1
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
2
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
3
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
4
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
6
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
7
|
VpdC is a ubiquitin-activated phospholipase effector that regulates Legionella vacuole expansion during infection. Proc Natl Acad Sci U S A 2022; 119:e2209149119. [PMID: 36413498 PMCID: PMC9860323 DOI: 10.1073/pnas.2209149119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intravacuolar pathogens need to gradually expand their surrounding vacuole to accommodate the growing number of bacterial offspring during intracellular replication. Here we found that Legionella pneumophila controls vacuole expansion by fine-tuning the generation of lysophospholipids within the vacuolar membrane. Upon allosteric activation by binding to host ubiquitin, the type IVB (Dot/Icm) effector VpdC converts phospholipids into lysophospholipids which, at moderate concentrations, are known to promote membrane fusion but block it at elevated levels by generating excessive positive membrane curvature. Consequently, L. pneumophila overproducing VpdC were prevented from adequately expanding their surrounding membrane, trapping the replicating bacteria within spatially confined vacuoles and reducing their capability to proliferate intracellularly. Quantitative lipidomics confirmed a VpdC-dependent increase in several types of lysophospholipids during infection, and VpdC production in transiently transfected cells caused tubulation of organelle membranes as well as mitochondria fragmentation, processes that can be phenocopied by supplying cells with exogenous lysophospholipids. Together, these results demonstrate an important role for bacterial phospholipases in vacuolar expansion.
Collapse
|
8
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
9
|
The Legionella genus core effectors display functional conservation among orthologs by themselves or combined with an accessory protein. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100105. [PMID: 35059677 PMCID: PMC8760000 DOI: 10.1016/j.crmicr.2022.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
The Legionella genus contains nine core effectors. Three Legionella pneumophila core effectors are required for intracellular growth. The Legionella genus core effectors display functional conservation among orthologs. One Legionella core effector requires an accessory protein to perform its function.
The intracellular pathogen Legionella pneumophila, as well as other Legionella species, utilize the Icm/Dot type-IV secretion system to translocate an exceptionally large and diverse repertoire of effectors into their host cells. However, only nine core effectors were found to be present in all analyzed Legionella species. In this study, we investigated the core effectors, and used intracellular growth complementation to determine whether orthologs of core effectors perform the same function in different Legionella species. We found that three out of the nine L. pneumophila core effectors are required for maximal intracellular growth. Examination of orthologous core effectors from four Legionella species spread over the Legionella phylogenetic tree revealed that most of them perform the same function. Nevertheless, some of the orthologs of the core effector LegA3 did not complement the L. pneumophila legA3 deletion mutant for intracellular growth. LegA3 is encoded as part of an operon together with another gene, which we named legA3C, encoding a non-translocated protein. We found that LegA3 and LegA3C physically interact with each other, are both required for maximal intracellular growth, and the LegA3-LegA3C orthologous pairs from all the Legionella species examined fully complement the L. pneumophila legA3 deletion mutant for intracellular growth. Our results indicate that the Legionella core effectors orthologs generally perform the same function and establish that LegA3 requires LegA3C to fulfill its conserved function.
Collapse
|
10
|
Linsky M, Segal G. A horizontally acquired Legionella genomic island encoding a LuxR type regulator and effector proteins displays variation in gene content and regulation. Mol Microbiol 2021; 116:766-782. [PMID: 34120381 DOI: 10.1111/mmi.14770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
The intracellular pathogen Legionella pneumophila translocates >300 effector proteins into host cells, many of which are regulated at the transcriptional level. Here, we describe a novel L. pneumophila genomic island, which undergoes horizontal gene transfer within the Legionella genus. This island encodes two Icm/Dot effectors: LegK3 and a previously uncharacterized effector which we named CegK3, as well as a LuxR type regulator, which we named RegK3. Analysis of this island in different Legionella species revealed a conserved regulatory element located upstream to the effector-encoding genes in the island. Further analyses, including gene expression analysis, mutagenesis of the RegK3 regulatory element, controlled expression studies, and gel-mobility shift assays, all demonstrate that RegK3 directly activates the expression levels of legK3 and cegK3 effector-encoding genes. Additionally, the expression of all the components of the island is silenced by the Fis repressors. Comparison of expression profiles of these three genes among different Legionella species revealed variability in the activation levels mediated by RegK3, which were positively correlated with the Fis-mediated repression. Furthermore, LegK3 and CegK3 effectors moderately inhibit yeast growth, and importantly, they have a strong synergistic inhibitory effect on yeast growth, suggesting these two effectors are not only co-regulated but also might function together.
Collapse
Affiliation(s)
- Marika Linsky
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
11
|
Abstract
Through coevolution with host cells, microorganisms have acquired mechanisms to avoid the detection by the host surveillance system and to use the cell's supplies to establish themselves. Indeed, certain pathogens have evolved proteins that imitate specific eukaryotic cell proteins, allowing them to manipulate host pathways, a phenomenon termed molecular mimicry. Bacterial "eukaryotic-like proteins" are a remarkable example of molecular mimicry. They are defined as proteins that strongly resemble eukaryotic proteins or that carry domains that are predominantly present in eukaryotes and that are generally absent from prokaryotes. The widest diversity of eukaryotic-like proteins known to date can be found in members of the bacterial genus Legionella, some of which cause a severe pneumonia in humans. The characterization of a number of these proteins shed light on their importance during infection. The subsequent identification of eukaryotic-like genes in the genomes of other amoeba-associated bacteria and bacterial symbionts suggested that eukaryotic-like proteins are a common means of bacterial evasion and communication, shaped by the continuous interactions between bacteria and their protozoan hosts. In this review, we discuss the concept of molecular mimicry using Legionella as an example and show that eukaryotic-like proteins effectively manipulate host cell pathways. The study of the function and evolution of such proteins is an exciting field of research that is leading us toward a better understanding of the complex world of bacterium-host interactions. Ultimately, this knowledge will teach us how host pathways are manipulated and how infections may possibly be tackled.
Collapse
|
12
|
Belyi Y. Targeting Eukaryotic mRNA Translation by Legionella pneumophila. Front Mol Biosci 2020; 7:80. [PMID: 32411722 PMCID: PMC7201127 DOI: 10.3389/fmolb.2020.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 02/01/2023] Open
Abstract
Legionella is a gram-negative microorganism and an infectious agent of pneumonia in humans. It is an intracellular pathogen and multiplies in different eukaryotic cells like amoebae, ciliated protozoa, macrophages, monocytes, and lung epithelial cells. Proliferation of L. pneumophila in eukaryotic cells depends on its type 4 secretion system, which delivers an arsenal of bacterial effector proteins to cytoplasm of its host. Once within the cytoplasm, effectors modify a broad range of host activities, including mRNA translation. Translation is inhibited by Legionella through the action of several effector proteins including Lgt1, Lgt2, Lgt3, SidI, LegK4, SidL, and RavX. Lgt1-3 and SidI target elongation factors: Lgt1-3 mono-glucosylate elongation factor eEF1A, while SidI binds eEF1A, and eEF1Bγ. Effector LegK4 inhibits protein synthesis by phosphorylating Hsp70 proteins, while SidL and RavX have no defined targets in protein synthesis machinery thus far. In addition to direct inhibition of protein synthesis, SidI also affects the stress response, whereas Lgt1-3 – unfolded protein response and cell-cycle progression of host cells. Whether manipulation of these processes is linked to canonical or non-canonical function(s) of targeted elongation factors remains unknown.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Centre for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
13
|
Divergent Evolution of Legionella RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets. mBio 2020; 11:mBio.00405-20. [PMID: 32209684 PMCID: PMC7157520 DOI: 10.1128/mbio.00405-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium which, upon inhalation, causes a life-threatening pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in amoebae and macrophages by employing a “type IV” secretion system, which secretes more than 300 different “effector” proteins into the host cell, where they subvert pivotal processes. The function of many of these effector proteins is unknown, and their evolution has not been studied. L. pneumophila RCC1 repeat effectors target the small GTPase Ran, a molecular switch implicated in different cellular processes such as nucleocytoplasmic transport and microtubule cytoskeleton dynamics. We provide evidence that one or more RCC1 repeat genes are distributed in two main clusters of L. pneumophila strains and have divergently evolved to target different components of the Ran GTPase activation cycle at different subcellular sites. Thus, L. pneumophila employs a sophisticated strategy to subvert host cell Ran GTPase during infection. Legionella pneumophila governs its interactions with host cells by secreting >300 different “effector” proteins. Some of these effectors contain eukaryotic domains such as the RCC1 (regulator of chromosome condensation 1) repeats promoting the activation of the small GTPase Ran. In this report, we reveal a conserved pattern of L. pneumophila RCC1 repeat genes, which are distributed in two main clusters of strains. Accordingly, strain Philadelphia-1 contains two RCC1 genes implicated in bacterial virulence, legG1 (Legionella eukaryotic gene 1), and ppgA, while strain Paris contains only one, pieG. The RCC1 repeat effectors localize to different cellular compartments and bind distinct components of the Ran GTPase cycle, including Ran modulators and the small GTPase itself, and yet they all promote the activation of Ran. The pieG gene spans the corresponding open reading frames of legG1 and a separate adjacent upstream gene, lpg1975. legG1 and lpg1975 are fused upon addition of a single nucleotide to encode a protein that adopts the binding specificity of PieG. Thus, a point mutation in pieG splits the gene, altering the effector target. These results indicate that divergent evolution of RCC1 repeat effectors defines the Ran GTPase cycle targets and that modulation of different components of the cycle might fine-tune Ran activation during Legionella infection.
Collapse
|
14
|
Swart AL, Hilbi H. Phosphoinositides and the Fate of Legionella in Phagocytes. Front Immunol 2020; 11:25. [PMID: 32117224 PMCID: PMC7025538 DOI: 10.3389/fimmu.2020.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.
Collapse
Affiliation(s)
- A Leoni Swart
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1328-1337. [PMID: 31220616 DOI: 10.1016/j.bbalip.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023]
|
16
|
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201:JB.00623-18. [PMID: 30455285 DOI: 10.1128/jb.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
ExoU is a potent type III secretion system effector that is injected directly into mammalian cells by the opportunistic pathogen Pseudomonas aeruginosa As a ubiquitin-activated phospholipase A2 (PLA2), ExoU exhibits cytotoxicity by cleaving membrane phospholipids, resulting in lysis of the host cells and inhibition of the innate immune response. Recently, ExoU has been established as a model protein for a group of ubiquitin-activated PLA2 enzymes encoded by a variety of bacteria. Bioinformatic analyses of homologous proteins is a powerful approach that can complement and enhance the overall understanding of protein structure and function. To conduct homology studies, it is important to have efficient and effective tools to screen and to validate the putative homologs of interest. Here we make use of an Escherichia coli-based dual expression system to screen putative ubiquitin-activated PLA2 enzymes from a variety of bacteria that are known to colonize humans and to cause human infections. The screen effectively identified multiple ubiquitin-activated phospholipases, which were validated using both biological and biochemical techniques. In this study, two new ExoU orthologs were identified and the ubiquitin activation of the rickettsial enzyme RP534 was verified. Conversely, ubiquitin was not found to regulate the activity of several other tested enzymes. Based on structural homology analyses, functional properties were predicted for AxoU, a unique member of the group expressed by Achromobacter xylosoxidans IMPORTANCE Bacterial phospholipases act as intracellular and extracellular enzymes promoting the destruction of phospholipid barriers and inflammation during infections. Identifying enzymes with a common mechanism of activation is an initial step in understanding structural and functional properties. These properties serve as critical information for the design of specific inhibitors to reduce enzymatic activity and ameliorate host cell death. In this study, we identify and verify cytotoxic PLA2 enzymes from several bacterial pathogens. Similar to the founding member of the group, ExoU, these enzymes share the property of ubiquitin-mediated activation. The identification and validation of potential toxins from multiple bacterial species provide additional proteins from which to derive structural insights that could lead to paninhibitors useful for treating a variety of infections.
Collapse
|
17
|
Fernández-Oliva A, Ortega-González P, Risco C. Targeting host lipid flows: Exploring new antiviral and antibiotic strategies. Cell Microbiol 2019; 21:e12996. [PMID: 30585688 PMCID: PMC7162424 DOI: 10.1111/cmi.12996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022]
Abstract
Bacteria and viruses pose serious challenges for humans because they evolve continuously. Despite ongoing efforts, antiviral drugs to treat many of the most troubling viruses have not been approved yet. The recent launch of new antimicrobials is generating hope as more and more pathogens around the world become resistant to available drugs. But extra effort is still needed. One of the current strategies for antiviral and antibiotic drug development is the search for host cellular pathways used by many different pathogens. For example, many viruses and bacteria alter lipid synthesis and transport to build their own organelles inside infected cells. The characterization of these interactions will be fundamental to identify new targets for antiviral and antibiotic drug development. This review discusses how viruses and bacteria subvert cell machineries for lipid synthesis and transport and summarises the most promising compounds that interfere with these pathways.
Collapse
Affiliation(s)
| | | | - Cristina Risco
- Cell Structure Lab, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
18
|
Martinez E, Siadous FA, Bonazzi M. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. FEMS Microbiol Rev 2018; 42:425-447. [PMID: 29596635 DOI: 10.1093/femsre/fuy013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Co-evolution of bacterial pathogens with their hosts led to the emergence of a stunning variety of strategies aiming at the evasion of host defences, colonisation of host cells and tissues and, ultimately, the establishment of a successful infection. Pathogenic bacteria are typically classified as extracellular and intracellular; however, intracellular lifestyle comes in many different flavours: some microbes rapidly escape to the cytosol whereas other microbes remain within vacuolar compartments and harness membrane trafficking pathways to generate their host-derived, pathogen-specific replicative niche. Here we review the current knowledge on a variety of vacuolar lifestyles, the effector proteins used by bacteria as tools to take control of the host cell and the main membrane trafficking signalling pathways targeted by vacuolar pathogens as source of membranes and nutrients. Finally, we will also discuss how host cells have developed countermeasures to sense the biogenesis of the aberrant organelles harbouring bacteria. Understanding the dialogue between bacterial and eukaryotic proteins is the key to unravel the molecular mechanisms of infection and in turn, this may lead to the identification of new targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Eric Martinez
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| | | | - Matteo Bonazzi
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
19
|
Feldheim YS, Zusman T, Kapach A, Segal G. The single-domain response regulator LerC functions as a connector protein in theLegionella pneumophilaeffectors regulatory network. Mol Microbiol 2018; 110:741-760. [DOI: 10.1111/mmi.14101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Yaron S. Feldheim
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Anya Kapach
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv Israel
| |
Collapse
|
20
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
21
|
Schroeder GN. The Toolbox for Uncovering the Functions of Legionella Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions. Front Cell Infect Microbiol 2018; 7:528. [PMID: 29354599 PMCID: PMC5760550 DOI: 10.3389/fcimb.2017.00528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
The defective in organelle trafficking/intracellular multiplication (Dot/Icm) Type IVb secretion system (T4SS) is the essential virulence factor for the intracellular life style and pathogenicity of Legionella species. Screens demonstrated that an individual L. pneumophila strain can use the Dot/Icm T4SS to translocate an unprecedented number of more than 300 proteins into host cells, where these, so called Icm/Dot-translocated substrates (IDTS) or effectors, manipulate host cell functions to the benefit of the bacteria. Bioinformatic analysis of the pan-genus genome predicts at least 608 orthologous groups of putative effectors. Deciphering the function of these effectors is key to understanding Legionella pathogenesis; however, the analysis is challenging. Substantial functional redundancy renders classical, phenotypic screening of single gene deletion mutants mostly ineffective. Here, I review experimental approaches that were successfully used to identify, validate and functionally characterize T4SS effectors and highlight new methods, which promise to facilitate unlocking the secrets of Legionella's extraordinary weapons arsenal.
Collapse
Affiliation(s)
- Gunnar N Schroeder
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Lang C, Hiller M, Flieger A. Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci Rep 2017; 7:16313. [PMID: 29176577 PMCID: PMC5701174 DOI: 10.1038/s41598-017-12796-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023] Open
Abstract
L. pneumophila, an important facultative intracellular bacterium, infects the human lung and environmental protozoa. At least fifteen phospholipases A (PLA) are encoded in its genome. Three of which, namely PlaA, PlaC, and PlaD, belong to the GDSL lipase family abundant in bacteria and higher plants. PlaA is a lysophospholipase A (LPLA) that destabilizes the phagosomal membrane in absence of a protective factor. PlaC shows PLA and glycerophospholipid: cholesterol acyltransferase (GCAT) activities which are activated by zinc metalloproteinase ProA via cleavage of a disulphide loop. In this work, we compared GDSL enzyme activities, their secretion, and activation of PlaA. We found that PlaA majorly contributed to LPLA, PlaC to PLA, and both substrate-dependently to GCAT activity. Western blotting revealed that PlaA and PlaC are type II-secreted and both processed by ProA. Interestingly, ProA steeply increased LPLA but diminished GCAT activity of PlaA. Deletion of 20 amino acids within a predicted disulfide loop of PlaA had the same effect. In summary, we propose a model by which ProA processes PlaA via disulfide loop cleavage leading to a steep increase in LPLA activity. Our results help to further characterize the L. pneumophila GDSL hydrolases, particularly PlaA, an enzyme acting in the Legionella-containing phagosome.
Collapse
Affiliation(s)
- Christina Lang
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), Robert Koch-Institut, Burgstr. 37, D-38855, Wernigerode, Germany.
| |
Collapse
|
23
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
24
|
Gradowski M, Pawłowski K. The Legionella pneumophila effector Lpg1137 is a homologue of mitochondrial SLC25 carrier proteins, not of known serine proteases. PeerJ 2017; 5:e3849. [PMID: 28966893 PMCID: PMC5621508 DOI: 10.7717/peerj.3849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023] Open
Abstract
Many bacterial effector proteins that are delivered to host cells during infection are enzymes targeting host cell signalling. Recently, Legionella pneumophila effector Lpg1137 was experimentally characterised as a serine protease that cleaves human syntaxin 17. We present strong bioinformatic evidence that Lpg1137 is a homologue of mitochondrial carrier proteins and is not related to known serine proteases. We also discuss how this finding can be reconciled with the apparently contradictory experimental results.
Collapse
Affiliation(s)
- Marcin Gradowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
25
|
|
26
|
Hirschhorn T, Levi-Hofman M, Danziger O, Smorodinsky NI, Ehrlich M. Differential molecular regulation of processing and membrane expression of Type-I BMP receptors: implications for signaling. Cell Mol Life Sci 2017; 74:2645-2662. [PMID: 28357470 PMCID: PMC11107780 DOI: 10.1007/s00018-017-2488-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
The Type-I bone morphogenetic protein receptors (BMPRs), BMPR1A and BMPR1B, present the highest sequence homology among BMPRs, suggestive of functional similitude. However, sequence elements within their extracellular domain, such as signal sequence or N-glycosylation motifs, may result in differential regulation of biosynthetic processing and trafficking and in alterations to receptor function. We show that (i) BMPR1A and the ubiquitous isoform of BMPR1B differed in mode of translocation into the endoplasmic reticulum; and (ii) BMPR1A was N-glycosylated while BMPR1B was not, resulting in greater efficiency of processing and plasma membrane expression of BMPR1A. We further demonstrated the importance of BMPR1A expression and glycosylation in ES-2 ovarian cancer cells, where (i) CRISPR/Cas9-mediated knockout of BMPR1A abrogated BMP2-induced Smad1/5/8 phosphorylation and reduced proliferation of ES-2 cells and (ii) inhibition of N-glycosylation by site-directed mutagenesis, or by tunicamycin or 2-deoxy-D-glucose treatments, reduced biosynthetic processing and plasma membrane expression of BMPR1A and BMP2-induced Smad1/5/8 phosphorylation.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Levi-Hofman
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nechama I Smorodinsky
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
28
|
The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection. Infect Immun 2016; 84:2524-33. [PMID: 27324482 DOI: 10.1128/iai.01554-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection.
Collapse
|
29
|
Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868-3886. [PMID: 27455397 DOI: 10.1002/1873-3468.12326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The genus Legionella belongs to Gram-negative bacteria found ubiquitously in aquatic habitats, where it grows in natural biofilms and replicates intracellularly in various protozoa (amoebae, ciliates). L. pneumophila is known as the causative agent of Legionnaires' disease, since it is also able to replicate in human alveolar macrophages, finally leading to inflammation of the lung and pneumonia. To withstand the degradation by its host cells, a Legionella-containing vacuole (LCV) is established for intracellular replication, and numerous effector proteins are secreted into the host cytosol using a type four B secretion system (T4BSS). During intracellular replication, Legionella has a biphasic developmental cycle that alternates between a replicative and a transmissive form. New knowledge about the host-adapted and life stage-dependent metabolism of intracellular L. pneumophila revealed a bipartite metabolic network with life stage-specific usages of amino acids (e.g. serine), carbohydrates (e.g. glucose) and glycerol as major substrates. These metabolic features are associated with the differentiation of the intracellular bacteria, and thus have an important impact on the virulence of L. pneumophila.
Collapse
Affiliation(s)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
30
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
31
|
Cell biology and immunology lessons taught by Legionella pneumophila. SCIENCE CHINA-LIFE SCIENCES 2015; 59:3-10. [PMID: 26596966 DOI: 10.1007/s11427-015-4945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/27/2015] [Indexed: 02/08/2023]
Abstract
Legionella pneumophila is a facultative intracellular pathogen capable of replicating within a broad range of hosts. One unique feature of this pathogen is the cohort of ca. 300 virulence factors (effectors) delivered into host cells via its Dot/Icm type IV secretion system. Study of these proteins has produced novel insights into the mechanisms of host function modulation by pathogens, the regulation of essential processes of eukaryotic cells and of immunosurveillance. In this review, we will briefly discuss the roles of some of these effectors in the creation of a niche permissive for bacterial replication in phagocytes and recent advancements in the dissection of the innate immune detection mechanisms by challenging immune cells with L. pneumophila.
Collapse
|
32
|
Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor. Infect Immun 2015. [PMID: 26216420 DOI: 10.1128/iai.00785-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo.
Collapse
|
33
|
Finsel I, Hilbi H. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Cell Microbiol 2015; 17:935-50. [PMID: 25903720 DOI: 10.1111/cmi.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/12/2022]
Abstract
Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well-characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen-host interactions, but also shed light on novel biological mechanisms.
Collapse
Affiliation(s)
- Ivo Finsel
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich, Germany.,Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
34
|
So EC, Mattheis C, Tate EW, Frankel G, Schroeder GN. Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 2015; 61:617-35. [PMID: 26059316 DOI: 10.1139/cjm-2015-0166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.
Collapse
Affiliation(s)
- Ernest C So
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Corinna Mattheis
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Edward W Tate
- b Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK
| | - Gad Frankel
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- a MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| |
Collapse
|
35
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
36
|
Scott SA, Spencer CT, O’Reilly MC, Brown KA, Lavieri RR, Cho CH, Jung DI, Larock RC, Brown HA, Lindsley CW. Discovery of desketoraloxifene analogues as inhibitors of mammalian, Pseudomonas aeruginosa, and NAPE phospholipase D enzymes. ACS Chem Biol 2015; 10:421-32. [PMID: 25384256 PMCID: PMC4336625 DOI: 10.1021/cb500828m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Chul-Hee Cho
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Dai-Il Jung
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Richard C. Larock
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | | |
Collapse
|
37
|
Spencer C, Brown HA. Biochemical characterization of a Pseudomonas aeruginosa phospholipase D. Biochemistry 2015; 54:1208-18. [PMID: 25565226 PMCID: PMC4337821 DOI: 10.1021/bi501291t] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase D is a ubiquitous protein in eukaryotes that hydrolyzes phospholipids to generate the signaling lipid phosphatidic acid (PtdOH). PldA, a Pseudomonas aeruginosa PLD, is a secreted protein that targets bacterial and eukaryotic cells. Here we have characterized the in vitro factors that modulate enzymatic activity of PldA, including divalent cations and phosphoinositides. We have identified several similarities between the eukaryotic-like PldA and the human PLD isoforms, as well as several properties in which the enzymes diverge. Notable differences include the substrate preference and transphosphatidylation efficiency for PldA. These findings offer new insights into potential regulatory mechanisms of PldA and its role in pathogenesis.
Collapse
Affiliation(s)
- Cierra Spencer
- Department of Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - H. Alex Brown
- Department of Pharmacology, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
38
|
Isaac DT, Isberg R. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol 2015; 9:343-59. [PMID: 24762308 DOI: 10.2217/fmb.13.162] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Macrophages are the front line of immune defense against invading microbes. Microbes, however, have evolved numerous and diverse mechanisms to thwart these host immune defenses and thrive intracellularly. Legionella pneumophila, a Gram-negative pathogen of amoebal and mammalian phagocytes, is one such microbe. In humans, it causes a potentially fatal pneumonia referred to as Legionnaires' disease. Armed with the Icm/Dot type IV secretion system, which is required for virulence, and approximately 300 translocated proteins, Legionella is able to enter host cells, direct the biogenesis of its own vacuolar compartment, and establish a replicative niche, where it grows to high levels before lysing the host cell. Efforts to understand the pathogenesis of this bacterium have focused on characterizing the molecular activities of its many effectors. In this article, we highlight recent strides that have been made in understanding how Legionella effectors mediate host-pathogen interactions.
Collapse
Affiliation(s)
- Dervla T Isaac
- Department of Microbiology & Molecular Biology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
39
|
Price CTD, Abu Kwaik Y. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages. PLoS One 2014; 9:e114914. [PMID: 25485627 PMCID: PMC4259488 DOI: 10.1371/journal.pone.0114914] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/15/2014] [Indexed: 11/19/2022] Open
Abstract
Background Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs) to actively replicating L. pneumophila. Methodology/Principal Findings Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression. Conclusion/Significance Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, KY, 40202, United States of America
- Center for Predictive Medicine, University of Louisville, KY, 40202, United States of America
- * E-mail: (YAK); (CP)
| |
Collapse
|
40
|
Prashar A, Terebiznik MR. Legionella pneumophila: homeward bound away from the phagosome. Curr Opin Microbiol 2014; 23:86-93. [PMID: 25461578 DOI: 10.1016/j.mib.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/18/2022]
Abstract
The intracellular pathogen Legionella pneumophila (Lp) survives and replicates inside a specialized vacuolar compartment that evades canonical phagosomal maturation. Through the action of a large number of effectors translocated into the host cytosol via the Dot/Icm type IV secretion system, Lp subverts host cell pathways to convert its nascent phagosome into an ER-derived compartment, the Legionella containing vacuole (LCV), which serves as bacterial replication niche.
Collapse
Affiliation(s)
- Akriti Prashar
- Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4; Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Mauricio R Terebiznik
- Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4; Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| |
Collapse
|
41
|
Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect Immun 2014; 82:3740-52. [PMID: 24958706 DOI: 10.1128/iai.01729-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is a human intracellular pathogen that utilizes the Icm/Dot type IVB secretion system to translocate effector proteins into host cells. To identify novel C. burnetii effectors, we applied a machine-learning approach to predict C. burnetii effectors, and examination of 20 such proteins resulted in the identification of 13 novel effectors. To determine whether these effectors, as well as several previously identified effectors, modulate conserved eukaryotic pathways, they were expressed in Saccharomyces cerevisiae. The effects on yeast growth were examined under regular growth conditions and in the presence of caffeine, a known modulator of the yeast cell wall integrity (CWI) mitogen-activated protein (MAP) kinase pathway. In the presence of caffeine, expression of the effectors CBU0885 and CBU1676 caused an enhanced inhibition of yeast growth, and the growth inhibition of CBU0388 was suppressed. Furthermore, analysis of synthetic lethality effects and examination of the activity of the CWI MAP kinase transcription factor Rlm1 indicated that CBU0388 enhances the activation of this MAP kinase pathway in yeast, while CBU0885 and CBU1676 abolish this activation. Additionally, coexpression of CBU1676 and CBU0388 resulted in mutual suppression of their inhibition of yeast growth. These results strongly indicate that these three effectors modulate the CWI MAP kinase pathway in yeast. Moreover, both CBU1676 and CBU0885 were found to contain a conserved haloacid dehalogenase (HAD) domain, which was found to be required for their activity. Collectively, our results demonstrate that MAP kinase pathways are most likely targeted by C. burnetii Icm/Dot effectors.
Collapse
|
42
|
Kuhle K, Krausze J, Curth U, Rössle M, Heuner K, Lang C, Flieger A. Oligomerization inhibits Legionella pneumophila PlaB phospholipase A activity. J Biol Chem 2014; 289:18657-66. [PMID: 24811180 DOI: 10.1074/jbc.m114.573196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellularly replicating lung pathogen Legionella pneumophila consists of an extraordinary variety of phospholipases, including at least 15 different phospholipases A (PLA). Among them, PlaB, the first characterized member of a novel lipase family, is a hemolytic virulence factor that exhibits the most prominent PLA activity in L. pneumophila. We analyzed here protein oligomerization, the importance of oligomerization for activity, addressed further essential regions for activity within the PlaB C terminus, and the significance of PlaB-derived lipolytic activity for L. pneumophila intracellular replication. We determined by means of analytical ultracentrifugation and small angle x-ray scattering analysis that PlaB forms homodimers and homotetramers. The C-terminal 5, 10, or 15 amino acids, although the individual regions contributed to PLA activity, were not essential for protein tetramerization. Infection of mouse macrophages with L. pneumophila wild type, plaB knock-out mutant, and plaB complementing or various mutated plaB-harboring strains showed that catalytic activity of PlaB promotes intracellular replication. We observed that PlaB was most active in the lower nanomolar concentration range but not at or only at a low level at concentration above 0.1 μm where it exists in a dimer/tetramer equilibrium. We therefore conclude that PlaB is a virulence factor that, on the one hand, assembles in inactive tetramers at micromolar concentrations. On the other hand, oligomer dissociation at nanomolar concentrations activates PLA activity. Our data highlight the first example of concentration-dependent phospholipase inactivation by tetramerization, which may protect the bacterium from internal PLA activity, but enzyme dissociation may allow its activation after export.
Collapse
Affiliation(s)
- Katja Kuhle
- From the Robert Koch-Institut, 38855 Wernigerode
| | - Joern Krausze
- the Helmholtz Center for Infection Research, 38124 Braunschweig
| | - Ute Curth
- the Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover
| | - Manfred Rössle
- the European Molecular Biology Laboratory, 22603 Hamburg Branch, c/o DESY, Hamburg, and the Lübeck University of Applied Sciences, 23562 Lübeck, Germany
| | - Klaus Heuner
- From the Robert Koch-Institut, 38855 Wernigerode
| | | | | |
Collapse
|
43
|
Fonseca MV, Swanson MS. Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila. Front Cell Infect Microbiol 2014; 4:12. [PMID: 24575391 PMCID: PMC3920079 DOI: 10.3389/fcimb.2014.00012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.
Collapse
Affiliation(s)
- Maris V Fonseca
- Science and Mathematics Division, Monroe County Community College Monroe, MI, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
44
|
Exploitation of host lipids by bacteria. Curr Opin Microbiol 2013; 17:38-45. [PMID: 24581691 DOI: 10.1016/j.mib.2013.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/27/2013] [Accepted: 11/09/2013] [Indexed: 11/21/2022]
Abstract
Bacteria that interact with eukaryotic cells have developed a variety of strategies to divert host lipids, or cellular processes driven by lipids, to their benefit. Host lipids serve as building blocks for bacterial membrane formation and as energy source. They promote the formation of specific microdomains, facilitating interactions with the host. Host lipids are also critical players in the entry of bacteria or toxins into cells, and, for bacteria growing inside parasitophorous vacuoles, in building a secure shelter. Bacterial dissemination is often dependent on enzymatic activities targeting host lipids. Finally, on a larger scale, long lasting parasitic association can disturb host lipid metabolism so deeply as to 'reprogram' it, as proposed in the case of Mycobacterium infection.
Collapse
|
45
|
Allombert J, Fuche F, Michard C, Doublet P. Molecular mimicry and original biochemical strategies for the biogenesis of a Legionella pneumophila replicative niche in phagocytic cells. Microbes Infect 2013; 15:981-8. [DOI: 10.1016/j.micinf.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 12/29/2022]
|
46
|
Guo Z, Stephenson R, Qiu J, Zheng S, Luo ZQ. A Legionella effector modulates host cytoskeletal structure by inhibiting actin polymerization. Microbes Infect 2013; 16:225-36. [PMID: 24286927 DOI: 10.1016/j.micinf.2013.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022]
Abstract
Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14 (Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-l-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. Together with earlier studies, these results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton.
Collapse
Affiliation(s)
- Zhenhua Guo
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Robert Stephenson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiazhang Qiu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Shijun Zheng
- State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
47
|
Identification of Legionella pneumophila effectors regulated by the LetAS-RsmYZ-CsrA regulatory cascade, many of which modulate vesicular trafficking. J Bacteriol 2013; 196:681-92. [PMID: 24272784 DOI: 10.1128/jb.01175-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular human pathogen that utilizes the Icm/Dot type IVB secretion system to translocate a large repertoire of effectors into host cells. To find coregulated effectors, we performed a bioinformatic genomic screen with the aim of identifying effector-encoding genes containing putative CsrA regulatory elements. The regulation of these genes by the LetAS-RsmYZ-CsrA regulatory cascade was experimentally validated by examining their levels of expression in deletion mutants of relevant regulators and by site-directed mutagenesis of the putative CsrA sites. These analyses resulted in the identification of 26 effector-encoding genes regulated by the LetAS-RsmYZ-CsrA regulatory cascade, all of which were expressed at higher levels during the stationary phase. To determine if any of these effectors is involved in modulating the secretory pathway, they were overexpressed in wild-type yeast as well as in a yeast sec22 deletion mutant, which encodes an R-SNARE that participates in the endoplasmic reticulum (ER)-Golgi trafficking. This examination identified many novel LetAS-RsmYZ-CsrA regulated effectors which are involved in this process. To further characterize the role of these 26 effectors in vesicular trafficking, they were examined in yeast arf and arl deletion mutants, which encode small GTPases that regulate ER-Golgi trafficking. This analysis revealed that the effectors examined manipulate different processes of the secretory pathway. Collectively, our results demonstrate that several of the L. pneumophila effectors which are coregulated in the bacterial cell are involved in the modulation of the same eukaryotic pathway.
Collapse
|
48
|
Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 2013; 195:3914-24. [PMID: 23813730 DOI: 10.1128/jb.00071-13] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii, the etiological agent of acute and chronic Q fever in humans, is a naturally intracellular pathogen that directs the formation of an acidic Coxiella-containing vacuole (CCV) derived from the host lysosomal network. Central to its pathogenesis is a specialized type IVB secretion system (T4SS) that delivers effectors essential for intracellular replication and CCV formation. Using a bioinformatics-guided approach, 234 T4SS candidate substrates were identified. Expression of each candidate as a TEM-1 β-lactamase fusion protein led to the identification of 53 substrates that were translocated in a Dot/Icm-dependent manner. Ectopic expression in HeLa cells revealed that these substrates trafficked to distinct subcellular sites, including the endoplasmic reticulum, mitochondrion, and nucleus. Expression in Saccharomyces cerevisiae identified several substrates that were capable of interfering with yeast growth, suggesting that these substrates target crucial host processes. To determine if any of these T4SS substrates are necessary for intracellular replication, we isolated 20 clonal T4SS substrate mutants using the Himar1 transposon and transposase. Among these, 10 mutants exhibited defects in intracellular growth and CCV formation in HeLa and J774A.1 cells but displayed normal growth in bacteriological medium. Collectively, these results indicate that C. burnetii encodes a large repertoire of T4SS substrates that play integral roles in host cell subversion and CCV formation and suggest less redundancy in effector function than has been found in the comparative Legionella Dot/Icm model.
Collapse
|
49
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
50
|
Haneburger I, Hilbi H. Phosphoinositide lipids and the Legionella pathogen vacuole. Curr Top Microbiol Immunol 2013; 376:155-73. [PMID: 23918172 DOI: 10.1007/82_2013_341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Subversion of vesicle trafficking is vital for intracellular survival of Legionella pneumophila within host cells. L. pneumophila produces several type IV-translocated effector proteins that modify components of the phagosomal membrane, in particular the phosphoinositide (PI) lipids. Within eukaryotic cells PIs co-define subcellular compartments and membrane dynamics. The generation, half-life, and localization of PI lipids are not only tightly regulated by the host cell, but also targeted and modulated by a number of L. pneumophila effectors. These effectors either anchor to PIs, directly modify the lipids, or recruit PI-metabolizing enzymes to the LCV membrane. Together, PI-subverting L. pneumophila effectors act jointly to promote the formation of a replication-permissive niche inside the host.
Collapse
Affiliation(s)
- Ina Haneburger
- Medical Faculty, Max von Pettenkofer Institute, Ludwig-Maximilians University, Munich Pettenkoferstrasse 9a, 80336, Munich, Germany
| | | |
Collapse
|