1
|
Gunst JD, Pahus MH, Rosás-Umbert M, Lu IN, Benfield T, Nielsen H, Johansen IS, Mohey R, Østergaard L, Klastrup V, Khan M, Schleimann MH, Olesen R, Støvring H, Denton PW, Kinloch NN, Copertino DC, Ward AR, Alberto WDC, Nielsen SD, Puertas MC, Ramos V, Reeves JD, Petropoulos CJ, Martinez-Picado J, Brumme ZL, Jones RB, Fox J, Tolstrup M, Nussenzweig MC, Caskey M, Fidler S, Søgaard OS. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: a phase 1b/2a, randomized trial. Nat Med 2022; 28:2424-2435. [PMID: 36253609 PMCID: PMC10189540 DOI: 10.1038/s41591-022-02023-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Attempts to reduce the human immunodeficiency virus type 1 (HIV-1) reservoir and induce antiretroviral therapy (ART)-free virologic control have largely been unsuccessful. In this phase 1b/2a, open-label, randomized controlled trial using a four-group factorial design, we investigated whether early intervention in newly diagnosed people with HIV-1 with a monoclonal anti-HIV-1 antibody with a CD4-binding site, 3BNC117, followed by a histone deacetylase inhibitor, romidepsin, shortly after ART initiation altered the course of HIV-1 infection ( NCT03041012 ). The trial was undertaken in five hospitals in Denmark and two hospitals in the United Kingdom. The coprimary endpoints were analysis of initial virus decay kinetics and changes in the frequency of CD4+ T cells containing intact HIV-1 provirus from baseline to day 365. Secondary endpoints included changes in the frequency of infected CD4+ T cells and virus-specific CD8+ T cell immunity from baseline to day 365, pre-ART plasma HIV-1 3BNC117 sensitivity, safety and tolerability, and time to loss of virologic control during a 12-week analytical ART interruption that started at day 400. In 55 newly diagnosed people (5 females and 50 males) with HIV-1 who received random allocation treatment, we found that early 3BNC117 treatment with or without romidepsin enhanced plasma HIV-1 RNA decay rates compared to ART only. Furthermore, 3BNC117 treatment accelerated clearance of infected cells compared to ART only. All groups had significant reductions in the frequency of CD4+ T cells containing intact HIV-1 provirus. At day 365, early 3BNC117 + romidepsin was associated with enhanced HIV-1 Gag-specific CD8+ T cell immunity compared to ART only. The observed virological and immunological effects of 3BNC117 were most pronounced in individuals whose pre-ART plasma HIV-1 envelope sequences were antibody sensitive. The results were not disaggregated by sex. Adverse events were mild to moderate and similar between the groups. During a 12-week analytical ART interruption among 20 participants, 3BNC117-treated individuals harboring sensitive viruses were significantly more likely to maintain ART-free virologic control than other participants. We conclude that 3BNC117 at ART initiation enhanced elimination of plasma viruses and infected cells, enhanced HIV-1-specific CD8+ immunity and was associated with sustained ART-free virologic control among persons with 3BNC117-sensitive virus. These findings strongly support interventions administered at the time of ART initiation as a strategy to limit long-term HIV-1 persistence.
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rajesh Mohey
- Department of Internal Medicine, Regional Hospital Herning, Herning, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Vibeke Klastrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maryam Khan
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Adam R Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Winiffer D Conce Alberto
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Silke D Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- University of Vic-Central University of Catalonia, Vic, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guy's and St Thomas' National Health Service Trust, London, UK
- Department of Genitourinary Medicine and Infectious Disease, The National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Sarah Fidler
- Department of Infectious Diseases, Imperial College Hospital, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
3
|
Brooks K, Omondi FH, Liang RH, Sudderuddin H, Jones BR, Joy JB, Brumme CJ, Hunter E, Brumme ZL. Proviral Turnover During Untreated HIV Infection Is Dynamic and Variable Between Hosts, Impacting Reservoir Composition on ART. Front Microbiol 2021; 12:719153. [PMID: 34489909 PMCID: PMC8417368 DOI: 10.3389/fmicb.2021.719153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) can persist as an integrated provirus, in a transcriptionally repressed state, within infected cells. This small yet enduring pool of cellular reservoirs that harbor replication-competent HIV is the main barrier to cure. Entry of viral sequences into cellular reservoirs begins shortly after infection, and cells containing integrated proviral DNA are extremely stable once suppressive antiretroviral therapy (ART) is initiated. During untreated HIV infection however, reservoir turnover is likely to be more dynamic. Understanding these dynamics is important because the longevity of the persisting proviral pool during untreated infection dictates reservoir composition at ART initiation. If the persisting proviral pool turns over slowly pre-ART, then HIV sequences seeded into it during early infection would have a high likelihood of persisting for long periods. However, if pre-ART turnover was rapid, the persisting proviral pool would rapidly shift toward recently circulating HIV sequences. One-way to estimate this turnover rate is from the age distributions of proviruses sampled shortly after therapy initiation: this is because, at the time of sampling, the majority of proviral turnover would have already occurred prior to ART. Recently, methods to estimate a provirus’ age from its sequence have made this possible. Using data from 12 individuals with HIV subtype C for whom proviral ages had been determined phylogenetically, we estimated that the average proviral half-life during untreated infection was 0.78 (range 0.45–2.38) years, which is >15 times faster than that of proviral DNA during suppressive ART. We further show that proviral turnover during untreated infection correlates with both viral setpoint and rate of CD4+ T-cell decline during this period. Overall, our results support dynamic proviral turnover pre-ART in most individuals, which helps explain why many individuals’ reservoirs are skewed toward younger HIV sequences. Broadly, our findings are consistent with the notion that active viral replication creates an environment less favorable to proviral persistence, while viral suppression creates conditions more favorable to persistence, where ART stabilizes the proviral pool by dramatically slowing its rate of decay. Strategies to inhibit this stabilizing effect and/or to enhance reservoir turnover during ART could represent additional strategies to reduce the HIV reservoir.
Collapse
Affiliation(s)
- Kelsie Brooks
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - F Harrison Omondi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Richard H Liang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| |
Collapse
|
4
|
Broadly neutralizing antibodies combined with latency-reversing agents or immune modulators as strategy for HIV-1 remission. Curr Opin HIV AIDS 2021; 15:309-315. [PMID: 32675575 DOI: 10.1097/coh.0000000000000641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Antiretroviral therapy (ART) is extremely effective in controlling HIV-1 infection; however, ART is not curative. Here, we review broadly neutralizing anti-HIV-1 antibodies (bNAbs) combined with latency-reversing agents (LRAs) or immune modulators as strategy for achieving long-term HIV-1 remission. RECENT FINDINGS Clinical trials testing the effect of a single intervention such as a LRA 'shock and kill', immune modulator or bNAbs among HIV-1 infected individuals on long-term suppressive ART have not lead to long-term HIV-1 remission when ART is stopped. Novel combinations of interventions designed to eliminate infected cells and enhance immune-effector functions are being investigated. Findings in nonhuman primates (NHPs) of such combinations are very promising and clinical trials are now ongoing. These trials will provide the first indication of the efficacy of combinations of bNAbs and LRA or immune modulators for achieving durable HIV-1 remission. SUMMARY bNAbs facilitate the elimination of HIV-1 infected cells and boost immune responses. Preclinical findings show that these effects can be harnessed by simultaneous administration of LRAs or immune modulators such as Toll-like receptor agonists. The clinical success of such combination strategies may be impacted by factors such as immune exhaustion, bNAbs sensitivity as well as the pharmacodynamics of the investigational compounds.
Collapse
|
5
|
Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019; 8:pathogens8030137. [PMID: 31487807 PMCID: PMC6789648 DOI: 10.3390/pathogens8030137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.
Collapse
|
6
|
Khanna M, Jackson RJ, Alcantara S, Amarasena TH, Li Z, Kelleher AD, Kent SJ, Ranasinghe C. Mucosal and systemic SIV-specific cytotoxic CD4 + T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques. Sci Rep 2019; 9:5661. [PMID: 30952887 PMCID: PMC6450945 DOI: 10.1038/s41598-019-41506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
7
|
Fennessey CM, Pinkevych M, Immonen TT, Reynaldi A, Venturi V, Nadella P, Reid C, Newman L, Lipkey L, Oswald K, Bosche WJ, Trivett MT, Ohlen C, Ott DE, Estes JD, Del Prete GQ, Lifson JD, Davenport MP, Keele BF. Genetically-barcoded SIV facilitates enumeration of rebound variants and estimation of reactivation rates in nonhuman primates following interruption of suppressive antiretroviral therapy. PLoS Pathog 2017; 13:e1006359. [PMID: 28472156 PMCID: PMC5433785 DOI: 10.1371/journal.ppat.1006359] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 04/17/2017] [Indexed: 01/29/2023] Open
Abstract
HIV and SIV infection dynamics are commonly investigated by measuring plasma viral loads. However, this total viral load value represents the sum of many individual infection events, which are difficult to independently track using conventional sequencing approaches. To overcome this challenge, we generated a genetically tagged virus stock (SIVmac239M) with a 34-base genetic barcode inserted between the vpx and vpr accessory genes of the infectious molecular clone SIVmac239. Next-generation sequencing of the virus stock identified at least 9,336 individual barcodes, or clonotypes, with an average genetic distance of 7 bases between any two barcodes. In vitro infection of rhesus CD4+ T cells and in vivo infection of rhesus macaques revealed levels of viral replication of SIVmac239M comparable to parental SIVmac239. After intravenous inoculation of 2.2x105 infectious units of SIVmac239M, an average of 1,247 barcodes were identified during acute infection in 26 infected rhesus macaques. Of the barcodes identified in the stock, at least 85.6% actively replicated in at least one animal, and on average each barcode was found in 5 monkeys. Four infected animals were treated with combination antiretroviral therapy (cART) for 82 days starting on day 6 post-infection (study 1). Plasma viremia was reduced from >106 to <15 vRNA copies/mL by the time treatment was interrupted. Virus rapidly rebounded following treatment interruption and between 87 and 136 distinct clonotypes were detected in plasma at peak rebound viremia. This study confirmed that SIVmac239M viremia could be successfully curtailed with cART, and that upon cART discontinuation, rebounding viral variants could be identified and quantified. An additional 6 animals infected with SIVmac239M were treated with cART beginning on day 4 post-infection for 305, 374, or 482 days (study 2). Upon treatment interruption, between 4 and 8 distinct viral clonotypes were detected in each animal at peak rebound viremia. The relative proportions of the rebounding viral clonotypes, spanning a range of 5 logs, were largely preserved over time for each animal. The viral growth rate during recrudescence and the relative abundance of each rebounding clonotype were used to estimate the average frequency of reactivation per animal. Using these parameters, reactivation frequencies were calculated and ranged from 0.33–0.70 events per day, likely representing reactivation from long-lived latently infected cells. The use of SIVmac239M therefore provides a powerful tool to investigate SIV latency and the frequency of viral reactivation after treatment interruption. Elucidation of HIV dynamics is essential for a thorough understanding of viral transmission, therapeutic interventions, pathogenesis, and immune evasion. The complex dynamics of reservoir establishment and viral recrudescence upon therapy removal present the primary obstacles to developing a functional cure. We sought to develop a virus model system for use in nonhuman primates that allows for the genetic discrimination of nearly 10,000 otherwise isogenic clones. This “synthetic swarm” adds a genetic component to viral dynamics where individual viral lineages can be tracked and monitored during infection. Here we utilized this model to identify the dynamics of viral reservoir establishment and rebound. We found that after 300 or more days of therapy, between 4 and 8 distinct viral lineages could be detected upon therapeutic intervention. Using the relative proportion of each distinct genetic barcoded virus and the overall viral load curve, we could estimate the time and rate of reactivation from latency. On average, we found 1 reactivation event every 2 days with reactivation of the first rebounding variant within days of therapeutic interruption. This virus model will be useful for testing various approaches to reduce the latent viral reservoir and to molecularly track viral dynamics in all stages of infection.
Collapse
Affiliation(s)
- Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mykola Pinkevych
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Vanessa Venturi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
| | - Priyanka Nadella
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Laura Newman
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Leslie Lipkey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David E. Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miles P. Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW, Australia
- * E-mail: (BFK); (MPD)
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (BFK); (MPD)
| |
Collapse
|
8
|
Kent SJ. Eradication and Cure of HIV. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
HIV Dynamics With Immune Responses: Perspectives From Mathematical Modeling. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0049-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Alinejad-Rokny H, Ebrahimi D. A method to avoid errors associated with the analysis of hypermutated viral sequences by alignment-based methods. J Biomed Inform 2015; 58:220-225. [PMID: 26494601 DOI: 10.1016/j.jbi.2015.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
Abstract
The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.
Collapse
Affiliation(s)
| | - Diako Ebrahimi
- Department of Biochemistry, Molecular Biology and Biophysics; Masonic Cancer Center; Institute for Molecular Virology; University of Minnesota, MN, USA.
| |
Collapse
|
11
|
Brockman MA, Jones RB, Brumme ZL. Challenges and Opportunities for T-Cell-Mediated Strategies to Eliminate HIV Reservoirs. Front Immunol 2015; 6:506. [PMID: 26483795 PMCID: PMC4591506 DOI: 10.3389/fimmu.2015.00506] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022] Open
Abstract
HIV's ability to establish latent reservoirs of reactivation-competent virus is the major barrier to cure. "Shock and kill" methods consisting of latency-reversing agents (LRAs) followed by elimination of reactivating cells through cytopathic effects are under active development. However, the clinical efficacy of LRAs remains to be established. Moreover, recent studies indicate that reservoirs may not be reduced efficiently by either viral cytopathic or CD8(+) T-cell-mediated mechanisms. In this perspective, we highlight challenges to T-cell-mediated elimination of HIV reservoirs, including characteristics of responding T cells, aspects of the cellular reservoirs, and properties of the latent virus itself. We also discuss potential strategies to overcome these challenges by targeting the antiviral activity of T cells toward appropriate viral antigens following latency.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| | - R Brad Jones
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University , Washington, DC , USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University , Burnaby, BC , Canada ; BC Centre for Excellence in HIV/AIDS , Vancouver, BC , Canada
| |
Collapse
|
12
|
Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, Reece JC, Cromer D, Kent SJ, Davenport MP. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4112-21. [PMID: 25825438 DOI: 10.4049/jimmunol.1400793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are important for the control of chronic HIV infection. However, the virus rapidly acquires "escape mutations" that reduce CD8(+) T cell recognition and viral control. The timing of when immune escape occurs at a given epitope varies widely among patients and also among different epitopes within a patient. The strength of the CD8(+) T cell response, as well as mutation rates, patterns of particular amino acids undergoing escape, and growth rates of escape mutants, may affect when escape occurs. In this study, we analyze the epitope-specific CD8(+) T cells in 25 SIV-infected pigtail macaques responding to three SIV epitopes. Two epitopes showed a variable escape pattern and one had a highly monomorphic escape pattern. Despite very different patterns, immune escape occurs with a similar delay of on average 18 d after the epitope-specific CD8(+) T cells reach 0.5% of total CD8(+) T cells. We find that the most delayed escape occurs in one of the highly variable epitopes, and that this is associated with a delay in the epitope-specific CD8(+) T cells responding to this epitope. When we analyzed the kinetics of immune escape, we found that multiple escape mutants emerge simultaneously during the escape, implying that a diverse population of potential escape mutants is present during immune selection. Our results suggest that the conservation or variability of an epitope does not appear to affect the timing of immune escape in SIV. Instead, timing of escape is largely determined by the kinetics of epitope-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Alexey P Martyushev
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Andrew J Grimm
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Hamid Alinejad-Rokny
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Shayarana L Gooneratne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jeanette C Reece
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deborah Cromer
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Miles P Davenport
- Centre for Vascular Research, University of New South Wales, Sydney, New South Wales 2052, Australia; and
| |
Collapse
|
13
|
Trying to cure HIV with immunotherapy: not so simple. Lancet HIV 2015; 2:e72-3. [PMID: 26424544 DOI: 10.1016/s2352-3018(15)00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
|
14
|
Abstract
UNLABELLED Latently infected cells are considered a major barrier to the cure of HIV infection, since they are long-lived under antiretroviral therapy (ART) and cause viral replication to restart soon after stopping ART. In the last decade, different types of antilatency drugs have been explored with the aim of reactivating and purging this latent reservoir and the hope of achieving a cure. Because of toxicity and safety considerations, antilatency drugs can only be given for a short time to patients on long-term ART, with little effect. We recently investigated the turnover of latently infected cells during active infection and have found that it was strongly correlated with viral load. This implies that although latently infected cells had long life spans in a setting of a low viral load (such as during ART), they turned over quickly under a high viral load. Possible reasons for this could be that an increased viral load causes increased activation or death of CD4(+) T cells, including those that are latently infected. Taking these results into account, we developed a mathematical model to study the most appropriate timing of antilatency drugs in relationship to the initiation of ART. We found that the best timing of a short-term antilatency drug would be the start of ART, when viral load, CD4(+) T cell activation, and latent cell turnover are all high. These results have important implications for the design of HIV cure-related clinical trials. IMPORTANCE The antiretroviral therapy (ART) of HIV-infected patients currently needs to be lifelong, because the cells latently infected with HIV start new rounds of infection as soon as the treatment is stopped. In the last decade, a number of different types of antilatency drugs have been explored with the aim of "reactivating" and "purging" this latent reservoir and thus achieving a cure. These drugs have thus far been tested on patients only after long-term ART and have demonstrated little or no effect. We use mathematical modeling to show that the most efficacious timing of a short-term antilatency treatment may be the start of ART because of possible interactions of antilatency drugs with natural activation pathways.
Collapse
|
15
|
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, VIC 3010, Australia
| | - Miles P Davenport
- Centre for Vascular Research, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
16
|
Reece JC, Martyushev A, Petravic J, Grimm A, Gooneratne S, Amaresena T, De Rose R, Loh L, Davenport MP, Kent SJ. Measuring turnover of SIV DNA in resting CD4+ T cells using pyrosequencing: implications for the timing of HIV eradication therapies. PLoS One 2014; 9:e93330. [PMID: 24710023 PMCID: PMC3977820 DOI: 10.1371/journal.pone.0093330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 01/28/2023] Open
Abstract
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.
Collapse
Affiliation(s)
- Jeanette C. Reece
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Alexey Martyushev
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Janka Petravic
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Andrew Grimm
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Shayarana Gooneratne
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Thakshila Amaresena
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, NSW, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Davenport M. A spectrum of (avoidable) HIV latency? MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol 2013; 11:96. [PMID: 24020860 PMCID: PMC3765939 DOI: 10.1186/1741-7007-11-96] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023] Open
Abstract
The new field of viral dynamics, based on within-host modeling of viral infections, began with models of human immunodeficiency virus (HIV), but now includes many viral infections. Here we review developments in HIV modeling, emphasizing quantitative findings about HIV biology uncovered by studying acute infection, the response to drug therapy and the rate of generation of HIV variants that escape immune responses. We show how modeling has revealed many dynamical features of HIV infection and how it may provide insight into the ultimate cure for this infection.
Collapse
Affiliation(s)
- Alan S Perelson
- MS K710, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
19
|
Kent SJ, Reece JC, Petravic J, Martyushev A, Kramski M, De Rose R, Cooper DA, Kelleher AD, Emery S, Cameron PU, Lewin SR, Davenport MP. The search for an HIV cure: tackling latent infection. THE LANCET. INFECTIOUS DISEASES 2013; 13:614-21. [PMID: 23481675 DOI: 10.1016/s1473-3099(13)70043-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strategies to eliminate infectious HIV that persists despite present treatments and with the potential to cure HIV infection are of great interest. One patient seems to have been cured of HIV infection after receiving a bone marrow transplant with cells resistant to the virus, although this strategy is not viable for large numbers of infected people. Several clinical trials are underway in which drugs are being used to activate cells that harbour latent HIV. In a recent study, investigators showed that activation of latent HIV infection in patients on antiretroviral therapy could be achieved with a single dose of vorinostat, a licensed anticancer drug that inhibits histone deacetylase. Although far from a cure, such studies provide some guidance towards the logical next steps for research. Clinical studies that use a longer duration of drug dosing, alternative agents, combination approaches, gene therapy, and immune-modulation approaches are all underway.
Collapse
Affiliation(s)
- Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tyagi M, Bukrinsky M. Human immunodeficiency virus (HIV) latency: the major hurdle in HIV eradication. Mol Med 2012; 18:1096-108. [PMID: 22692576 DOI: 10.2119/molmed.2012.00194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022] Open
Abstract
Failure of highly active antiretroviral therapy to eradicate the human immunodeficiency virus (HIV), even in patients who suppress the virus to undetectable levels for many years, underscores the problems associated with fighting this infection. The existence of persistent infection in certain cellular and anatomical reservoirs appears to be the major hurdle in HIV eradication. The development of therapeutic interventions that eliminate or limit the latent viral pools or prevent the reemergence of the viruses from producing cells will therefore be required to enhance the effectiveness of current antiretroviral strategies. To achieve this goal, there is a pressing need to understand HIV latency at the molecular level to design novel and improved therapies to either eradicate HIV or find a functional cure in which patients could maintain a manageable viral pool without AIDS in the absence of antiretroviral therapy. The integrated proviral genome remains transcriptionally silent for a long period in certain subsets of T cells. This ability to infect cells latently helps HIV to establish a persistent infection despite strong humoral and cellular immune responses against the viral proteins. The main purpose of this report is to provide a general overview of the HIV latency. We will describe the hurdles being faced in eradicating latent HIV proviruses. We will also briefly discuss the ongoing strategies aimed toward curing HIV infection.
Collapse
Affiliation(s)
- Mudit Tyagi
- National Center for Biodefense and Infectious Disease, George Mason University, Manassas, Virginia 20109, United States of America.
| | | |
Collapse
|