems and the economy worldwide, urgently calling for the development of new antibiotics. Antimicrobial peptides could be ideal templates for next-generation antibiotics, due to their low propensity to cause resistance. An especially promising branch of antimicrobial peptides target lipid II, the precursor of the bacterial peptidoglycan network. To develop these peptides into clinically applicable compounds, detailed information on their pharmacologically relevant modes of action is of critical importance. Here we review the binding modes of a selection of peptides that target lipid II and highlight shortcomings in our molecular understanding that, at least partly, relate to the widespread use of artificial membrane mimics for structural studies of membrane-active antibiotics. In particular, with the example of the antimicrobial peptide nisin, we showcase how the native cellular membrane environment can be critical for understanding of the physiologically relevant binding mode.
Collapse
Affiliation(s)
- João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and BiophysicsBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht UniversityPadualaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
29
|
Abstract
Dating back to the 1960s, initial studies on the staphylococcal cell wall were driven by the need to clarify the mode of action of the first antibiotics and the resistance mechanisms developed by the bacteria. During the following decades, the elucidation of the biosynthetic path and primary composition of staphylococcal cell walls was propelled by advances in microbial cell biology, specifically, the introduction of high-resolution analytical techniques and molecular genetic approaches. The field of staphylococcal cell wall gradually gained its own significance as the complexity of its chemical structure and involvement in numerous cellular processes became evident, namely its versatile role in host interactions, coordination of cell division and environmental stress signaling.This chapter includes an updated description of the anatomy of staphylococcal cell walls, paying particular attention to information from the last decade, under four headings: high-resolution analysis of the Staphylococcus aureus peptidoglycan; variations in peptidoglycan composition; genetic determinants and enzymes in cell wall synthesis; and complex functions of cell walls. The latest contributions to a more precise picture of the staphylococcal cell envelope were possible due to recently developed state-of-the-art microscopy and spectroscopy techniques and to a wide combination of -omics approaches, that are allowing to obtain a more integrative view of this highly dynamic structure.
Collapse
Affiliation(s)
- Rita Sobral
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | |
Collapse
|
30
|
Tan S, Ludwig KC, Müller A, Schneider T, Nodwell JR. The Lasso Peptide Siamycin-I Targets Lipid II at the Gram-Positive Cell Surface. ACS Chem Biol 2019; 14:966-974. [PMID: 31026131 DOI: 10.1021/acschembio.9b00157] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are a diverse class of biologically active molecules produced by many environmental bacteria. While thousands of these compounds have been identified, mostly through genome mining, a relatively small number has been investigated at the molecular level. One less understood class of RiPPs is the lasso peptides. These are 20-25 amino acid residue compounds bearing an N-terminal macrocyclic ring and a C-terminal tail that is threaded through the ring. We have carried out a detailed investigation on the mechanism of action of the siamycin-I lasso peptide. We demonstrate that siamycin-I interacts with lipid II, the central building block of the major cell wall component peptidoglycan, which is readily accessible on the outside of the cell. This interaction compromises cell wall biosynthesis in a manner that activates the liaI stress response. Additionally, resistance to siamycin-I can be brought about by mutations in the essential WalKR two-component system that causes thickening of the cell wall. Siamycin-I is the first lasso peptide that has been shown to inhibit cell wall biosynthesis.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Justin R. Nodwell
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
31
|
Chauhan J, Kwasny SM, Fletcher S, Opperman TJ, de Leeuw EPH. Optimization of a small-molecule Lipid II binder. Bioorg Med Chem Lett 2019; 29:1849-1853. [PMID: 31126852 DOI: 10.1016/j.bmcl.2019.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
Lipid II is an essential precursor of bacterial cell wall biosynthesis and an attractive target for antibiotics. Lipid II is comprised of specialized lipid (bactoprenol) linked to a hydrophilic head group consisting of a peptidoglycan subunit (N-acetylglucosamine (GlcNAc)-N-acetylmuramic acid (MurNAc) disaccharide coupled to a short pentapeptide moiety) via a pyrophosphate. We previously identified a (E)-2,4-bis(4-bromophenyl)-6-(4-(dimethylamino)styryl)pyrylium boron tetrafluoride salt, termed 6jc48-1, that interacts with the MurNAc moiety, the phosphate cage and the isoprenyl tail of Lipid II. Here, we report on the structure-activity relationship of 6jc48-1 derivatives obtained by de novo chemical synthesis. Our results indicate that bacterial killing is positively driven by bi-phenyl stacking with peptidoglycan units. Replacement of bromides by fluorides resulted in activity against S. aureus without affecting Lipid II binding and cytotoxicity. Antibacterial activity was affected negatively by extended interaction of the scaffold with Lipid II isoprenyl units.
Collapse
Affiliation(s)
- Jay Chauhan
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Steven M Kwasny
- Microbiotix, Inc., One Innovation Drive, Worcester, MA 01605, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Erik P H de Leeuw
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Grein F, Schneider T, Sahl HG. Docking on Lipid II-A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides. J Mol Biol 2019; 431:3520-3530. [PMID: 31100388 DOI: 10.1016/j.jmb.2019.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Natural product antibiotics usually target the major biosynthetic pathways of bacterial cells and the search for new targets outside these pathways has proven very difficult. Cell wall biosynthesis maybe the most prominent antibiotic target, and ß-lactams are among the clinically most relevant antibiotics. Among cell wall biosynthesis inhibitors, glycopeptide antibiotics are a second group of important drugs, which bind to the peptidoglycan building block lipid II and prevent the incorporation of the monomeric unit into polymeric cell wall. However, lipid II acts as a docking molecule for many more naturally occurring antibiotics from diverse chemical classes and likely is the most targeted molecule in antibacterial mechanisms. We summarize current knowledge on lipid II binding antibiotics and explain, on the levels of mechanisms and resistance development, why lipid II is such a prominent target, and thus provide insights for the design of new antibiotic drugs.
Collapse
Affiliation(s)
- Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Abstract
The peptidoglycan sacculus is a net-like polymer that surrounds the cytoplasmic membrane in most bacteria. It is essential to maintain the bacterial cell shape and protect from turgor. The peptidoglycan has a basic composition, common to all bacteria, with species-specific variations that can modify its biophysical properties or the pathogenicity of the bacteria. The synthesis of peptidoglycan starts in the cytoplasm and the precursor lipid II is flipped across the cytoplasmic membrane. The new peptidoglycan strands are synthesised and incorporated into the pre-existing sacculus by the coordinated activities of peptidoglycan synthases and hydrolases. In the model organism Escherichia coli there are two complexes required for the elongation and division. Each of them is regulated by different proteins from both the cytoplasmic and periplasmic sides that ensure the well-coordinated synthesis of new peptidoglycan.
Collapse
|
34
|
Sychantha D, Brott AS, Jones CS, Clarke AJ. Mechanistic Pathways for Peptidoglycan O-Acetylation and De-O-Acetylation. Front Microbiol 2018; 9:2332. [PMID: 30327644 PMCID: PMC6174289 DOI: 10.3389/fmicb.2018.02332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
The post-synthetic O-acetylation of the essential component of bacterial cell walls, peptidoglycan (PG), is performed by many pathogenic bacteria to help them evade the lytic action of innate immunity responses. Occurring at the C-6 hydroxyl of N-acetylmuramoyl residues, this modification to the glycan backbone of PG sterically blocks the activity of lysozymes. As such, the enzyme responsible for this modification in Gram-positive bacteria is recognized as a virulence factor. With Gram-negative bacteria, the O-acetylation of PG provides a means of control of their autolysins at the substrate level. In this review, we discuss the pathways for PG O-acetylation and de-O-acetylation and the structure and function relationship of the O-acetyltransferases and O-acetylesterases that catalyze these reactions. The current understanding of their mechanisms of action is presented and the prospects of targeting these systems for the development of novel therapeutics are explored.
Collapse
Affiliation(s)
| | | | | | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Medeiros-Silva J, Jekhmane S, Paioni AL, Gawarecka K, Baldus M, Swiezewska E, Breukink E, Weingarth M. High-resolution NMR studies of antibiotics in cellular membranes. Nat Commun 2018; 9:3963. [PMID: 30262913 PMCID: PMC6160437 DOI: 10.1038/s41467-018-06314-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
The alarming rise of antimicrobial resistance requires antibiotics with unexploited mechanisms. Ideal templates could be antibiotics that target the peptidoglycan precursor lipid II, known as the bacterial Achilles heel, at an irreplaceable pyrophosphate group. Such antibiotics would kill multidrug-resistant pathogens at nanomolecular concentrations without causing antimicrobial resistance. However, due to the challenge of studying small membrane-embedded drug–receptor complexes in native conditions, the structural correlates of the pharmaceutically relevant binding modes are unknown. Here, using advanced highly sensitive solid-state NMR setups, we present a high-resolution approach to study lipid II-binding antibiotics directly in cell membranes. On the example of nisin, the preeminent lantibiotic, we show that the native antibiotic-binding mode strongly differs from previously published structures, and we demonstrate that functional hotspots correspond to plastic drug domains that are critical for the cellular adaptability of nisin. Thereby, our approach provides a foundation for an improved understanding of powerful antibiotics. Antibiotics that target the peptidoglycan precursor lipid II are promising templates for next-generation antibiotics. Here authors use solid-state NMR and monitor lipid II-binding antibiotics, such as nisin, directly in cell membranes.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Katarzyna Gawarecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
36
|
The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci Rep 2018; 8:13693. [PMID: 30209409 PMCID: PMC6135852 DOI: 10.1038/s41598-018-32109-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.
Collapse
|
37
|
Nöldeke ER, Muckenfuss LM, Niemann V, Müller A, Störk E, Zocher G, Schneider T, Stehle T. Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Sci Rep 2018; 8:12953. [PMID: 30154570 PMCID: PMC6113224 DOI: 10.1038/s41598-018-31098-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 01/09/2023] Open
Abstract
The peptidoglycan of Staphylococcus aureus is highly amidated. Amidation of α-D-isoglutamic acid in position 2 of the stem peptide plays a decisive role in the polymerization of cell wall building blocks. S. aureus mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin, indicating that targeting the amidation reaction could be a useful strategy to combat this pathogen. The enzyme complex that catalyzes the formation of α-D-isoglutamine in the Lipid II stem peptide was identified recently and shown to consist of two subunits, the glutamine amidotransferase-like protein GatD and the Mur ligase homolog MurT. We have solved the crystal structure of the GatD/MurT complex at high resolution, revealing an open, boomerang-shaped conformation in which GatD is docked onto one end of MurT. Putative active site residues cluster at the interface between GatD and MurT and are contributed by both proteins, thus explaining the requirement for the assembled complex to carry out the reaction. Site-directed mutagenesis experiments confirm the validity of the observed interactions. Small-angle X-ray scattering data show that the complex has a similar conformation in solution, although some movement at domain interfaces can occur, allowing the two proteins to approach each other during catalysis. Several other Gram-positive pathogens, including Streptococcus pneumoniae, Clostridium perfringens and Mycobacterium tuberculosis have homologous enzyme complexes. Combined with established biochemical assays, the structure of the GatD/MurT complex provides a solid basis for inhibitor screening in S. aureus and other pathogens.
Collapse
Affiliation(s)
- Erik R Nöldeke
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Lena M Muckenfuss
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Department of Biochemistry, University of Zurich, CH-8057, Zurich, Switzerland
| | - Volker Niemann
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany.,Hain Lifescience GmbH, D-72147, Nehren, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Elena Störk
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Georg Zocher
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53115, Bonn, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany. .,Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA.
| |
Collapse
|
38
|
Morlot C, Straume D, Peters K, Hegnar OA, Simon N, Villard AM, Contreras-Martel C, Leisico F, Breukink E, Gravier-Pelletier C, Le Corre L, Vollmer W, Pietrancosta N, Håvarstein LS, Zapun A. Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nat Commun 2018; 9:3180. [PMID: 30093673 PMCID: PMC6085368 DOI: 10.1038/s41467-018-05602-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
The universality of peptidoglycan in bacteria underlies the broad spectrum of many successful antibiotics. However, in our times of widespread resistance, the diversity of peptidoglycan modifications offers a variety of new antibacterials targets. In some Gram-positive species such as Streptococcus pneumoniae, Staphylococcus aureus, or Mycobacterium tuberculosis, the second residue of the peptidoglycan precursor, D-glutamate, is amidated into iso-D-glutamine by the essential amidotransferase MurT/GatD complex. Here, we present the structure of this complex at 3.0 Å resolution. MurT has central and C-terminal domains similar to Mur ligases with a cysteine-rich insertion, which probably binds zinc, contributing to the interface with GatD. The mechanism of amidation by MurT is likely similar to the condensation catalyzed by Mur ligases. GatD is a glutaminase providing ammonia that is likely channeled to the MurT active site through a cavity network. The structure and assay presented here constitute a knowledge base for future drug development studies.
Collapse
Affiliation(s)
- Cécile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - Nolwenn Simon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Anne-Marie Villard
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | | | - Francisco Leisico
- Departamento de Química, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, 3584, The Netherlands
| | - Christine Gravier-Pelletier
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Laurent Le Corre
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Bioscience, Newcastle University, Newcastle Upon Tyne, NE2 4AX, United Kingdom
| | - Nicolas Pietrancosta
- Université Paris Descartes, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR 8601 CNRS, Sorbonne Paris Cité (USPC), Paris, 75006, France
| | - Leiv Sigve Håvarstein
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, 1432, Norway
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France.
| |
Collapse
|
39
|
Santos-Beneit F. Genome sequencing analysis of Streptomyces coelicolor mutants that overcome the phosphate-depending vancomycin lethal effect. BMC Genomics 2018; 19:457. [PMID: 29898657 PMCID: PMC6001138 DOI: 10.1186/s12864-018-4838-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background Glycopeptide antibiotics inhibit bacterial cell-wall synthesis, and are important for the treatment of infections caused by multi drug-resistant strains of enterococci, streptococci and staphylococci. The main mechanism by which bacteria resist the action of glycopeptides is by producing a modified cell-wall in which the dipeptide D-Alanine-D-Alanine is substituted by D-Alanine-D-Lactate or D-Alanine-D-Serine. Recently, it has been shown that inorganic phosphate (Pi) induces hypersensitivity to vancomycin in Streptomyces coelicolor (which is highly resistant to the antibiotic in low-Pi media). This finding was surprising because the bacterium possesses the entire set of genes responsible for vancomycin resistance (VR); including those coding for the histidine kinase/response regulator pair VanS/VanR that activates the system. Results This work shows that high Pi amounts in the medium hamper the activation of the van promoters and consequently inhibit VR in S. coelicolor; i.e. the repression effect being stronger when basic or acidic forms of the nutrient are used. In addition, this work shows that lysozyme resistance is also highly regulated by the Pi concentration in the medium. At least five different mutations contribute to the overcoming of this repression effect over VR (but not over lysozyme resistance). Therefore, the interconnection of VR and lysozyme resistance mechanisms might be inexistent or complex. In particular, two kinds of mutant in which Pi control of VR has been lost (one class expresses the van genes in a constitutive manner; the other retains inducibility by vancomycin) have been isolated and further characterized in this study. Sequencing revealed that the first class of mutation conferred a single amino acid substitution in the second transmembrane helix of the VanS protein; whereas the other class hampered the expression or activity of a putative homolog (SCO1213) to the staphylococcal GatD protein. Complementation, phenotypic and bioinformatics analyses identified SCO1213, and its upstream gene (i.e. murT), as relevant genetic determinants involved with VR in S. coelicolor. Conclusion The genomic approach of this study together with other genetic and phenotypic analyses has allowed the identification of the uncharacterized murT-gatD Streptomyces genes and the characterization of their involvement with the Pi control of VR in S. coelicolor. Electronic supplementary material The online version of this article (10.1186/s12864-018-4838-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK. .,Present address: Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
40
|
Leisico F, V Vieira D, Figueiredo TA, Silva M, Cabrita EJ, Sobral RG, Ludovice AM, Trincão J, Romão MJ, de Lencastre H, Santos-Silva T. First insights of peptidoglycan amidation in Gram-positive bacteria - the high-resolution crystal structure of Staphylococcus aureus glutamine amidotransferase GatD. Sci Rep 2018; 8:5313. [PMID: 29593310 PMCID: PMC5871853 DOI: 10.1038/s41598-018-22986-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/27/2018] [Indexed: 12/05/2022] Open
Abstract
Gram-positive bacteria homeostasis and antibiotic resistance mechanisms are dependent on the intricate architecture of the cell wall, where amidated peptidoglycan plays an important role. The amidation reaction is carried out by the bi-enzymatic complex MurT-GatD, for which biochemical and structural information is very scarce. In this work, we report the first crystal structure of the glutamine amidotransferase member of this complex, GatD from Staphylococcus aureus, at 1.85 Å resolution. A glutamine molecule is found close to the active site funnel, hydrogen-bonded to the conserved R128. In vitro functional studies using 1H-NMR spectroscopy showed that S. aureus MurT-GatD complex has glutaminase activity even in the absence of lipid II, the MurT substrate. In addition, we produced R128A, C94A and H189A mutants, which were totally inactive for glutamine deamidation, revealing their essential role in substrate sequestration and catalytic reaction. GatD from S. aureus and other pathogenic bacteria share high identity to enzymes involved in cobalamin biosynthesis, which can be grouped in a new sub-family of glutamine amidotransferases. Given the ubiquitous presence of GatD, these results provide significant insights into the molecular basis of the so far undisclosed amidation mechanism, contributing to the development of alternative therapeutics to fight infections.
Collapse
Affiliation(s)
- Francisco Leisico
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana V Vieira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Oxford Protein Production Facility, Research Complex at Harwell, Didcot, United Kingdom
| | - Teresa A Figueiredo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal
| | - Micael Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rita G Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Madalena Ludovice
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Microbiology of Human Pathogens Unit, Instituto de Tecnologia Química e Biológica António Xavier da Universidade Nova de Lisboa, Oeiras, Portugal.
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA.
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
41
|
Ngadjeua F, Braud E, Saidjalolov S, Iannazzo L, Schnappinger D, Ehrt S, Hugonnet JE, Mengin-Lecreulx D, Patin D, Ethève-Quelquejeu M, Fonvielle M, Arthur M. Critical Impact of Peptidoglycan Precursor Amidation on the Activity ofl,d-Transpeptidases fromEnterococcus faeciumandMycobacterium tuberculosis. Chemistry 2018; 24:5743-5747. [DOI: 10.1002/chem.201706082] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Flora Ngadjeua
- INSERM UMRS 1138; Sorbonne Universités UPMC Univ Paris 06
- Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot
- Centre de Recherche des Cordeliers; 75006 Paris France
| | - Emmanuelle Braud
- Laboratoire de Chimie et de Biochimie, Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris 75005 France
- CNRS UMR 8601; Paris 75006 France
| | - Saidbakhrom Saidjalolov
- Laboratoire de Chimie et de Biochimie, Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris 75005 France
- CNRS UMR 8601; Paris 75006 France
| | - Laura Iannazzo
- Laboratoire de Chimie et de Biochimie, Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris 75005 France
- CNRS UMR 8601; Paris 75006 France
| | - Dirk Schnappinger
- Department of Microbiology and Immunology; Weill Cornell Medical College; New York NY 10021 USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology; Weill Cornell Medical College; New York NY 10021 USA
| | - Jean-Emmanuel Hugonnet
- INSERM UMRS 1138; Sorbonne Universités UPMC Univ Paris 06
- Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot
- Centre de Recherche des Cordeliers; 75006 Paris France
| | - Dominique Mengin-Lecreulx
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Delphine Patin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Mélanie Ethève-Quelquejeu
- Laboratoire de Chimie et de Biochimie, Pharmacologiques et Toxicologiques; Université Paris Descartes, UMR 8601; Paris 75005 France
- CNRS UMR 8601; Paris 75006 France
| | - Matthieu Fonvielle
- INSERM UMRS 1138; Sorbonne Universités UPMC Univ Paris 06
- Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot
- Centre de Recherche des Cordeliers; 75006 Paris France
| | - Michel Arthur
- INSERM UMRS 1138; Sorbonne Universités UPMC Univ Paris 06
- Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot
- Centre de Recherche des Cordeliers; 75006 Paris France
| |
Collapse
|
42
|
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017; 34:909-932. [PMID: 28675405 DOI: 10.1039/c7np00012j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2017History points to the bacterial cell wall biosynthetic network as a very effective target for antibiotic intervention, and numerous natural product inhibitors have been discovered. In addition to the inhibition of enzymes involved in the multistep synthesis of the macromolecular layer, in particular, interference with membrane-bound substrates and intermediates essential for the biosynthetic reactions has proven a valuable antibacterial strategy. A prominent target within the peptidoglycan biosynthetic pathway is lipid II, which represents a particular "Achilles' heel" for antibiotic attack, as it is readily accessible on the outside of the cytoplasmic membrane. Lipid II is a unique non-protein target that is one of the structurally most conserved molecules in bacterial cells. Notably, lipid II is more than just a target molecule, since sequestration of the cell wall precursor may be combined with additional antibiotic activities, such as the disruption of membrane integrity or disintegration of membrane-bound multi-enzyme machineries. Within the membrane bilayer lipid II is likely organized in specific anionic phospholipid patches that form a particular "landing platform" for antibiotics. Nature has invented a variety of different "lipid II binders" of at least 5 chemical classes, and their antibiotic activities can vary substantially depending on the compounds' physicochemical properties, such as amphiphilicity and charge, and thus trigger diverse cellular effects that are decisive for antibiotic activity.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
43
|
Qiao Y, Srisuknimit V, Rubino F, Schaefer K, Ruiz N, Walker S, Kahne D. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat Chem Biol 2017; 13:793-798. [PMID: 28553948 PMCID: PMC5478438 DOI: 10.1038/nchembio.2388] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. Beta-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by beta-lactams has been hampered by lack of access to substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate utility by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2, PBP2, which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different beta-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.
Collapse
Affiliation(s)
- Yuan Qiao
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Frederick Rubino
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Kaitlin Schaefer
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Natividad Ruiz
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
44
|
Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, Knoops K, Sorg RA, Zhang JR, Veening JW. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 2017; 13:931. [PMID: 28490437 PMCID: PMC5448163 DOI: 10.15252/msb.20167449] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Genome‐wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn‐seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high‐content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi‐based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp‐proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP‐dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.
Collapse
Affiliation(s)
- Xue Liu
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Clement Gallay
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands.,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arnau Domenech
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Sebastiaan P van Kessel
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Kèvin Knoops
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Robin A Sorg
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands .,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Dajkovic A, Tesson B, Chauhan S, Courtin P, Keary R, Flores P, Marlière C, Filipe SR, Chapot-Chartier MP, Carballido-Lopez R. Hydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg 2+ in Bacillus subtilis. Mol Microbiol 2017; 104:972-988. [PMID: 28317238 PMCID: PMC5485061 DOI: 10.1111/mmi.13673] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
Abstract
The ability of excess Mg2+ to compensate the absence of cell wall related genes in Bacillus subtilis has been known for a long time, but the mechanism has remained obscure. Here, we show that the rigidity of wild‐type cells remains unaffected with excess Mg2+, but the proportion of amidated meso‐diaminopimelic (mDAP) acid in their peptidoglycan (PG) is significantly reduced. We identify the amidotransferase AsnB as responsible for mDAP amidation and show that the gene encoding it is essential without added Mg2+. Growth without excess Mg2+ causes ΔasnB mutant cells to deform and ultimately lyse. In cell regions with deformations, PG insertion is orderly and indistinguishable from the wild‐type. However, PG degradation is unevenly distributed along the sidewalls. Furthermore, ΔasnB mutant cells exhibit increased sensitivity to antibiotics targeting the cell wall. These results suggest that absence of amidated mDAP causes a lethal deregulation of PG hydrolysis that can be inhibited by increased levels of Mg2+. Consistently, we find that Mg2+ inhibits autolysis of wild‐type cells. We suggest that Mg2+ helps to maintain the balance between PG synthesis and hydrolysis in cell wall mutants where this balance is perturbed in favor of increased degradation.
Collapse
Affiliation(s)
- Alex Dajkovic
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Benoit Tesson
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Smita Chauhan
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pascal Courtin
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Ruth Keary
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pierre Flores
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | | | - Sérgio R Filipe
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | | | - Rut Carballido-Lopez
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| |
Collapse
|
46
|
Calvez P, Breukink E, Roper DI, Dib M, Contreras-Martel C, Zapun A. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. J Biol Chem 2017; 292:2854-2865. [PMID: 28062575 DOI: 10.1074/jbc.m116.764696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Pneumococcus resists β-lactams by expressing variants of its target enzymes, the penicillin-binding proteins (PBPs), with many amino acid substitutions. Up to 10% of the sequence can be modified. These altered PBPs have a much reduced reactivity with the drugs but retain their physiological activity of cross-linking the peptidoglycan, the major constituent of the bacterial cell wall. However, because β-lactams are chemical and structural mimics of the natural substrate, resistance mediated by altered PBPs raises the following paradox: how PBPs that react poorly with the drugs maintain a sufficient level of activity with the physiological substrate. This question is addressed for the first time in this study, which compares the peptidoglycan cross-linking activity of PBP2b from susceptible and resistant strains with their inhibition by different β-lactams. Unexpectedly, the enzymatic activity of the variants did not correlate with their antibiotic reactivity. This finding indicates that some of the numerous amino acid substitutions were selected to restore a viable level of enzymatic activity by a compensatory molecular mechanism.
Collapse
Affiliation(s)
- Philippe Calvez
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Eefjan Breukink
- the Department of Chemical Biology and Organic Chemistry, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht 3584 CH, The Netherlands, and
| | - David I Roper
- the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mélanie Dib
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlos Contreras-Martel
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - André Zapun
- From the Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France,
| |
Collapse
|
47
|
Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Hardt P, Engels I, Rausch M, Gajdiss M, Ulm H, Sass P, Ohlsen K, Sahl HG, Bierbaum G, Schneider T, Grein F. The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. Int J Med Microbiol 2016; 307:1-10. [PMID: 27989665 DOI: 10.1016/j.ijmm.2016.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022] Open
Abstract
The assembly of the bacterial cell wall requires synchronization of a multitude of biosynthetic machineries and regulatory networks. The eukaryotic-like serine/threonine kinase PknB has been implicated in coordinating cross-wall formation, autolysis and cell division in Staphylococcus aureus. However, the signal molecule sensed by this kinase remained elusive so far. Here, we provide compelling biochemical evidence that PknB interacts with the ultimate cell wall precursor lipid II, triggering kinase activity. Moreover, we observed crosstalk of PknB with the two component system WalKR and identified the early cell division protein FtsZ as another PknB phosphorylation substrate in S. aureus. In agreement with the implied role in regulation of cell envelope metabolism, we found PknB to preferentially localize to the septum of S. aureus and the PASTA domains to be crucial for recruitment to this site. The data provide a model for the contribution of PknB to control cell wall metabolism and cell division.
Collapse
Affiliation(s)
- Patrick Hardt
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Ina Engels
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marvin Rausch
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Hannah Ulm
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Peter Sass
- Interfaculty Institute for Microbiology and Infection Medicine, Department for Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Hans-Georg Sahl
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany; Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University of Bonn, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
49
|
Baumgart M, Schubert K, Bramkamp M, Frunzke J. Impact of LytR-CpsA-Psr Proteins on Cell Wall Biosynthesis in Corynebacterium glutamicum. J Bacteriol 2016; 198:3045-3059. [PMID: 27551018 PMCID: PMC5075034 DOI: 10.1128/jb.00406-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/17/2016] [Indexed: 12/28/2022] Open
Abstract
Proteins of the LCP (LytR, CpsA, Psr) family have been shown to inherit important roles in bacterial cell wall biosynthesis. However, their exact function in the formation of the complex cell wall structures of the Corynebacteriales, including the prominent pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae, remains unclear. Here, we analyzed the role of the LCP proteins LcpA and LcpB of Corynebacterium glutamicum, both of which localize at regions of nascent cell wall biosynthesis. A strain lacking lcpB did not show any growth-related or morphological phenotype under the tested conditions. In contrast, conditional silencing of the essential lcpA gene resulted in severe growth defects and drastic morphological changes. Compared to the wild-type cell wall, the cell wall of this mutant contained significantly less mycolic acids and a reduced amount of arabinogalactan. In particular, rhamnose, a specific sugar component of the linker that connects arabinogalactan and peptidoglycan, was decreased. Complementation studies of the lcpA-silencing strain with several mutated and truncated LcpA variants suggested that both periplasmic domains are essential for function whereas the cytoplasmic N-terminal part is dispensable. Successful complementation experiments with proteins of M. tuberculosis and C. diphtheriae revealed a conserved function of LCP proteins in these species. Finally, pyrophosphatase activity of LcpA was shown in an in vitro assay. Taken together, our results suggest that LCP proteins are responsible for the transfer of arabinogalactan onto peptidoglycan in actinobacterial species and support a crucial function of a so-far-uncharacterized C-terminal domain (LytR_C domain) which is frequently found at the C terminus of the LCP domain in this prokaryotic phylum. IMPORTANCE About one-third of the world's population is infected with Mycobacterium tuberculosis, and multiple-antibiotic resistance provokes the demand for novel antibiotics. The special cell wall architecture of Corynebacteriales is critical for treatments because it is either a direct target or a barrier that the drug has to cross. Here, we present the analysis of LcpA and LcpB of the closely related Corynebacterium glutamicum, the first of which is an essential protein involved in cell wall biogenesis. Our work provides a comprehensive characterization of the impact of LCP proteins on cell wall biogenesis in this medically and biotechnologically important class of bacteria. Special focus is set on the two periplasmic LcpA domains and their contributions to physiological function.
Collapse
Affiliation(s)
- Meike Baumgart
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| | - Karin Schubert
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Ludwig-Maximilians-Universität München, Fakultät Biologie, Planegg-Martinsried, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
50
|
Chauhan J, Cardinale S, Fang L, Huang J, Kwasny SM, Pennington MR, Basi K, diTargiani R, Capacio BR, MacKerell AD, Opperman TJ, Fletcher S, de Leeuw EPH. Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics. PLoS One 2016; 11:e0164515. [PMID: 27776124 PMCID: PMC5077133 DOI: 10.1371/journal.pone.0164515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/25/2016] [Indexed: 12/28/2022] Open
Abstract
Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity relationships of the scaffold. The results of this study indicate an activity map of the scaffold, identifying regions that are critical to cytotoxicity, Lipid II binding and range of anti-bacterial action. One compound, 6jc48-1, showed significantly enhanced drug-like properties compared to BAS00127538. 6jc48-1 has reduced cytotoxicity, while retaining specific Lipid II binding and activity against Enterococcus spp. in vitro and in vivo. Further, this compound showed a markedly improved pharmacokinetic profile with a half-life of over 13 hours upon intravenous and oral administration and was stable in plasma. These results suggest that scaffolds like that of 6jc48-1 can be developed into small molecule antibiotic drugs that target Lipid II.
Collapse
Affiliation(s)
- Jamal Chauhan
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven Cardinale
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - Lei Fang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jing Huang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Steven M. Kwasny
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - M. Ross Pennington
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Kelly Basi
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Robert diTargiani
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Benedict R. Capacio
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
- Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Timothy J. Opperman
- Microbiotix, Inc., One Innovation Drive, Worcester, Massachusetts, United States of America
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, Maryland, United States of America
| | - Erik P. H. de Leeuw
- Institute of Human Virology & Department of Biochemistry and Molecular Biology of the University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|