1
|
Morley VJ, Sim DG, Penkevich A, Woods RJ, Read AF. An orally administered drug prevents selection for antibiotic-resistant bacteria in the gut during daptomycin therapy. Evol Med Public Health 2022; 10:439-446. [PMID: 36118914 PMCID: PMC9472784 DOI: 10.1093/emph/eoac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Background and objectives Previously, we showed proof-of-concept in a mouse model that oral administration of cholestyramine prevented enrichment of daptomycin-resistant Enterococcus faecium in the gastrointestinal (GI) tract during daptomycin therapy. Cholestyramine binds daptomycin in the gut, which removes daptomycin selection pressure and so prevents the enrichment of resistant clones. Here, we investigated two open questions related to this approach: (i) can cholestyramine prevent the enrichment of diverse daptomycin mutations emerging de novo in the gut? and (ii) how does the timing of cholestyramine administration impact its ability to suppress resistance? Methodology Mice with GI E. faecium were treated with daptomycin with or without cholestyramine, and E. faecium was cultured from feces to measure changes in daptomycin susceptibility. A subset of clones was sequenced to investigate the genomic basis of daptomycin resistance. Results Cholestyramine prevented the enrichment of diverse resistance mutations that emerged de novo in daptomycin-treated mice. Whole-genome sequencing revealed that resistance emerged through multiple genetic pathways, with most candidate resistance mutations observed in the clsA gene. In addition, we observed that cholestyramine was most effective when administration started prior to the first dose of daptomycin. However, beginning cholestyramine after the first daptomycin dose reduced the frequency of resistant E. faecium compared to not using cholestyramine at all. Conclusions and implications Cholestyramine prevented the enrichment of diverse daptomycin-resistance mutations in intestinal E. faecium populations during daptomycin treatment, and it is a promising tool for managing the transmission of daptomycin-resistant E. faecium.
Collapse
Affiliation(s)
- Valerie J Morley
- Corresponding author. Nature's Toolbox Inc. (NTx), 7701 Innovation Way, Rio Rancho, NM 87144, USA. E-mail:
| | - Derek G Sim
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
| | - Aline Penkevich
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Read
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA,Department of Entomology, The Pennsylvania State University, University Park, PA, USA,Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Morley VJ, Kinnear CL, Sim DG, Olson SN, Jackson LM, Hansen E, Usher GA, Showalter SA, Pai MP, Woods RJ, Read AF. An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. eLife 2020; 9:e58147. [PMID: 33258450 PMCID: PMC7707840 DOI: 10.7554/elife.58147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens.
Collapse
Affiliation(s)
- Valerie J Morley
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Clare L Kinnear
- Division of Infectious Diseases, Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Derek G Sim
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Samantha N Olson
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Lindsey M Jackson
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Elsa Hansen
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Grace A Usher
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Scott A Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Chemistry, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of MichiganAnn ArborUnited States
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of MichiganAnn ArborUnited States
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State UniversityUniversity ParkUnited States
- Huck Institutes for the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Entomology, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
3
|
French AS, Zadoks RN, Skuce PJ, Mitchell G, Gordon-Gibbs DK, Taggart MA. Habitat and host factors associated with liver fluke (Fasciola hepatica) diagnoses in wild red deer (Cervus elaphus) in the Scottish Highlands. Parasit Vectors 2019; 12:535. [PMID: 31718680 PMCID: PMC6852960 DOI: 10.1186/s13071-019-3782-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Red deer (Cervus elaphus) are a common wild definitive host for liver fluke (Fasciola hepatica) that have been the subject of limited diagnostic surveillance. This study aimed to explore the extent to which coprological diagnoses for F. hepatica in red deer in the Scottish Highlands, Scotland, are associated with variability among hosts and habitats. METHODS Our analyses were based on coproantigen ELISA diagnoses derived from faecal samples that were collected from carcasses of culled deer on nine hunting estates during two sampling seasons. Sampling locations were used as centroids about which circular home ranges were quantified. Data were stratified by season, and associations between host, hydrological, land cover and meteorological variables and binary diagnoses during 2013-2014 (n = 390) were explored by mixed effect logistic regression. The ability of our model to predict diagnoses relative to that which would be expected by chance was quantified, and data collected during 2012-2013 (n = 289) were used to assess model transferability. RESULTS During 2013-2014, habitat and host characteristics explained 28% of variation in diagnoses, whereby half of the explained variation was attributed to differences among estates. The probability of a positive diagnosis was positively associated with the length of streams in the immediate surroundings of each sampling location, but no non-zero relationships were found for land cover or lifetime average weather variables. Regardless of habitat, the probability of a positive diagnosis remained greatest for males, although males were always sampled earlier in the year than females. A slight decrease in prediction efficacy occurred when our model was used to predict diagnoses for out-of-sample data. CONCLUSIONS We are cautious to extrapolate our findings geographically, owing to a large proportion of variation attributable to overarching differences among estates. Nevertheless, the temporal transferability of our model is encouraging. While we did not identify any non-zero relationship between meteorological variables and probability of diagnosis, we attribute this (in part) to limitations of interpolated meteorological data. Further study into non-independent diagnoses within estates and differences among estates in terms of deer management, would improve our understanding of F. hepatica prevalence in wild deer.
Collapse
Affiliation(s)
- Andrew S French
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, KW14 7JD, UK. .,Marine Institute, Furnace, Newport, Co. Mayo, Ireland.
| | - Ruth N Zadoks
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK.,Sydney School of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia
| | - Philip J Skuce
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Gillian Mitchell
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | | | - Mark A Taggart
- Environmental Research Institute, North Highland College, University of the Highlands and Islands, Castle Street, Thurso, KW14 7JD, UK
| |
Collapse
|
4
|
Jordan CY. Population sampling affects pseudoreplication. PLoS Biol 2018; 16:e2007054. [PMID: 30321169 PMCID: PMC6188620 DOI: 10.1371/journal.pbio.2007054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Crispin Y. Jordan
- School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Donnelly K, Cavers S, Cottrell JE, Ennos RA. Cryptic genetic variation and adaptation to waterlogging in Caledonian Scots pine, Pinus sylvestris L. Ecol Evol 2018; 8:8665-8675. [PMID: 30271535 PMCID: PMC6157661 DOI: 10.1002/ece3.4389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 12/05/2022] Open
Abstract
Local adaptation occurs as the result of differential selection among populations. Observations made under common environmental conditions may reveal phenotypic differences between populations with an underlying genetic basis; however, exposure to a contrasting novel environment can trigger release of otherwise unobservable (cryptic) genetic variation. We conducted a waterlogging experiment on a common garden trial of Scots pine, Pinus sylvestris (L.), saplings originating from across a steep rainfall gradient in Scotland. A flood treatment was maintained for approximately 1 year; physiological responses were gauged periodically in terms of photochemical capacity as measured via chlorophyll fluorescence. During the treatment, flooded individuals experienced a reduction in photochemical capacity, F v /F m, this reduction being greater for material originating from drier, eastern sites. Phenotypic variance was increased under flooding, and this increase was notably smaller in saplings originating from western sites where precipitation is substantially greater and waterlogging is more common. We conclude that local adaptation has occurred with respect to waterlogging tolerance and that, under the flooding treatment, the greater increase in variability observed in populations originating from drier sites is likely to reflect a relative absence of past selection. In view of a changing climate, we note that comparatively maladapted populations may possess considerable adaptive potential, due to cryptic genetic variation, that should not be overlooked.
Collapse
Affiliation(s)
- Kevin Donnelly
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | | | - Richard A. Ennos
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Carlsson AM, Albon SD, Coulson SJ, Ropstad E, Stien A, Wilson K, Loe LE, Veiberg V, Irvine RJ. Little impact of over‐winter parasitism on a free‐ranging ungulate in the high Arctic. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anja Morven Carlsson
- Lancaster Environment CentreLancaster University Lancaster UK
- The James Hutton Institute Aberdeen UK
- Department of Arctic BiologyUniversity Centre in Svalbard Longyearbyen Norway
| | | | - Stephen J. Coulson
- Department of Arctic BiologyUniversity Centre in Svalbard Longyearbyen Norway
| | - Erik Ropstad
- School of Veterinary ScienceNorwegian University of Life Sciences Oslo Norway
| | - Audun Stien
- Norwegian Institute for Nature Research (NINA)Fram Centre Tromsø Norway
| | - Kenneth Wilson
- Lancaster Environment CentreLancaster University Lancaster UK
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management (MINA)Norwegian University of Life Sciences Åas Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | | |
Collapse
|
7
|
Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci 2018; 284:rspb.2017.1067. [PMID: 28747479 PMCID: PMC5543226 DOI: 10.1098/rspb.2017.1067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Hosts are often infected with multiple strains of a single parasite species. Within-host competition between parasite strains can be intense and has implications for the evolution of traits that impact patient health, such as drug resistance and virulence. Yet the mechanistic basis of within-host competition is poorly understood. Here, we demonstrate that a parasite nutrient, para-aminobenzoic acid (pABA), mediates competition between a drug resistant and drug susceptible strain of the malaria parasite, Plasmodium chabaudi. We further show that increasing pABA supply to hosts infected with the resistant strain worsens disease and changes the relationship between parasite burden and pathology. Our experiments demonstrate that, even when there is profound top-down regulation (immunity), bottom-up regulation of pathogen populations can occur and that its importance may vary during an infection. The identification of resources that can be experimentally controlled opens up the opportunity to manipulate competitive interactions between parasites and hence their evolution.
Collapse
Affiliation(s)
- Nina Wale
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Derek G Sim
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics and Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Carlsson AM, Mastromonaco G, Vandervalk E, Kutz S. Parasites, stress and reindeer: infection with abomasal nematodes is not associated with elevated glucocorticoid levels in hair or faeces. CONSERVATION PHYSIOLOGY 2016; 4:cow058. [PMID: 27957334 PMCID: PMC5147723 DOI: 10.1093/conphys/cow058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/28/2016] [Accepted: 11/13/2016] [Indexed: 05/30/2023]
Abstract
Stress hormones (glucocorticoids), incorporated into hair/fur and faeces, have been proposed as biomarkers of overall health in wildlife. Although such biomarkers may be helpful for wildlife conservation and management, their use has rarely been validated. There is a paucity of studies examining the variation of stress hormones in mammals and how they relate to other health measures, such as parasitism. Parasites are ubiquitous in wildlife and can influence the fitness of individual animals and populations. Through a longitudinal experiment using captive reindeer (Rangifer tarandus tarandus), we tested whether animals infected with Ostertagia gruehneri, a gastrointestinal nematode with negative impacts on fitness of the host, had higher stress levels compared with those that had been treated to remove infection. Faecal samples were collected weekly for 12 weeks (June-September) and hair was collected at the start and end of the study; glucocorticoids were quantified using enzyme immunoassays. Contrary to what was expected, infected reindeer had similar levels of cortisol in hair and slightly lower glucocorticoid metabolites in faeces compared with uninfected reindeer. Faecal corticosterone levels were higher than faecal cortisol levels, and only corticosterone increased significantly after a handling event. These results suggest that reindeer may use a tolerance strategy to cope with gastrointestinal nematodes and raise the question as to whether moderate infection intensities with nematodes are beneficial to the host. By removing nematodes we may have altered the gut microbiota, leading to the observed elevated faecal glucocorticoid metabolite levels in the treated reindeer. These findings demonstrate the importance of considering both cortisol and corticosterone in physiological studies, as there is mounting evidence that they may have different functionalities.
Collapse
Affiliation(s)
- A. M. Carlsson
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - G. Mastromonaco
- Reproductive Physiology Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario,CanadaM1B 5K7
| | - E. Vandervalk
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - S. Kutz
- Canadian Cooperative Wildlife Health Centre Alberta, 3280 Hospital Drive NW, Calgary, AB T2N4Z6, Canada
| |
Collapse
|
9
|
Short-term effects of tagging on activity and movement patterns of Eurasian beavers (Castor fiber). EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Quantifying Transmission Investment in Malaria Parasites. PLoS Comput Biol 2016; 12:e1004718. [PMID: 26890485 PMCID: PMC4759450 DOI: 10.1371/journal.pcbi.1004718] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/17/2015] [Indexed: 01/27/2023] Open
Abstract
Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment. Malaria parasites are carried from host to host by blood-feeding insects, a process that requires some portion of the parasite population to develop into transmission forms that cannot replicate within the current host. The fraction of parasites specialized for transmission instead of replication (transmission investment) could change with each cycle of replication in response to changing conditions within the host. Measuring how transmission investment changes through time could help us understand how malaria spreads so efficiently through populations of human and other animals. However, transmission investment is usually impossible to measure directly and instead has to be estimated by comparing the number of transmission forms with total parasite numbers in blood samples. Here we use a model to simulate data from an infection—so that the true level of transmission investment is known—and test published methods for estimation. We find that existing methods do not accurately estimate transmission investment from simulated data, and we propose a new statistical method that works substantially better. When applied to rodent malaria data, our method suggests that transmission investment can vary substantially over the course of infection, with notably different patterns of allocation across hosts.
Collapse
|
11
|
Mideo N, Bailey JA, Hathaway NJ, Ngasala B, Saunders DL, Lon C, Kharabora O, Jamnik A, Balasubramanian S, Björkman A, Mårtensson A, Meshnick SR, Read AF, Juliano JJ. A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:21-36. [PMID: 26817485 PMCID: PMC4753362 DOI: 10.1093/emph/eov036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/21/2015] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Current tools struggle to detect drug-resistant malaria parasites when infections contain multiple parasite clones, which is the norm in high transmission settings in Africa. Our aim was to develop and apply an approach for detecting resistance that overcomes the challenges of polyclonal infections without requiring a genetic marker for resistance. METHODOLOGY Clinical samples from patients treated with artemisinin combination therapy were collected from Tanzania and Cambodia. By deeply sequencing a hypervariable locus, we quantified the relative abundance of parasite subpopulations (defined by haplotypes of that locus) within infections and revealed evolutionary dynamics during treatment. Slow clearance is a phenotypic, clinical marker of artemisinin resistance; we analyzed variation in clearance rates within infections by fitting parasite clearance curves to subpopulation data. RESULTS In Tanzania, we found substantial variation in clearance rates within individual patients. Some parasite subpopulations cleared as slowly as resistant parasites observed in Cambodia. We evaluated possible explanations for these data, including resistance to drugs. Assuming slow clearance was a stable phenotype of subpopulations, simulations predicted that modest increases in their frequency could substantially increase time to cure. CONCLUSIONS AND IMPLICATIONS By characterizing parasite subpopulations within patients, our method can detect rare, slow clearing parasites in vivo whose phenotypic effects would otherwise be masked. Since our approach can be applied to polyclonal infections even when the genetics underlying resistance are unknown, it could aid in monitoring the emergence of artemisinin resistance. Our application to Tanzanian samples uncovers rare subpopulations with worrying phenotypes for closer examination.
Collapse
Affiliation(s)
- Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada;
| | - Jeffrey A Bailey
- Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - David L Saunders
- Division of Immunology and Medicine, USAMC Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Andrew Jamnik
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Mårtensson
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Centre for Clinical Research Sörmland, Uppsala University, Sweden; Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Sweden
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology and Entomology, the Pennsylvania State University, University Park, PA, USA and
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii. PLoS Pathog 2015; 11:e1004628. [PMID: 25658331 PMCID: PMC4450063 DOI: 10.1371/journal.ppat.1004628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.
Collapse
|
13
|
Zélé F, Vézilier J, L'Ambert G, Nicot A, Gandon S, Rivero A, Duron O. Dynamics of prevalence and diversity of avian malaria infections in wild Culex pipiens mosquitoes: the effects of Wolbachia, filarial nematodes and insecticide resistance. Parasit Vectors 2014; 7:437. [PMID: 25228147 PMCID: PMC4261254 DOI: 10.1186/1756-3305-7-437] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/31/2014] [Indexed: 11/25/2022] Open
Abstract
Background Identifying the parasites transmitted by a particular vector and the factors that render this vector susceptible to the parasite are key steps to understanding disease transmission. Although avian malaria has become a model system for the investigation of the ecological and evolutionary dynamics of Plasmodium parasites, little is still known about the field prevalence, diversity and distribution of avian Plasmodium species within the vectors, or about the extrinsic factors affecting Plasmodium population dynamics in the wild. Methods We examined changes in avian malaria prevalence and Plasmodium lineage composition in female Culex pipiens caught throughout one field season in 2006, across four sampling sites in southern France. Using site occupancy models, we correct the naive estimates of Plasmodium prevalence to account for PCR-based imperfect detection. To establish the importance of different factors that may bear on the prevalence and diversity of avian Plasmodium in field mosquitoes, we focus on Wolbachia and filarial parasite co-infections, as well as on the insecticide resistance status of the mosquito. Results Plasmodium prevalence in Cx. pipiens increased from February (0%) to October (15.8%) and did not vary significantly among the four sampling sites. The application of site occupancy models leads to a 4% increase in this initial (naive) estimate of prevalence. The parasite community was composed of 15 different haemosporidian lineages, 13 of which belonged to the Plasmodium genus, and 2 to the Haemoproteus genus. Neither the presence of different Wolbachia types and of filarial parasites co-infecting the mosquitoes, nor their insecticide resistance status were found to affect the Plasmodium prevalence and diversity. Conclusion We found that haemosporidian parasites are common and diverse in wild-caught Cx. pipiens mosquitoes in Southern France. The prevalence of the infection in mosquitoes is unaffected by Wolbachia and filarial co-infections as well as the insecticide resistant status of the vector. These factors may thus have a negligible impact on the transmission of avian malaria. In contrast, the steady increase in prevalence from February to October indicates that the dynamics of avian malaria is driven by seasonality and supports that infected birds are the reservoir of a diverse community of lineages in southern France. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-437) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flore Zélé
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, (UMR CNRS-UM1-UM2 5290, IRD 224), Centre de Recherche IRD, 911 Avenue Agropolis, 34394 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Pollitt LC, Sim D, Salathé R, Read AF. Understanding genetic variation in in vivo tolerance to artesunate: implications for treatment efficacy and resistance monitoring. Evol Appl 2014; 8:296-304. [PMID: 25861387 PMCID: PMC4380923 DOI: 10.1111/eva.12194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/20/2014] [Indexed: 01/10/2023] Open
Abstract
Artemisinin-based drugs are the front-line weapon in the treatment of human malaria cases, but there is concern that recent reports of slow clearing infections may signal developing resistance to treatment. In the absence of molecular markers for resistance, current efforts to monitor drug efficacy are based on the rate at which parasites are cleared from infections. However, some knowledge of the standing variation in parasite susceptibility is needed to identify a meaningful increase in infection half-life. Here, we show that five previously unexposed genotypes of the rodent malaria parasite Plasmodium chabaudi differ substantially in their in vivo response to treatment. Slower clearance rates were not linked to parasite virulence or growth rate, going against the suggestion that drug treatment will drive the evolution of virulence in this system. The level of variation observed here in a relatively small number of genotypes suggests existing ‘resistant’ parasites could be present in the population and therefore, increased parasite clearance rates could represent selection on pre-existing variation rather than de novo resistance events. This has implications for resistance monitoring as susceptibility may depend on evolved traits unrelated to drug exposure.
Collapse
Affiliation(s)
- Laura C Pollitt
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA ; Centre for Immunity, Infection and Evolution, University of Edinburgh Edinburgh, UK
| | - Derek Sim
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA
| | - Rahel Salathé
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University University Park, PA, USA ; Department of Entomology, The Pennsylvania State University University Park, PA, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
15
|
Pollitt LC, Huijben S, Sim DG, Salathé RM, Jones MJ, Read AF. Rapid response to selection, competitive release and increased transmission potential of artesunate-selected Plasmodium chabaudi malaria parasites. PLoS Pathog 2014; 10:e1004019. [PMID: 24763470 PMCID: PMC3999151 DOI: 10.1371/journal.ppat.1004019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
The evolution of drug resistance, a key challenge for our ability to treat and control infections, depends on two processes: de-novo resistance mutations, and the selection for and spread of resistant mutants within a population. Understanding the factors influencing the rates of these two processes is essential for maximizing the useful lifespan of drugs and, therefore, effective disease control. For malaria parasites, artemisinin-based drugs are the frontline weapons in the fight against disease, but reports from the field of slower parasite clearance rates during drug treatment are generating concern that the useful lifespan of these drugs may be limited. Whether slower clearance rates represent true resistance, and how this provides a selective advantage for parasites is uncertain. Here, we show that Plasmodium chabaudi malaria parasites selected for resistance to artesunate (an artemisinin derivative) through a step-wise increase in drug dose evolved slower clearance rates extremely rapidly. In single infections, these slower clearance rates, similar to those seen in the field, provided fitness advantages to the parasite through increased overall density, recrudescence after treatment and increased transmission potential. In mixed infections, removal of susceptible parasites by drug treatment led to substantial increases in the densities and transmission potential of resistant parasites (competitive release). Our results demonstrate the double-edged sword for resistance management: in our initial selection experiments, no parasites survived aggressive chemotherapy, but after selection, the fitness advantage for resistant parasites was greatest at high drug doses. Aggressive treatment of mixed infections resulted in resistant parasites dominating the pool of gametocytes, without providing additional health benefits to hosts. Slower clearance rates can evolve rapidly and can provide a strong fitness advantage during drug treatment in both single and mixed strain infections.
Collapse
Affiliation(s)
- Laura C. Pollitt
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Centre for Immunology, Infection and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Silvie Huijben
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek G. Sim
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rahel M. Salathé
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Waite JL, Henry AR, Owen JP, Clayton DH. An experimental test of the effects of behavioral and immunological defenses against vectors: do they interact to protect birds from blood parasites? Parasit Vectors 2014; 7:104. [PMID: 24620737 PMCID: PMC4077066 DOI: 10.1186/1756-3305-7-104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Background Blood-feeding arthropods can harm their hosts in many ways, such as through direct tissue damage and anemia, but also by distracting hosts from foraging or watching for predators. Blood-borne pathogens transmitted by arthropods can further harm the host. Thus, effective behavioral and immunological defenses against blood-feeding arthropods may provide important fitness advantages to hosts if they reduce bites, and in systems involving pathogen transmission, if they lower pathogen transmission rate. Methods We tested whether Rock Pigeons (Columba livia) have effective behavioral and immunological defenses against a blood-feeding hippoboscid fly (Pseudolynchia canariensis) and, if so, whether the two defenses interact. The fly vectors the blood parasite Haemoproteus columbae; we further tested whether these defenses reduced the transmission success of blood parasites when birds were exposed to infected flies. We compared four experimental treatments in which hosts had available both purported defenses, only one of the defenses, or no defenses against the flies. Results We found that preening and immunological defenses were each effective in decreasing the survival and reproductive success of flies. However, the two defenses were additive, rather than one defense enhancing or decreasing the effectiveness of the other defense. Neither defense reduced the prevalence of H. columbae, nor the intensity of infection in birds exposed to infected flies. Conclusions Flies experience reduced fitness when maintained on hosts with immunological or preening defenses. This suggests that if vectors are given a choice among hosts, they may choose hosts that are less defended, which could impact pathogen transmission in a system where vectors can choose among hosts.
Collapse
Affiliation(s)
- Jessica L Waite
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
17
|
O'Donnell AJ, Mideo N, Reece SE. Disrupting rhythms in Plasmodium chabaudi: costs accrue quickly and independently of how infections are initiated. Malar J 2013; 12:372. [PMID: 24160251 PMCID: PMC3819465 DOI: 10.1186/1475-2875-12-372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the blood, the synchronous malaria parasite, Plasmodium chabaudi, exhibits a cell-cycle rhythm of approximately 24 hours in which transitions between developmental stages occur at particular times of day in the rodent host. Previous experiments reveal that when the timing of the parasite's cell-cycle rhythm is perturbed relative to the circadian rhythm of the host, parasites suffer a (~50%) reduction in asexual stages and gametocytes. Why it matters for parasites to have developmental schedules in synchronization with the host's rhythm is unknown. The experiment presented here investigates this issue by: (a) validating that the performance of P. chabaudi is negatively affected by mismatch to the host circadian rhythm; (b) testing whether the effect of mismatch depends on the route of infection or the developmental stage of inoculated parasites; and, (c) examining whether the costs of mismatch are due to challenges encountered upon initial infection and/or due to ongoing circadian host processes operating during infection. METHODS The experiment simultaneously perturbed the time of day infections were initiated, the stage of parasite inoculated, and the route of infection. The performance of parasites during the growth phase of infections was compared across the cross-factored treatment groups (i e, all combinations of treatments were represented). RESULTS The data show that mismatch to host rhythms is costly for parasites, reveal that this phenomenon does not depend on the developmental stage of parasites nor the route of infection, and suggest that processes operating at the initial stages of infection are responsible for the costs of mismatch. Furthermore, mismatched parasites are less virulent, in that they cause less anaemia to their hosts. CONCLUSION It is beneficial for parasites to be in synchronization with their host's rhythm, regardless of the route of infection or the parasite stage inoculated. Given that arrested cell-cycle development (quiescence) is implicated in tolerance to drugs, understanding how parasite schedules are established and maintained in the blood is important.
Collapse
Affiliation(s)
- Aidan J O'Donnell
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
18
|
Duncan AB, Gonzalez A, Kaltz O. Stochastic environmental fluctuations drive epidemiology in experimental host-parasite metapopulations. Proc Biol Sci 2013; 280:20131747. [PMID: 23966645 DOI: 10.1098/rspb.2013.1747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Environmental fluctuations are important for parasite spread and persistence. However, the effects of the spatial and temporal structure of environmental fluctuations on host-parasite dynamics are not well understood. Temporal fluctuations can be random but positively autocorrelated, such that the environment is similar to the recent past (red noise), or random and uncorrelated with the past (white noise). We imposed red or white temporal temperature fluctuations on experimental metapopulations of Paramecium caudatum, experiencing an epidemic of the bacterial parasite Holospora undulata. Metapopulations (two subpopulations linked by migration) experienced fluctuations between stressful (5 °C) and permissive (23 °C) conditions following red or white temporal sequences. Spatial variation in temperature fluctuations was implemented by exposing subpopulations to the same (synchronous temperatures) or different (asynchronous temperatures) temporal sequences. Red noise, compared with white noise, enhanced parasite persistence. Despite this, red noise coupled with asynchronous temperatures allowed infected host populations to maintain sizes equivalent to uninfected populations. It is likely that this occurs because subpopulations in permissive conditions rescue declining subpopulations in stressful conditions. We show how patterns of temporal and spatial environmental fluctuations can impact parasite spread and host population abundance. We conclude that accurate prediction of parasite epidemics may require realistic models of environmental noise.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554, Université Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
19
|
Cornet S, Bichet C, Larcombe S, Faivre B, Sorci G. Impact of host nutritional status on infection dynamics and parasite virulence in a bird-malaria system. J Anim Ecol 2013; 83:256-65. [DOI: 10.1111/1365-2656.12113] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/15/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Stéphane Cornet
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique; Evolution et Contrôle (MIVEGEC); UMR CNRS 5290-IRD 224-UM1-UM2; Montpellier France
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE); UMR CNRS 5175; Montpellier France
| | - Coraline Bichet
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Stephen Larcombe
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| | - Bruno Faivre
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| | - Gabriele Sorci
- Biogéosciences; UMR CNRS 6282; Université de Bourgogne; Dijon France
| |
Collapse
|
20
|
Rodelo-Urrego M, Pagán I, González-Jara P, Betancourt M, Moreno-Letelier A, Ayllón MA, Fraile A, Piñero D, García-Arenal F. Landscape heterogeneity shapes host-parasite interactions and results in apparent plant-virus codivergence. Mol Ecol 2013; 22:2325-40. [DOI: 10.1111/mec.12232] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/12/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Affiliation(s)
- M. Rodelo-Urrego
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - I. Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - P. González-Jara
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - M. Betancourt
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - A. Moreno-Letelier
- Departamento de Ecología Evolutiva; Instituto de Ecología; Universidad Nacional Autónoma de México; Apartado Postal 70-275 México DF 04510 México
| | - M. A. Ayllón
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - A. Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| | - D. Piñero
- Departamento de Ecología Evolutiva; Instituto de Ecología; Universidad Nacional Autónoma de México; Apartado Postal 70-275 México DF 04510 México
| | - F. García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos; Campus de Montegancedo; Universidad Politécnica de Madrid; Pozuelo de Alarcón Madrid 28223 Spain
| |
Collapse
|
21
|
Carlsson AM, Justin Irvine R, Wilson K, Piertney SB, Halvorsen O, Coulson SJ, Stien A, Albon SD. Disease transmission in an extreme environment: Nematode parasites infect reindeer during the Arctic winter. Int J Parasitol 2012; 42:789-95. [DOI: 10.1016/j.ijpara.2012.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 02/02/2023]
|