1
|
Paspaltsis I, Kanata E, Sotiriadis S, Correia SS, Schmitz M, Zerr I, Dafou D, Xanthopoulos K, Sklaviadis T. A Comparison of RML Prion Inactivation Efficiency by Heterogeneous and Homogeneous Photocatalysis. Pathogens 2024; 13:420. [PMID: 38787272 PMCID: PMC11124347 DOI: 10.3390/pathogens13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Prions are proteinaceous pathogens responsible for a variety of devastating diseases in mammals, including scrapie in sheep and goats, chronic wasting disease in cervids, and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by their exceptional persistence to common inactivation procedures. This applies to all possible sources of prion contamination as prions may be present in the tissues and biological fluids of infected individuals. Hence, efficient prion inactivation procedures are still being sought to minimize the risk of intra- or inter-species transmission. In the past, photocatalytic treatment has been proven to be capable of efficiently oxidizing and inactivating prions. In the present study, the efficacy of homogeneous photo-Fenton-based photocatalysis as well as heterogeneous photocatalysis with TiO2 in reducing RML mouse scrapie infectivity was evaluated. Prion inactivation was assessed by means of a bioassay, and the results were confirmed by in vitro experiments. While the prion infectivity of the RML mouse scrapie was reduced after treatment with the photo-Fenton reagent, the heterogeneous photocatalytic treatment of the same prion strain completely eliminated prion infectivity.
Collapse
Affiliation(s)
- Ioannis Paspaltsis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Eirini Kanata
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Sotirios Sotiriadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Susana Silva Correia
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thermi, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| |
Collapse
|
2
|
Igel A, Fornara B, Rezaei H, Béringue V. Prion assemblies: structural heterogeneity, mechanisms of formation, and role in species barrier. Cell Tissue Res 2022; 392:149-166. [PMID: 36399162 PMCID: PMC10113350 DOI: 10.1007/s00441-022-03700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
AbstractPrions are proteinaceous pathogens responsible for a wide range of neurodegenerative diseases in animal and human. Prions are formed from misfolded, ß-sheet rich, and aggregated conformers (PrPSc) of the host-encoded prion protein (PrPC). Prion replication stems from the capacity of PrPSc to self-replicate by templating PrPC conversion and polymerization. The question then arises about the molecular mechanisms of prion replication, host invasion, and capacity to contaminate other species. Studying these mechanisms has gained in recent years further complexity with evidence that PrPSc is a pleiomorphic protein. There is indeed compelling evidence for PrPSc structural heterogeneity at different scales: (i) within prion susceptible host populations with the existence of different strains with specific biological features due to different PrPSc conformers, (ii) within a single infected host with the co-propagation of different strains, and (iii) within a single strain with evidence for co-propagation of PrPSc assemblies differing in their secondary to quaternary structure. This review summarizes current knowledge of prion assembly heterogeneity, potential mechanisms of formation during the replication process, and importance when crossing the species barrier.
Collapse
|
3
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
Affiliation(s)
- Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
| |
Collapse
|
4
|
Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K, Hughson AG, Manca M, Thomas OR, Raymond GJ, Race B, Baron GS, Caughey B, Kraus A. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat Commun 2022; 13:4005. [PMID: 35831291 PMCID: PMC9279418 DOI: 10.1038/s41467-022-30458-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022] Open
Abstract
Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å) resolution cryo-electron microscopy-based structure of infectious brain-derived fibrils of the mouse anchorless RML scrapie strain which, like the recently determined hamster 263K strain, has a parallel in-register β-sheet-based core. Several structural motifs are shared between these ex vivo prion strains, including an amino-proximal steric zipper and three β-arches. However, detailed comparisons reveal variations in these shared structural topologies and other features. Unlike 263K and wildtype RML prions, the anchorless RML prions lack glycophosphatidylinositol anchors and are severely deficient in N-linked glycans. Nonetheless, the similarity of our anchorless RML structure to one reported for wildtype RML prion fibrils in an accompanying paper indicates that these post-translational modifications do not substantially alter the amyloid core conformation. This work demonstrates both common and divergent structural features of prion strains at the near-atomic level.
Collapse
Affiliation(s)
- Forrest Hoyt
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Heidi G Standke
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Efrosini Artikis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Cindi L Schwartz
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Bryan Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kunpeng Li
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Matteo Manca
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Olivia R Thomas
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Gerald S Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Burke CM, Walsh DJ, Mark KMK, Deleault NR, Nishina KA, Agrimi U, Di Bari MA, Supattapone S. Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation. PLoS Pathog 2020; 16:e1008495. [PMID: 32294141 PMCID: PMC7185723 DOI: 10.1371/journal.ppat.1008495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are caused by the misfolding of a host-encoded glycoprotein, PrPC, into a pathogenic conformer, PrPSc. Infectious prions can exist as different strains, composed of unique conformations of PrPSc that generate strain-specific biological traits, including distinctive patterns of PrPSc accumulation throughout the brain. Prion strains from different animal species display different cofactor and PrPC glycoform preferences to propagate efficiently in vitro, but it is unknown whether these molecular preferences are specified by the amino acid sequence of PrPC substrate or by the conformation of PrPSc seed. To distinguish between these two possibilities, we used bank vole PrPC to propagate both hamster or mouse prions (which have distinct cofactor and glycosylation preferences) with a single, common substrate. We performed reconstituted sPMCA reactions using either (1) phospholipid or RNA cofactor molecules, or (2) di- or un-glycosylated bank vole PrPC substrate. We found that prion strains from either species are capable of propagating efficiently using bank vole PrPC substrates when reactions contained the same PrPC glycoform or cofactor molecule preferred by the PrPSc seed in its host species. Thus, we conclude that it is the conformation of the input PrPSc seed, not the amino acid sequence of the PrPC substrate, that primarily determines species-specific cofactor and glycosylation preferences. These results support the hypothesis that strain-specific patterns of prion neurotropism are generated by selection of differentially distributed cofactors molecules and/or PrPC glycoforms during prion replication.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Kenneth M. K. Mark
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nathan R. Deleault
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Koren A. Nishina
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele A. Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
7
|
Burke CM, Walsh DJ, Steele AD, Agrimi U, Di Bari MA, Watts JC, Supattapone S. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog 2019; 15:e1007662. [PMID: 30908557 PMCID: PMC6448948 DOI: 10.1371/journal.ppat.1007662] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/04/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.
Collapse
Affiliation(s)
- Cassandra M. Burke
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Daniel J. Walsh
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Alexander D. Steele
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Surachai Supattapone
- Departments of Biochemistry and Cell Biology at Darthmouth, Hanover, New Hampshire, United States of America
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
8
|
Vaccination against babesiosis using recombinant GPI-anchored proteins. Int J Parasitol 2019; 49:175-181. [DOI: 10.1016/j.ijpara.2018.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
|
9
|
Makarava N, Savtchenko R, Lasch P, Beekes M, Baskakov IV. Preserving prion strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathol Commun 2018; 6:92. [PMID: 30208966 PMCID: PMC6134792 DOI: 10.1186/s40478-018-0597-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Last decade witnessed an enormous progress in generating authentic infectious prions or PrPSc in vitro using recombinant prion protein (rPrP). Previous work established that rPrP that lacks posttranslational modification is able to support replication of highly infectious PrPSc with assistance of cofactors of polyanionic nature and/or lipids. Unexpectedly, previous studies also revealed that seeding of rPrP by brain-derived PrPSc gave rise to new prion strains with new disease phenotypes documenting loss of a strain identity upon replication in rPrP substrate. Up to now, it remains unclear whether prion strain identity can be preserved upon replication in rPrP. The current study reports that faithful replication of hamster strain SSLOW could be achieved in vitro using rPrP as a substrate. We found that a mixture of phosphatidylethanolamine (PE) and synthetic nucleic acid polyA was sufficient for stable replication of hamster brain-derived SSLOW PrPSc in serial Protein Misfolding Cyclic Amplification (sPMCA) that uses hamster rPrP as a substrate. The disease phenotype generated in hamsters upon transmission of recombinant PrPSc produced in vitro was strikingly similar to the original SSLOW diseases phenotype with respect to the incubation time to disease, as well as clinical, neuropathological and biochemical features. Infrared microspectroscopy (IR-MSP) indicated that PrPSc produced in animals upon transmission of recombinant PrPSc is structurally similar if not identical to the original SSLOW PrPSc. The current study is the first to demonstrate that rPrP can support replication of brain-derived PrPSc while preserving its strain identity. In addition, the current work is the first to document that successful propagation of a hamster strain could be achieved in vitro using hamster rPrP.
Collapse
|
10
|
Immunodetection of PrP Sc Using Western Immunoblotting Techniques. Methods Mol Biol 2018. [PMID: 28861782 DOI: 10.1007/978-1-4939-7244-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Western immunoblotting is a workhorse technique used in the prion field to analyze disease-associated forms of the prion protein, termed PrPSc. The biochemical stability of PrPSc aggregates combined with the increased resistance of prion infectivity to inactivation by various treatments that inactivate most other pathogens complicates the use of Western immunoblotting as a means to characterize PrPSc samples. In this chapter, we describe a method for Western immunoblot analysis of PrPSc with an emphasis on precautions to address the biochemical and biosafety considerations associated with this procedure.
Collapse
|
11
|
In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding. J Virol 2017; 91:JVI.01543-17. [PMID: 28978705 DOI: 10.1128/jvi.01543-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 01/10/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.
Collapse
|
12
|
Aguilar-Calvo P, Xiao X, Bett C, Eraña H, Soldau K, Castilla J, Nilsson KPR, Surewicz WK, Sigurdson CJ. Post-translational modifications in PrP expand the conformational diversity of prions in vivo. Sci Rep 2017; 7:43295. [PMID: 28272426 PMCID: PMC5341109 DOI: 10.1038/srep43295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/23/2017] [Indexed: 12/02/2022] Open
Abstract
Misfolded prion protein aggregates (PrPSc) show remarkable structural diversity and are associated with highly variable disease phenotypes. Similarly, other proteins, including amyloid-β, tau, α-synuclein, and serum amyloid A, misfold into distinct conformers linked to different clinical diseases through poorly understood mechanisms. Here we use mice expressing glycophosphatidylinositol (GPI)-anchorless prion protein, PrPC, together with hydrogen-deuterium exchange coupled with mass spectrometry (HXMS) and a battery of biochemical and biophysical tools to investigate how post-translational modifications impact the aggregated prion protein properties and disease phenotype. Four GPI-anchorless prion strains caused a nearly identical clinical and pathological disease phenotype, yet maintained their structural diversity in the anchorless state. HXMS studies revealed that GPI-anchorless PrPSc is characterized by substantially higher protection against hydrogen/deuterium exchange in the C-terminal region near the N-glycan sites, suggesting this region had become more ordered in the anchorless state. For one strain, passage of GPI-anchorless prions into wild type mice led to the emergence of a novel strain with a unique biochemical and phenotypic signature. For the new strain, histidine hydrogen-deuterium mass spectrometry revealed altered packing arrangements of β-sheets that encompass residues 139 and 186 of PrPSc. These findings show how variation in post-translational modifications may explain the emergence of new protein conformations in vivo and also provide a basis for understanding how the misfolded protein structure impacts the disease.
Collapse
Affiliation(s)
| | - Xiangzhu Xiao
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Cyrus Bett
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, Derio 48160, Spain
| | - Katrin Soldau
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA
| | - Joaquin Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Ed. 800, Derio 48160, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - K Peter R Nilsson
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping 581 83, Sweden
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44116, USA
| | - Christina J Sigurdson
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA 92093-0612, USA.,Department of Pathology, Immunology, and Microbiology, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Sano K, Atarashi R, Nishida N. Structural conservation of prion strain specificities in recombinant prion protein fibrils in real-time quaking-induced conversion. Prion 2016; 9:237-43. [PMID: 26284507 PMCID: PMC4601500 DOI: 10.1080/19336896.2015.1062201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrPSc). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrPSc results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrPSc. However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrPSc can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.
Collapse
Affiliation(s)
- Kazunori Sano
- a Department of Physiology and Pharmacology; Faculty of Pharmaceutical Sciences; Fukuoka University ; Fukuoka, Japan
| | | | | |
Collapse
|
14
|
Katorcha E, Makarava N, Savtchenko R, Baskakov IV. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio. Sci Rep 2015; 5:16912. [PMID: 26576925 PMCID: PMC4649626 DOI: 10.1038/srep16912] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
Prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrP(C). PrP(C) has two sialylated N-linked carbohydrates. In PrP(Sc), the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrP(Sc) glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrP(C) molecules that have more sialic groups per molecule than monoglycosylated PrP(C) were preferentially excluded from conversion. However, when partially desialylated PrP(C) was used as a substrate, recruitment of three glycoforms into PrP(Sc) was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrP(C) significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications.
Collapse
Affiliation(s)
- Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, 21201 United States of America.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Makarava N, Savtchenko R, Baskakov IV. Two alternative pathways for generating transmissible prion disease de novo. Acta Neuropathol Commun 2015; 3:69. [PMID: 26556038 PMCID: PMC4641408 DOI: 10.1186/s40478-015-0248-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/27/2015] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies established that prion disease with unique strain-specific phenotypes could be induced by in vitro-formed recombinant PrP (rPrP) fibrils with structures different from that of authentic prions, or PrPSc. To explain the etiology of prion diseases, new mechanism proposed that in animals the transition from rPrP fibrils to PrPSc consists of two main steps: the first involves fibril-induced formation of atypical PrPres, a self-replicating but clinically silent state, and the second consists of atypical PrPres-dependent formation of PrPSc via rare deformed templating events. Results In the current study, atypical PrPres with characteristics similar to those of brain-derived atypical PrPres was generated in vitro. Upon inoculation into animals, in vitro-generated atypical PrPres gave rise to PrPSc and prion disease with a phenotype similar to those induced by rPrP fibrils. Significant differences in the sialylation pattern between atypical PrPres and PrPSc suggested that only a small sub-fraction of the PrPC that is acceptable as a substrate for PrPSc could be also recruited by atypical PrPres. This can explain why atypical PrPres replicates slower than PrPSc and why PrPSc outcompetes atypical PrPres. Conclusions This study illustrates that transmissible prion diseases with very similar disease phenotypes could be produced via two alternative procedures: direct inoculation of recombinant PrP amyloid fibrils or in vitro-produced atypical PrPres. Moreover, this work showed that preparations of atypical PrPres free of PrPSc can give rise to transmissible diseases in wild type animals and that atypical PrPres generated in vitro is an adequate model for brain-derived atypical PrPres. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0248-5) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Race B, Phillips K, Meade-White K, Striebel J, Chesebro B. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein. J Virol 2015; 89:6022-32. [PMID: 25810548 PMCID: PMC4442444 DOI: 10.1128/jvi.00362-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kimberly Meade-White
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
17
|
Proteinase K and the structure of PrPSc: The good, the bad and the ugly. Virus Res 2015; 207:120-6. [PMID: 25816779 DOI: 10.1016/j.virusres.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints.
Collapse
|
18
|
The standard scrapie cell assay: development, utility and prospects. Viruses 2015; 7:180-98. [PMID: 25602372 PMCID: PMC4306833 DOI: 10.3390/v7010180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 11/23/2022] Open
Abstract
Prion diseases are a family of fatal neurodegenerative diseases that involve the misfolding of a host protein, PrPC. Measuring prion infectivity is necessary for determining efficacy of a treatment or infectivity of a prion purification procedure; animal bioassays are, however, very expensive and time consuming. The Standard Scrapie Cell Assay (SSCA) provides an alternative approach. The SSCA facilitates quantitative in vitro analysis of prion strains, titres and biological properties. Given its robust nature and potential for high throughput, the SSCA has substantial utility for in vitro characterization of prions and can be deployed in a number of settings. Here we provide an overview on establishing the SSCA, its use in studies of disease dissemination and pathogenesis, potential pitfalls and a number of remaining challenges.
Collapse
|
19
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
20
|
Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real-time quaking-induced conversion. J Virol 2014; 88:11791-801. [PMID: 25078700 DOI: 10.1128/jvi.00585-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenomenon of prion strains with distinct biological characteristics has been hypothesized to be involved in the structural diversity of abnormal prion protein (PrP(Sc)). However, the molecular basis of the transmission of strain properties remains poorly understood. Real-time quaking-induced conversion (RT-QUIC) is a cell-free system that uses Escherichia coli-derived recombinant PrP (rPrP) for the sensitive detection of PrP(Sc). To investigate whether the properties of various prion strains can be transmitted to amyloid fibrils consisting of rPrP (rPrP fibrils) using RT-QUIC, we examined the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L strain. In the first round of the reaction, there were differences in the secondary structures, especially in bands attributed to β-sheets, as determined by infrared spectroscopy, and conformational stability between Chandler-seeded (1st-rPrP-fib(Ch)) and 22L-seeded (1st-rPrP-fib(22L)) rPrP fibrils. Of note, specific identifying characteristics of the two rPrP fibril types seen in the β-sheets resembled those of the original PrP(Sc). Furthermore, the conformational stability of 1st-rPrP-fib(Ch) was significantly higher than that of 1st-rPrP-fib(22L), as with Chandler and 22L PrP(Sc). The survival periods of mice inoculated with 1st-rPrP-fib(Ch) or 1st-rPrP-fib(22L) were significantly shorter than those of mice inoculated with mixtures from the mock 1st-round RT-QUIC procedure. In contrast, these biochemical characteristics were no longer evident in subsequent rounds, suggesting that nonspecific uninfected rPrP fibrils became predominant probably because of their high growth rate. Together, these findings show that at least some strain-specific conformational properties can be transmitted to rPrP fibrils and unknown cofactors or environmental conditions may be required for further conservation. Importance: The phenomenon of prion strains with distinct biological characteristics is assumed to result from the conformational variations in the abnormal prion protein (PrP(Sc)). However, important questions remain about the mechanistic relationship between the conformational differences and the strain diversity, including how strain-specific conformations are transmitted. In this study, we investigated whether the properties of diverse prion strains can be transmitted to amyloid fibrils consisting of E. coli-derived recombinant PrP (rPrP) generated by real-time quaking-induced conversion (RT-QUIC), a recently developed in vitro PrP(Sc) formation method. We demonstrate that at least some of the strain-specific conformational properties can be transmitted to rPrP fibrils in the first round of RT-QUIC by examining the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L prion strain. We believe that these findings will advance our understanding of the conformational basis underlying prion strain diversity.
Collapse
|
21
|
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lin SJ, Yu KH, Wu JR, Lee CF, Jheng CP, Chen HR, Lee CI. Liberation of GPI-anchored prion from phospholipids accelerates amyloidogenic conversion. Int J Mol Sci 2013; 14:17943-57. [PMID: 24005859 PMCID: PMC3794761 DOI: 10.3390/ijms140917943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies are a rare group of fatal neurodegenerative illnesses in humans and animals caused by misfolding of prion protein (PrP). Prion protein is a cell-surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein expressed mostly in the central and peripheral nervous system, and this membrane-bound protein can be cleaved from the cell membranes by phosphoinositide phospholipase C. Numerous studies have investigated GPI-free recombinant PrP, but the role of GPI on misfolding of PrP is not well known. In this study, we synthesized a GPI analog that was covalently linking to a PrP S230C mutant, resulting in S230C-GPI. The structural changes in S230C-GPI upon binding to lipid vesicles composed of mixtures of the zwitterionic lipid (POPC) and the anionic lipid (POPG) were analyzed by circular dichroism spectroscopy, and the amyloid aggregation of S230C-GPI in the liberation from phospholipid vesicles was monitored by proteinase K-digestion assay. Our results indicate that S230C-GPI in the liberation of lipid vesicles has high tendency to misfold into amyloid fibrils, while the membrane-bound S230C-GPI proteins are highly stable and rarely convert into amyloid forms. In addition, the role of cholesterol in S230C-GPI was studied. The effect of GPI, cholesterol and phospholipid vesicles on misfolding of PrP is further discussed.
Collapse
Affiliation(s)
- Shen-Jie Lin
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Kun-Hua Yu
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Jhih-Ru Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (J.-R.W.); (C.-F.L.)
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; E-Mails: (J.-R.W.); (C.-F.L.)
| | - Cheng-Ping Jheng
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Hau-Ren Chen
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
| | - Cheng-I Lee
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan; E-Mails: (S.-J.L.); (K.-H.Y.); (C.-P.J.); (H.-R.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-5-272-0411 (ext. 66511); Fax: +886-5-272-2871
| |
Collapse
|
23
|
Giachin G, Biljan I, Ilc G, Plavec J, Legname G. Probing early misfolding events in prion protein mutants by NMR spectroscopy. Molecules 2013; 18:9451-76. [PMID: 23966072 PMCID: PMC6270549 DOI: 10.3390/molecules18089451] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023] Open
Abstract
The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs) and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most α-helical motifs are replaced by β-sheet secondary structures. Importantly, most point mutations linked to inherited prion diseases are clustered in the C-terminal domain region of PrPC and cause spontaneous conversion to PrPSc. Structural studies with PrP variants promise new clues regarding the proposed conversion mechanism and may help identify "hot spots" in PrPC involved in the pathogenic conversion. These investigations may also shed light on the early structural rearrangements occurring in some PrPC epitopes thought to be involved in modulating prion susceptibility. Here we present a detailed overview of our solution-state NMR studies on human prion protein carrying different pathological point mutations and the implications that such findings may have for the future of prion research.
Collapse
Affiliation(s)
- Gabriele Giachin
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| | - Ivana Biljan
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, Zagreb HR-10000, Croatia; E-Mail:
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia; E-Mails: (G.I.); (J.P.)
- EN-FIST Center of Excellence, Ljubljana SI-1000, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265,Trieste I-34136, Italy; E-Mail:
| |
Collapse
|
24
|
Bett C, Kurt TD, Lucero M, Trejo M, Rozemuller AJ, Kong Q, Nilsson KPR, Masliah E, Oldstone MB, Sigurdson CJ. Defining the conformational features of anchorless, poorly neuroinvasive prions. PLoS Pathog 2013; 9:e1003280. [PMID: 23637596 PMCID: PMC3630170 DOI: 10.1371/journal.ppat.1003280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion. Prions cause fatal neurodegenerative disease in humans and animals and there is currently no treatment available. The cellular prion protein is normally tethered to the outer leaflet of the plasma membrane by a glycophosphatidyl inositol (GPI) anchor. A rare stop codon mutation in the PRNP gene leads to the production of GPI-anchorless prion protein and the development of familial prion disease, which has been reproduced in mouse models. GPI-anchorless prions in humans or mice form large, dense plaques containing fibrils in the brain that vary from the more common non-fibrillar prion aggregates. Here we investigated the biochemical differences between GPI-anchored and GPI-anchorless prions. We also assessed the capacity of GPI-anchorless prions to spread from entry sites into the central nervous system. We found that infectious GPI-anchorless prions were extraordinarily stable when exposed to protein denaturing conditions. Additionally, we show that GPI-anchorless prions rarely invade the central nervous system and then only after long incubation periods, despite their presence in extraneural tissues including adipose tissue and heart. Our study shows that GPI-anchored prions converted into GPI-anchorless prions become extraordinarily stable, more resistant to enzyme digestion, and are poorly able to invade the nervous system.
Collapse
Affiliation(s)
- Cyrus Bett
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Tim D. Kurt
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Melanie Lucero
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Annemieke J. Rozemuller
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - K. Peter R. Nilsson
- Department of Chemistry, Biology, and Physics, Linkoping University, Linkoping, Sweden
| | - Eliezer Masliah
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Michael B. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina J. Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Oelschlegel AM, Weissmann C. Acquisition of drug resistance and dependence by prions. PLoS Pathog 2013; 9:e1003158. [PMID: 23408888 PMCID: PMC3567182 DOI: 10.1371/journal.ppat.1003158] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrP(Sc)) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of the abnormal prion protein.
Collapse
Affiliation(s)
- Anja M. Oelschlegel
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
- Department of Neuroscience, Scripps Florida, Jupiter, Florida, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
26
|
Stefaniu C, Vilotijevic I, Santer M, Varón Silva D, Brezesinski G, Seeberger PH. Subgelphasenstruktur in Monoschichten von Glycosylphosphatidylinositol-Glycolipiden. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Stefaniu C, Vilotijevic I, Santer M, Varón Silva D, Brezesinski G, Seeberger PH. Subgel phase structure in monolayers of glycosylphosphatidylinositol glycolipids. Angew Chem Int Ed Engl 2012; 51:12874-8. [PMID: 23135766 DOI: 10.1002/anie.201205825] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/17/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Vascellari S, Orrù CD, Hughson AG, King D, Barron R, Wilham JM, Baron GS, Race B, Pani A, Caughey B. Prion seeding activities of mouse scrapie strains with divergent PrPSc protease sensitivities and amyloid plaque content using RT-QuIC and eQuIC. PLoS One 2012; 7:e48969. [PMID: 23139828 PMCID: PMC3489776 DOI: 10.1371/journal.pone.0048969] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10−8 and 10−13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc.
Collapse
Affiliation(s)
- Sarah Vascellari
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Christina D. Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Declan King
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Rona Barron
- Division of Neurobiology, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Jason M. Wilham
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gerald S. Baron
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alessandra Pani
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Arsenault RJ, Li Y, Potter A, Griebel PJ, Kusalik A, Napper S. Induction of ligand-specific PrP (C) signaling in human neuronal cells. Prion 2012; 6:477-88. [PMID: 22918447 DOI: 10.4161/pri.21914] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellular prion protein (PrP (C) ) has attracted considerable attention for its role in transmissible spongiform encephalopathies (TSEs). In spite of being a point of intense research effort critical questions still remain regarding the physiological function of PrP (C) and how these functions may change with the conversion of the protein into the infectious and pathological conformation (PrP (Sc) ). While emerging evidence suggests PrP (C/Sc) are involved in signal transduction there is little consensus on the signaling pathways associated with the normal and diseased states. The purported involvement of PrP (C) in signal transduction, and the association of TSEs with neural pathology, makes kinome analysis of human neurons an interesting and appropriate model to characterize patterns of signal transduction following activation of PrP (C) by two commonly employed experimental ligands; antibody-induced dimerization by 6H4 and the amino acids 106-126 PrP peptide fragment (PrP 106-126). Analysis of the induced kinome responses reveals distinct patterns of signaling activity following each treatment. Specifically, stimulation of human neurons with the 6H4 antibody results in alterations in mitogen activated protein kinase (MAPK) signaling pathways while the 106-126 peptide activates growth factor related signaling pathways including vascular endothelial growth factor (VEGF) signaling and the phosphoinositide-3 kinase (PI3K) pathway. These pathways were validated through independent functional assays. Collectively these results indicate that stimulation of PrP (C) with distinct ligands, even within the same cell type, results in unique patterns of signaling. While this investigation highlights the apparent functional versatility of PrP (C) as a signaling molecule and may offer insight into cellular mechanisms of TSE pathology it also emphasizes the potential dangers associated with attributing activation of specific intracellular events to particular receptors through artificial models of receptor activation.
Collapse
Affiliation(s)
- Ryan J Arsenault
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|