1
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Fortier GE, Piazuelo MB, Reyzer ML, Judd AM, Tsui T, McDonald WH, McClain MS, Schey KL, Algood HM, Cover TL. Helicobacter pylori CagA and Cag type IV secretion system activity have key roles in triggering gastric transcriptional and proteomic alterations. Infect Immun 2025; 93:e0059524. [PMID: 40047510 PMCID: PMC11977315 DOI: 10.1128/iai.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025] Open
Abstract
Colonization of the human stomach with cag pathogenicity island (PAI)-positive Helicobacter pylori strains is associated with increased gastric cancer risk compared to colonization with cag PAI-negative strains. To evaluate the contributions of the Cag type IV secretion system (T4SS) and CagA (a secreted bacterial oncoprotein) to gastric molecular alterations relevant for carcinogenesis, we infected Mongolian gerbils with a Cag T4SS-positive wild-type (WT) H. pylori strain, one of two Cag T4SS mutant strains (∆cagT or ∆cagY), or a ∆cagA mutant for 12 weeks. Histologic staining revealed a biphasic distribution of gastric inflammation severity in WT-infected animals and minimal inflammation in animals infected with mutant strains. Atrophic gastritis (a premalignant condition), dysplasia, and gastric adenocarcinoma were only detected in WT-infected animals with high inflammation scores. Transcriptional profiling, liquid chromatography-tandem mass spectrometry analysis of micro-extracted tryptic peptides, and imaging mass spectrometry revealed more than a thousand molecular alterations in gastric tissues from WT-infected animals with high inflammation scores compared to uninfected tissues and few alterations in tissues from other groups of infected animals. Proteins with altered abundance in animals with severe Cag T4SS-induced inflammation mapped to multiple pathways, including the complement/coagulation cascade and proteasome pathway. Proteins exhibiting markedly increased abundance in tissues from H. pylori-infected animals with severe inflammation included calprotectin components, proteins involved in proteasome activation, polymeric immunoglobulin receptor (PIGR), interferon-inducible guanylate-binding protein (GBP2), lactoferrin, lysozyme, superoxide dismutase, and eosinophil peroxidase. These results demonstrate key roles for CagA and Cag T4SS activity in promoting gastric mucosal inflammation, transcriptional alterations, and proteomic alterations relevant to gastric carcinogenesis.IMPORTANCEHelicobacter pylori colonizes the stomachs of about half of humans worldwide, and its presence is the primary risk factor for the development of stomach cancer. H. pylori strains isolated from humans can be broadly classified into two groups based on whether they contain a chromosomal cag pathogenicity island, which encodes a secreted effector protein (CagA) and components of a type IV secretion system (T4SS). In experiments using a Mongolian gerbil model, we found that severe gastric inflammation and gastric transcriptional and proteomic alterations related to gastric cancer development were detected only in animals infected with a wild-type H. pylori strain containing CagA and an intact Cag T4SS. Mutant strains lacking CagA or Cag T4SS activity successfully colonized the stomach without inducing detectable pathologic host responses. These findings illustrate two different patterns of H. pylori-host interaction.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle E. Fortier
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Ziogou A, Giannakodimos A, Giannakodimos I, Schizas D, Charalampakis N. Effect of Helicobacter Pylori infection on immunotherapy for gastrointestinal cancer: a narrative review. Immunotherapy 2025; 17:355-368. [PMID: 40087147 PMCID: PMC12045566 DOI: 10.1080/1750743x.2025.2479410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025] Open
Abstract
Immunotherapy for gastrointestinal cancers has elicited considerable amount of attention as a viable therapeutic option for several cancer types. Gut microbiome as a whole plays a critical role in shaping immune responses and influencing cancer progression. Recent evidence suggests that Helicobacter pylori (H. pylori), may influence immunotherapy efficacy by modulating the tumor microenvironment. Infection with H. pylori is common as it affects approximately 50% of the global population and remains the leading risk factor for gastric cancer. Interestingly, recent clinical and preclinical data has associated H. pylori with colorectal cancer carcinogenesis. Gut microbiome appears to be a modulator of the relationship between the immune system, gastrointestinal cancer development and existing therapies. Infection with H. pylori may affect immunotherapy results in both gastroesophageal and colorectal cancer; favorable results were noticed in H. pylori positive patients with gastric cancer, while in colorectal cancer patients the pathogen seemed to impede immunotherapy's action. This article aims to review current data on the role of H. pylori in triggering gastric inflammation and cancer, as well as its potential involvement in colorectal cancer development. Additionally, it seeks to highlight the impact of H. pylori infection on the response to immunotherapy in gastrointestinal cancers.
Collapse
Affiliation(s)
- Afroditi Ziogou
- Department of Medical Oncology, Metaxa Cancer Hospital of Piraeus, Piraeus, Greece
| | | | - Ilias Giannakodimos
- Departement of Urology, Attikon University Hospital of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
3
|
Linz B, Sticht H, Tegtmeyer N, Backert S. Cancer-associated SNPs in bacteria: lessons from Helicobacter pylori. Trends Microbiol 2024; 32:847-857. [PMID: 38485609 DOI: 10.1016/j.tim.2024.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 09/06/2024]
Abstract
Several single-nucleotide polymorphisms (SNPs) in human chromosomes are known to predispose to cancer. However, cancer-associated SNPs in bacterial pathogens were unknown until discovered in the stomach pathogen Helicobacter pylori. Those include an alanine-threonine polymorphism in the EPIYA-B phosphorylation motif of the injected effector protein CagA that affects cancer risk by modifying inflammatory responses and loss of host cell polarity. A serine-to-leucine change in serine protease HtrA is associated with boosted proteolytic cleavage of epithelial junction proteins and introduction of DNA double-strand breaks (DSBs) in host chromosomes, which co-operatively elicit malignant alterations. In addition, H. pylori genome-wide association studies (GWAS) identified several other SNPs potentially associated with increased gastric cancer (GC) risk. Here we discuss the clinical importance, evolutionary origin, and functional advantage of the H. pylori SNPs. These exciting new data highlight cancer-associated SNPs in bacteria, which should be explored in more detail in future studies.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg; 91054 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Gou L, Yang X, Yun J, Ma Z, Zheng X, Du H, Zhang D. Roles of the components of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori. Future Microbiol 2024; 19:1253-1267. [PMID: 39171625 PMCID: PMC11633423 DOI: 10.1080/17460913.2024.2383514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
The Helicobacter pylori (H. pylori) cytotoxin-associated gene pathogenicity island (cagPAI) encodes 31 genes that assemble the cag type IV secretion system (T4SS) apparatus, which includes structures such as the outer membrane core complex, periplasmic ring, inner membrane complex and bacterial hairs. These proteins interact with each other to inject CagA into the host gastric epithelium. There are also individual unique functions that help H. pylori interfere with host cellular pathways, modulate the immune response and colonize the host for a long time. However, the functions of some of the proteins remain unclear. This review summarizes what is known about the structure and function of these auxiliary components and discusses their role in H. pylori pathogenesis.
Collapse
Affiliation(s)
- Lingzhu Gou
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiaoping Yang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Jianwei Yun
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zenghui Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiaofeng Zheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hongwei Du
- Department of Gastroenterology, The Second People's Hospital of Lanzhou City, Lanzhou, People's Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Department of Gastroenterology, Key Laboratory of Digestive Diseases of Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. Microbiol Spectr 2024; 12:e0001524. [PMID: 38682907 PMCID: PMC11237807 DOI: 10.1128/spectrum.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Here, we identified the differences in gastric inflammation, atrophy, and metaplasia associated with HP and HF infection in mice. PMSS1 HP strain or the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages revealing that both bacteria exhibit similar immunostimulatory effects in vitro. Next, C57BL/6J mice were infected with HP or HF and were assessed 2 months post-infection. HP-infected mice caused modest inflammation within both the gastric corpus and antrum, and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced the expression of pyloric metaplasia (PM) markers. HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for studies on the effects of gastric inflammation on tumorigenesis. . IMPORTANCE Mouse infection models with Helicobacter species are widely used to study Helicobacter pathogenesis and gastric cancer initiation. However, Helicobacter pylori is not a natural mouse pathogen, and mouse-adapted H. pylori strains are poorly immunogenic. In contrast, Helicobacter felis is a natural mouse pathogen that induces robust gastric inflammation and is often used in mice to investigate gastric cancer initiation. Although both bacterial strains are widely used, their disease pathogenesis in mice differs dramatically. However, few studies have directly compared the pathogenesis of these bacterial species in mice, and the contrasting features of these two models are not clearly defined. This study directly compares the gastric inflammation, atrophy, and metaplasia development triggered by the widely used PMSS1 H. pylori and CS1 H. felis strains in mice. It serves as a useful resource for researchers to select the experimental model best suited for their studies.
Collapse
Affiliation(s)
- Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Shrinidhi Venkateshwaraprabu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Benjamin C. Duncan
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Maeve T. Morris
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Fredrick H. Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan T. Busada
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Costa TRD, Patkowski JB, Macé K, Christie PJ, Waksman G. Structural and functional diversity of type IV secretion systems. Nat Rev Microbiol 2024; 22:170-185. [PMID: 37814112 PMCID: PMC11290344 DOI: 10.1038/s41579-023-00974-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.
Collapse
Affiliation(s)
- Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK.
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College, London, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes and CNRS, Rennes, France
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck and UCL, London, UK.
| |
Collapse
|
7
|
Soutto M, Zhang X, Bhat N, Chen Z, Zhu S, Maacha S, Genoula M, El-Gazzaz O, Peng D, Lu H, McDonald OG, Chen XS, Cao L, Xu Z, El-Rifai W. Fibroblast growth factor receptor-4 mediates activation of Nuclear Factor Erythroid 2-Related Factor-2 in gastric tumorigenesis. Redox Biol 2024; 69:102998. [PMID: 38154380 PMCID: PMC10787301 DOI: 10.1016/j.redox.2023.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer. We investigated the role of FGFR4 in regulating the cellular response to H. pylori infection in gastric cancer. High levels of oxidative stress signature and FGFR4 expression were detected in gastric cancer samples. Gene set enrichment analysis (GSEA) demonstrated enrichment of NRF2 signature in samples with high FGFR4 levels. H. pylori infection induced reactive oxygen species (ROS) with a cellular response manifested by an increase in FGFR4 with accumulation and nuclear localization NRF2. Knocking down FGFR4 significantly reduced NRF2 protein and transcription activity levels, leading to higher levels of ROS and DNA damage following H. pylori infection. We confirmed the induction of FGFR4 and NRF2 levels using mouse models following infection with a mouse-adapted H. pyloristrain. Pharmacologic inhibition of FGFR4 using H3B-6527, or its knockdown, remarkably reduced the level of NRF2 with a reduction in the size and number of gastric cancer spheroids. Mechanistically, we detected binding between FGFR4 and P62 proteins, competing with NRF2-KEAP1 interaction, allowing NRF2 to escape KEAP1-dependent degradation with subsequent accumulation and translocation to the nucleus. These findings demonstrate a novel functional role of FGFR4 in cellular homeostasis via regulating the NRF2 levels in response to H. pylori infection in gastric carcinogenesis, calling for testing the therapeutic efficacy of FGFR4 inhibitors in gastric cancer models.
Collapse
Affiliation(s)
- Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Selma Maacha
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Melanie Genoula
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Omar El-Gazzaz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Oliver G McDonald
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Xi Steven Chen
- Division of Biostatistics, Department of Public Health Science, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Saberi S, Shans N, Ghaffari S, Esmaeili M, Mohammadi M. The role of CEACAMs versus integrins in Helicobacter pylori CagA translocation: a systematic review. Microbes Infect 2024; 26:105246. [PMID: 37926369 DOI: 10.1016/j.micinf.2023.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The delivery of Helicobacter pylori CagA into host cells was long believed to occur through the integrin cell surface receptors. However, the role of CEACAM receptors has recently been highlighted, instead. Here, we have categorized the existing experimental evidence according to whether deletion, upregulation, downregulation, or inhibition of the target ligands (T4SS or HopQ) or receptors (integrins or CEACAMs), result in alterations in CagA phosphorylation, cell elongation, or IL-8 production. According to our analysis, the statistics favor the essence of most of the T4SS constituents and the involvement of HopQ adhesin in all three functions. Concerning the integrin family, the collected data is controversial, but yielding towards it being dispensable or involved in CagA translocation. Yet, regarding cell elongation, more events are showing β1 integrin being involved, than αvβ4 being inhibitory. Concerning IL-8 secretion, again there are more events showing α5, β1 and β6 integrins to be involved, than those showing inhibitory roles for β1, β4 and β6 integrins. Finally, CEACAM 1, 3, and 5 are identified as mostly essential or involved in CagA phosphorylation, whereasCEACAM 4, 7, and 8 are found dispensable and CEACAM6 is under debate. Conversely, CEACAM1, 5 and 6 appear mostly dispensable for cell elongation. Noteworthy is the choice of cell type, bacterial strain, multiplicity and duration of infection, as well as the sensitivity of the detection methods, all of which can affect the variably obtained results.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Shans
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saba Ghaffari
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Zehra M, Heo J, Chung JM, Durie CL. Comparative Analysis of T4SS Molecular Architectures. J Microbiol Biotechnol 2023; 33:1543-1551. [PMID: 37528551 PMCID: PMC10772558 DOI: 10.4014/jmb.2307.07006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.
Collapse
Affiliation(s)
- Mishghan Zehra
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jiwon Heo
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Jeong Min Chung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi, Republic of Korea
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573128. [PMID: 38187587 PMCID: PMC10769338 DOI: 10.1101/2023.12.22.573128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on Helicobacter- induced gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Each of these infection models is associated with strengths and weaknesses. Here, we identified the differences in immunogenicity and gastric pathological changes associated with HP and HF infection in mice. Material and Methods PMSS1 HP strain or with the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. C57BL/6J mice were infected with HP or HF, and gastric inflammation, atrophy, and metaplasia development were assessed 2 months post-infection. Results HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages. HP-infected mice caused modest inflammation within both the gastric corpus and antrum and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced expression of pyloric metaplasia markers. Conclusions HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for pathogenesis and cancer initiation studies.
Collapse
|
11
|
López-Luis MA, Soriano-Pérez EE, Parada-Fabián JC, Torres J, Maldonado-Rodríguez R, Méndez-Tenorio A. A Proposal for a Consolidated Structural Model of the CagY Protein of Helicobacter pylori. Int J Mol Sci 2023; 24:16781. [PMID: 38069104 PMCID: PMC10706595 DOI: 10.3390/ijms242316781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
CagY is the largest and most complex protein from Helicobacter pylori's (Hp) type IV secretion system (T4SS), playing a critical role in the modulation of gastric inflammation and risk for gastric cancer. CagY spans from the inner to the outer membrane, forming a channel through which Hp molecules are injected into human gastric cells. Yet, a tridimensional structure has been reported for only short segments of the protein. This intricate protein was modeled using different approaches, including homology modeling, ab initio, and deep learning techniques. The challengingly long middle repeat region (MRR) was modeled using deep learning and optimized using equilibrium molecular dynamics. The previously modeled segments were assembled into a 1595 aa chain and a 14-chain CagY multimer structure was assembled by structural alignment. The final structure correlated with published structures and allowed to show how the multimer may form the T4SS channel through which CagA and other molecules are translocated to gastric cells. The model confirmed that MRR, the most polymorphic and complex region of CagY, presents numerous cysteine residues forming disulfide bonds that stabilize the protein and suggest this domain may function as a contractile region playing an essential role in the modulating activity of CagY on tissue inflammation.
Collapse
Affiliation(s)
- Mario Angel López-Luis
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Eva Elda Soriano-Pérez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - José Carlos Parada-Fabián
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Rogelio Maldonado-Rodríguez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico; (M.A.L.-L.); (E.E.S.-P.); (J.C.P.-F.); (R.M.-R.)
| |
Collapse
|
12
|
Tran SC, McClain MS, Cover TL. Role of the CagY antenna projection in Helicobacter pylori Cag type IV secretion system activity. Infect Immun 2023; 91:e0015023. [PMID: 37638724 PMCID: PMC10501215 DOI: 10.1128/iai.00150-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends Microbiol 2023; 31:903-915. [PMID: 37012092 DOI: 10.1016/j.tim.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Helicobacter pylori is a paradigm of chronic bacterial infection and is associated with peptic ulceration and malignancies. H. pylori uses specific masking mechanisms to avoid canonical ligands from activating Toll-like receptors (TLRs), such as lipopolysaccharide (LPS) modification and specific flagellin sequences that are not detected by TLR4 and TLR5, respectively. Thus, it was believed for a long time that H. pylori evades TLR recognition as a crucial strategy for immune escape and bacterial persistence. However, recent data indicate that multiple TLRs are activated by H. pylori and play a role in the pathology. Remarkably, H. pylori LPS, modified through changes in acylation and phosphorylation, is mainly sensed by other TLRs (TLR2 and TLR10) and induces both pro- and anti-inflammatory responses. In addition, two structural components of the cag pathogenicity island-encoded type IV secretion system (T4SS), CagL and CagY, were shown to contain TLR5-activating domains. These domains stimulate TLR5 and enhance immunity, while LPS-driven TLR10 signaling predominantly activates anti-inflammatory reactions. Here, we discuss the specific roles of these TLRs and masking mechanisms during infection. Masking of typical TLR ligands combined with evolutionary shifting to other TLRs is unique for H. pylori and has not yet been described for any other species in the bacterial kingdom. Finally, we highlight the unmasked T4SS-driven activation of TLR9 by H. pylori, which mainly triggers anti-inflammatory responses.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany; Babasaheb Bhimrao Ambedkar University, Dept. of Environmental Microbiology, School of Earth and Environmental Sciences, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Nicole Tegtmeyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Steffen Backert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Biology, Chair of Microbiology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
14
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
15
|
Yu M, Xu M, Shen Y, Liu Y, Xu C, Feng T, Zhang P. Hp0521 inhibited the virulence of H. pylori 26,695 strain via regulating CagA expression. Heliyon 2023; 9:e17881. [PMID: 37539313 PMCID: PMC10395286 DOI: 10.1016/j.heliyon.2023.e17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Hp0521 is the number of cag pathogenicity island (cagPAI) family in Helicobacter pylori (H. pylori, Hp), which encoded Cag2 protein. The aim of this study was to investigate the role of hp0521 on the H. pylori 26,695 strain. We constructed the recombinant prokaryotic expression plasmid pET-32a-hp0521 and pET-32a-hpc0521. Then, we co-cultured the H. pylori wild strain 26,695 and Δhp0521 strain with GES-1 cells to detect CagA protein transport and IL-8 secretion. We found that Δhp0521 mutation increased the expression of cagA, rpoB and promoted the transportation of CagA protein in GES-1 cells. In addition, we also observed that Δhp0521 mutation had no effect on other cagPAI protein stability and the expression of IL-8. Our findings suggested that hp0521 may down-regulated the expression of cagA, rpoB and inhibited the transportation of CagA protein in GES-1 cells and had no effect on growth.
Collapse
Affiliation(s)
- Min Yu
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Min Xu
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yixin Shen
- Department of Medical Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Liu
- Department of Medical Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Chi Xu
- Digestive Disease Center, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Tongbao Feng
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| |
Collapse
|
16
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
17
|
Montiel-Martínez AG, Vargas-Jerónimo RY, Flores-Romero T, Moreno-Muñoz J, Bravo-Reyna CC, Luqueño-Martínez V, Contreras-Escamilla M, Zamudio-López J, Martínez-Rodríguez S, Barrán-Sánchez F, Villegas-García JC, Barrios-Payán J, Pastor AR, Palomares LA, Esquivel-Guadarrama F, Garrido E, Torres-Vega MA. Baculovirus-mediated expression of a Helicobacter pylori protein-based multiepitope hybrid gene induces a potent B cell response in mice. Immunobiology 2023; 228:152334. [PMID: 36641984 DOI: 10.1016/j.imbio.2023.152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Helicobacter pylori is a gram-negative bacterium that is present in over half of the world's population. The colonization of the stomach́s gastric mucosa by H. pylori is related to the onset of chronic gastritis, peptic ulcer, and cancer. The estimated deaths from gastric cancer caused by this bacterial infection are in the 15,000-150,000 range. Current treatment for controlling the colonization of H. pylori includes the administration of two to four antibiotics and a gastric ATPase proton pump inhibitor. Nevertheless, the bacterium has shown increased resistance to antibiotics. Despite an extensive list of attempts to develop a vaccine, no approved vaccine against H. pylori is available. Recombinant viruses are a novel alternative for the control of primary pathogenic agents. In this work, we employed a baculovirus that carries a Thp1 transgene coding for nine H. pylori epitopes, some from the literature, and others were selected in silico from the sequence of H. pylori proteins (carbonic anhydrase, urease B subunit, gamma-glutamyl transpeptidase, Lpp20, Cag7, and CagL). We verified the expression of this hybrid multiepitopic protein in HeLa cells. Mice were inoculated with the recombinant baculovirus Bac-Thp1 using various administration routes: intranasal, intragastric, intramuscular, and a combination of intranasal and intragastric. We identified a strong adjuvant-independent IgG-antibody response in the serum of recombinant baculovirus-Thp1 inoculated mice, which was specific for a strain of H. pylori isolated from a human patient. The bacterium-specific IgG-antibodies were present in sera 125 days after the first vaccine administration. Also, H. pylori-specific IgA-antibodies were found in feces at 82 days after the first inoculation. A baculovirus-based vaccine for H. pylori is promising for controlling this pathogen in humans.
Collapse
Affiliation(s)
- Ana G Montiel-Martínez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Roxana Y Vargas-Jerónimo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Tania Flores-Romero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jaime Moreno-Muñoz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Verónica Luqueño-Martínez
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan 14080 Ciudad de México, Mexico
| | - Mariela Contreras-Escamilla
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jovani Zamudio-López
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Susana Martínez-Rodríguez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Fernanda Barrán-Sánchez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Juan C Villegas-García
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Barrios-Payán
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Vasco de Quiroga no. 15, col. Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - A Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | | | - Efraín Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Miguel A Torres-Vega
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico.
| |
Collapse
|
18
|
A Positively Selected fur-R88H Mutation Enhances Helicobacter pylori Fitness in a High-Salt Environment and Alters Fur-Dependent Regulation of Gene Expression. Infect Immun 2023; 91:e0042022. [PMID: 36633416 PMCID: PMC9933627 DOI: 10.1128/iai.00420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.
Collapse
|
19
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
20
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
21
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
22
|
Zhang X, Soutto M, Chen Z, Bhat N, Zhu S, Eissmann MF, Ernst M, Lu H, Peng D, Xu Z, El-Rifai W. Induction of Fibroblast Growth Factor Receptor 4 by Helicobacter pylori via Signal Transducer and Activator of Transcription 3 With a Feedforward Activation Loop Involving SRC Signaling in Gastric Cancer. Gastroenterology 2022; 163:620-636.e9. [PMID: 35588797 PMCID: PMC9629135 DOI: 10.1053/j.gastro.2022.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori (H pylori) infection is the main risk factor for gastric cancer. The role of fibroblast growth factor receptors (FGRFs) in H pylori-mediated gastric tumorigenesis remains largely unknown. This study investigated the molecular and mechanistic links between H pylori, inflammation, and FGFR4 in gastric cancer. METHODS Cell lines, human and mouse gastric tissue samples, and gastric organoids models were implemented. Infection with H pylori was performed using in vitro and in vivo models. Western blot, real-time quantitative reverse-transcription polymerase chain reaction, flow cytometry, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and luciferase reporter assays were used for molecular, mechanistic, and functional studies. RESULTS Analysis of FGFR family members using The Cancer Genome Atlas data, followed by validation, indicated that FGFR4 messenger (m)RNA was the most significantly overexpressed member in human gastric cancer tissue samples (P < .001). We also detected high levels of Fgfr4 mRNA and protein in gastric dysplasia and adenocarcinoma lesions in mouse models. Infection with J166, 7.13, and PMSS1 cytotoxin-associated gene A (CagA)+ H pylori strains induced FGFR4 mRNA and protein expression in in vitro and in vivo models. This was associated with a concordant activation of signal transducer and activator of transcription 3 (STAT3). Analysis of the FGFR4 promoter suggested several putative binding sites for STAT3. Using chromatin immunoprecipitation assay and an FGFR-promoter luciferase reporter containing putative STAT3 binding sites and their mutants, we confirmed a direct functional binding of STAT3 on the FGFR4 promoter. Mechanistically, we also discovered a feedforward activation loop between FGFR4 and STAT3 where the fibroblast growth factor 19–FGFR4 axis played an essential role in activating STAT3 in a SRC proto-oncogene non-receptor tyrosine kinase dependent manner. Functionally, we found that FGFR4 protected against H pylori-induced DNA damage and cell death. CONCLUSIONS Our findings demonstrated a link between infection, inflammation, and FGFR4 activation, where a feedforward activation loop between FGFR4 and STAT3 is established via SRC proto-oncogene non-receptor tyrosine kinase in response to H pylori infection. Given the relevance of FGFR4 to the etiology and biology of gastric cancer, we propose FGFR4 as a druggable molecular vulnerability that can be tested in patients with gastric cancer.
Collapse
Affiliation(s)
- Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadeem Bhat
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
23
|
Loh JT, Shuman JHB, Lin AS, Favret N, Piazuelo MB, Mallal S, Chopra A, McClain MS, Cover TL. Positive Selection of Mutations in the Helicobacter pylori katA 5' Untranslated Region in a Mongolian Gerbil Model of Gastric Disease. Infect Immun 2022; 90:e0000422. [PMID: 35652648 PMCID: PMC9302185 DOI: 10.1128/iai.00004-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.
Collapse
Affiliation(s)
- John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie Favret
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Neuper T, Frauenlob T, Posselt G, Horejs-Hoeck J. Beyond the gastric epithelium - the paradox of Helicobacter pylori-induced immune responses. Curr Opin Immunol 2022; 76:102208. [PMID: 35569416 DOI: 10.1016/j.coi.2022.102208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Chronic infections are typically characterized by an ineffective immune response to the inducing pathogen. While failing to clear the infectious microbe, the provoked inflammatory processes may cause severe tissue damage culminating in functional impairment of the affected organ. The human pathogen Helicobacter pylori is a uniquely successful Gram-negative microorganism inhabiting the gastric mucosa in approximately 50% of the world's population. This bacterial species has evolved spectacular means of evading immune surveillance and influencing host immunity, leading to a fragile equilibrium between proinflammatory and anti-inflammatory signals, the breakdown of which can have serious consequences for the host, including gastric ulceration and cancer. This review highlights novel insights into this delicate interaction between host and pathogen from an immunological perspective.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, University of Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, Austria; Cancer Cluster Salzburg (CCS), Austria.
| |
Collapse
|
25
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
26
|
Jang S, Hansen LM, Su H, Solnick JV, Cha JH. Host immune response mediates changes in cagA copy number and virulence potential of Helicobacter pylori. Gut Microbes 2022; 14:2044721. [PMID: 35289715 PMCID: PMC8928821 DOI: 10.1080/19490976.2022.2044721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori is the major risk factor for gastric cancer. H. pylori harboring the type IV secretion system (T4SS) and its effector CagA encoded on the cag pathogenicity Island (cagPAI) increases the risk. H. pylori PMSS1 has a multi-cagA genotype, modulating cagA copy number dynamically from zero to four copies. To examine the effect of the immune response on cagA copy number change, we utilized a mouse model with different immune status. PMSS1 recovered from Rag1-/- mice, lacking functional T or B cells, retained more cagA copies. PMSS1 recovered from Il10-/- mice, showing intense inflammation, had fewer cagA copies compared to those recovered from wild-type mice. Moreover, cagA copy number of PMSS1 recovered from wild-type and Il10-/- mice was positively correlated with the capacity to induce IL-8 secretion at four weeks of infection. Since recombination in cagY influences T4SS function, including CagA translocation and IL-8 induction, we constructed a multiple linear regression model to predict H. pylori-induced IL-8 expression based on cagA copy number and cagY recombination status; H. pylori induces more IL-8 secretion when the strain has more cagA copies and intact cagY. This study shows that H. pylori PMSS1 in mice with less intense immune response possess higher cagA copy number than those infected in mice with more intense immune response and thus the multi-cagA genotype, along with cagY recombination, functions as an immune-sensitive regulator of H. pylori virulence.
Collapse
Affiliation(s)
- Sungil Jang
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lori M. Hansen
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Hanfu Su
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Jay V. Solnick
- Center for Immunology and Infectious Diseases; Departments of Medicine and of Microbiology and Immunology, School of Medicine; University of California Davis, Davis, CA, USA
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Ray AK, Luis PB, Mishra SK, Barry DP, Asim M, Pandey A, Chaturvedi M, Gupta J, Gupta S, Mahant S, Das R, Kumar P, Shalimar, Wilson KT, Schneider C, Chaturvedi R. Curcumin Oxidation Is Required for Inhibition of Helicobacter pylori Growth, Translocation and Phosphorylation of Cag A. Front Cell Infect Microbiol 2021; 11:765842. [PMID: 35004346 PMCID: PMC8740292 DOI: 10.3389/fcimb.2021.765842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Microbiology, Saheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Paula B. Luis
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | | | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Achyut Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Maya Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shilpi Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Mahant
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rajashree Das
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pramod Kumar
- Department of Chemistry, Sri Aurobindo College, University of Delhi, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Claus Schneider
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Campillo-Gimenez L, Rios-Covian D, Rivera-Nieves J, Kiyono H, Chu H, Ernst PB. Microbial-Driven Immunological Memory and Its Potential Role in Microbiome Editing for the Prevention of Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:752304. [PMID: 34869061 PMCID: PMC8633303 DOI: 10.3389/fcimb.2021.752304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last several years, many advances have been made in understanding the role of bacteria in the pathogenesis of gastrointestinal cancers. Beginning with Helicobacter pylori being recognized as the first bacterial carcinogen and the causative agent of most gastric cancers, more recent studies have examined the role of enteric microbes in colorectal cancer. In the digestive tract, these communities are numerous and have a complex interrelationship with local immune/inflammatory responses that impact the health of the host. As modifying the microbiome in the stomach has decreased the risk of gastric cancer, modifying the distal microbiome may decrease the risk of colorectal cancers. To date, very few studies have considered the notion that mucosal lymphocyte-dependent immune memory may confound attempts to change the microbial components in these communities. The goal of this review is to consider some of the factors impacting host-microbial interactions that affect colorectal cancer and raise questions about how immune memory responses to the local microbial consortium affect any attempt to modify the composition of the intestinal microbiome.
Collapse
Affiliation(s)
- Laure Campillo-Gimenez
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - David Rios-Covian
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - Jesus Rivera-Nieves
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
| | - Peter B. Ernst
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Division of Comparative Pathology and Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Della Bella C, Soluri MF, Puccio S, Benagiano M, Grassi A, Bitetti J, Cianchi F, Sblattero D, Peano C, D’Elios MM. The Helicobacter pylori CagY Protein Drives Gastric Th1 and Th17 Inflammation and B Cell Proliferation in Gastric MALT Lymphoma. Int J Mol Sci 2021; 22:ijms22179459. [PMID: 34502367 PMCID: PMC8431018 DOI: 10.3390/ijms22179459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Background: the neoplastic B cells of the Helicobacter pylori-related low-grade gastric mucosa-associated lymphoid tissue (MALT) lymphoma proliferate in response to H. pylori, however, the nature of the H. pylori antigen responsible for proliferation is still unknown. The purpose of the study was to dissect whether CagY might be the H. pylori antigen able to drive B cell proliferation. Methods: the B cells and the clonal progeny of T cells from the gastric mucosa of five patients with MALT lymphoma were compared with those of T cell clones obtained from five H. pylori–infected patients with chronic gastritis. The T cell clones were assessed for their specificity to H. pylori CagY, cytokine profile and helper function for B cell proliferation. Results: 22 of 158 CD4+ (13.9%) gastric clones from MALT lymphoma and three of 179 CD4+ (1.7%) clones from chronic gastritis recognized CagY. CagY predominantly drives Interferon-gamma (IFN-γ) and Interleukin-17 (IL-17) secretion by gastric CD4+ T cells from H. pylori-infected patients with low-grade gastric MALT lymphoma. All MALT lymphoma-derived clones dose dependently increased their B cell help, whereas clones from chronic gastritis lost helper activity at T-to-B-cell ratios greater than 1. Conclusion: the results obtained indicate that CagY drives both B cell proliferation and T cell activation in gastric MALT lymphomas.
Collapse
Affiliation(s)
- Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Simone Puccio
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, 20090 Milan, Italy;
| | - Marisa Benagiano
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Alessia Grassi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Jacopo Bitetti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20090 Milan, Italy;
- Human Technopole, 20157 Milan, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (C.D.B.); (M.B.); (A.G.); (J.B.); (F.C.)
- Correspondence: ; Tel.: +39-055-275-8331
| |
Collapse
|
30
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
31
|
Maubach G, Lim MCC, Sokolova O, Backert S, Meyer TF, Naumann M. TIFA has dual functions in Helicobacter pylori-induced classical and alternative NF-κB pathways. EMBO Rep 2021; 22:e52878. [PMID: 34328245 PMCID: PMC8419686 DOI: 10.15252/embr.202152878] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor‐kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor‐associated factor (TRAF)‐interacting protein with forkhead‐associated domain (TIFA) was previously suggested to trigger classical NF‐κB activation, but its role in alternative NF‐κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFβ‐activated kinase 1 (TAK1), leading to the activation of classical NF‐κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF‐κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF‐κB signaling in H. pylori‐infected gastric epithelial cells.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Michelle C C Lim
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Olga Sokolova
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein, Kiel, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
32
|
Toll-like Receptor 5 Activation by the CagY Repeat Domains of Helicobacter pylori. Cell Rep 2021; 32:108159. [PMID: 32937132 DOI: 10.1016/j.celrep.2020.108159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (Hp) is an important human pathogen associated with gastric inflammation and neoplasia. It is commonly believed that this bacterium avoids major immune recognition by Toll-like receptors (TLRs) because of low intrinsic activity of its flagellin and lipopolysaccharides (LPS). In particular, TLR5 specifically detects flagellins in various bacterial pathogens, while Hp evolved mutations in flagellin to evade detection through TLR5. Cancerogenic Hp strains encode a type IV secretion system (T4SS). The T4SS core component and pilus-associated protein CagY, a large VirB10 ortholog, drives effector molecule translocation. Here, we identify CagY as a flagellin-independent TLR5 agonist. We detect five TLR5 interaction sites, promoting binding of CagY-positive Hp to TLR5-expressing cells, TLR5 stimulation, and intracellular signal transduction. Consequently, CagY constitutes a remarkable VirB10 member detected by TLR5, driving crucial innate immune responses by this human pathogen.
Collapse
|
33
|
Transcriptional Profile of Helicobacter pylori Virulence Genes in Patients with Gastritis and Gastric Cancer. ACTA ACUST UNITED AC 2021; 2021:1309519. [PMID: 33628350 PMCID: PMC7889378 DOI: 10.1155/2021/1309519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 01/01/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Introduction Numerous molecular epidemiology studies have been performed about the frequency of Helicobacter pylori virulence genes in patients with H. pylori infection so far. This study was conducted to detect transcriptional profile by cDNA of H. pylori virulence genes in gastric biopsy samples of gastritis and gastric carcinoma patients. Materials and Methods In a case-control study, based on the prevalence of gastritis and gastric cancer in Sanandaj city during 2018 and 2019, 23 and 11 gastric antral biopsy samples with H. pylori infection were collected from gastritis and gastric carcinoma patients by the consecutive and available sampling method. Pathological characters, including tumor grades and tumor areas for gastric carcinoma biopsy samples prepared from gastric cancer areas, were determined by the pathologist. Total RNA of gastric antral biopsy samples was extracted, and their cDNA was synthesized by TaKaRa kit. H. pylori virulence genes' cDNA using specific primers and PCR was detected. This study's results were analyzed by SPSS version 25 and statics chi-square tests for determination of relationship and correlation between cDNAs of H. pylori transcriptional profile and clinical outcomes of H. pylori infection, including gastritis, gastric carcinoma, tumor grades, and tumor area. Results The positive statistical correlations were observed between transcripts of cagA, cagA-EPIYAC, cagE, and cagY genes and H. pylori infection clinical outcomes (P < 0.05). Conclusion Detection of the H. pylori virulence genes' cDNA in gastric biopsy samples can help provide the prognosis of clinical outcomes.
Collapse
|
34
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
35
|
O'Brien VP, Koehne AL, Dubrulle J, Rodriguez AE, Leverich CK, Kong VP, Campbell JS, Pierce RH, Goldenring JR, Choi E, Salama NR. Sustained Helicobacter pylori infection accelerates gastric dysplasia in a mouse model. Life Sci Alliance 2021; 4:e202000967. [PMID: 33310760 PMCID: PMC7768197 DOI: 10.26508/lsa.202000967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
More than 80% of gastric cancer is attributable to stomach infection with Helicobacter pylori (Hp). Gastric preneoplastic progression involves sequential tissue changes, including loss of parietal cells, metaplasia and dysplasia. In transgenic mice, active KRAS expression recapitulates these tissue changes in the absence of Hp infection. This model provides an experimental system to investigate additional roles of Hp in preneoplastic progression, beyond its known role in initiating inflammation. Tissue histology, gene expression, the immune cell repertoire, and metaplasia and dysplasia marker expression were assessed in KRAS+ mice +/-Hp infection. Hp+/KRAS+ mice had severe T-cell infiltration and altered macrophage polarization; a different trajectory of metaplasia; more dysplastic glands; and greater proliferation of metaplastic and dysplastic glands. Eradication of Hp with antibiotics, even after onset of metaplasia, prevented or reversed these tissue phenotypes. These results suggest that gastric preneoplastic progression differs between Hp+ and Hp- cases, and that sustained Hp infection can promote the later stages of gastric preneoplastic progression.
Collapse
Affiliation(s)
- Valerie P O'Brien
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, WA, USA
| | - Amanda L Koehne
- Fred Hutchinson Cancer Research Center, Comparative Medicine Shared Resource, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Experimental Histopathology Shared Resource, Seattle, WA, USA
| | - Julien Dubrulle
- Fred Hutchinson Cancer Research Center, Genomics and Bioinformatics Shared Resource, Seattle, WA, USA
| | - Armando E Rodriguez
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, WA, USA
| | - Christina K Leverich
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, WA, USA
| | - V Paul Kong
- Fred Hutchinson Cancer Research Center, Experimental Histopathology Shared Resource, Seattle, WA, USA
| | - Jean S Campbell
- Fred Hutchinson Cancer Research Center, Program in Immunology, Seattle, WA, USA
| | - Robert H Pierce
- Fred Hutchinson Cancer Research Center, Program in Immunology, Seattle, WA, USA
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville Veterans Affairs Medical Center, Nashville, TN, USA
| | - Eunyoung Choi
- Department of Surgery, Epithelial Biology Center, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nina R Salama
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, WA, USA
| |
Collapse
|
36
|
Abstract
The Helicobacter pylori type IV secretion system (T4SS) encoded on the cag pathogenicity island (cagPAI) secretes the CagA oncoprotein and other effectors into the gastric epithelium. During murine infection, T4SS function is lost in an immune-dependent manner, typically as a result of in-frame recombination in the middle repeat region of cagY, though single nucleotide polymorphisms (SNPs) in cagY or in other essential genes may also occur. Loss of T4SS function also occurs in gerbils, nonhuman primates, and humans, suggesting that it is biologically relevant and not simply an artifact of the murine model. Here, we sought to identify physiologically relevant conditions under which T4SS function is maintained in the murine model. We found that loss of H. pylori T4SS function in mice was blunted by systemic Salmonella coinfection and completely eliminated by dietary iron restriction. Both have epidemiologic parallels in humans, since H. pylori strains from individuals in developing countries, where iron deficiency and systemic infections are common, are also more often cagPAI+ than strains from developed countries. These results have implications for our fundamental understanding of the cagPAI and also provide experimental tools that permit the study of T4SS function in the murine model.IMPORTANCE The type IV secretion system (T4SS) is the major Helicobacter pylori virulence factor, though its function is lost during murine infection. Loss of function also occurs in gerbils and in humans, suggesting that it is biologically relevant, but the conditions under which T4SS regulation occurs are unknown. Here, we found that systemic coinfection with Salmonella and iron deprivation each promote retention of T4SS function. These results improve our understanding of the cag pathogenicity island (cagPAI) and provide experimental tools that permit the study of T4SS function in the murine model.
Collapse
|
37
|
Jackson LK, Potter B, Schneider S, Fitzgibbon M, Blair K, Farah H, Krishna U, Bedford T, Peek RM, Salama NR. Helicobacter pylori diversification during chronic infection within a single host generates sub-populations with distinct phenotypes. PLoS Pathog 2020; 16:e1008686. [PMID: 33370399 PMCID: PMC7794030 DOI: 10.1371/journal.ppat.1008686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori chronically infects the stomach of approximately half of the world's population. Manifestation of clinical diseases associated with H. pylori infection, including cancer, is driven by strain properties and host responses; and as chronic infection persists, both are subject to change. Previous studies have documented frequent and extensive within-host bacterial genetic variation. To define how within-host diversity contributes to phenotypes related to H. pylori pathogenesis, this project leverages a collection of 39 clinical isolates acquired prospectively from a single subject at two time points and from multiple gastric sites. During the six years separating collection of these isolates, this individual, initially harboring a duodenal ulcer, progressed to gastric atrophy and concomitant loss of acid secretion. Whole genome sequence analysis identified 1,767 unique single nucleotide polymorphisms (SNPs) across isolates and a nucleotide substitution rate of 1.3x10-4 substitutions/site/year. Gene ontology analysis identified cell envelope genes among the genes with excess accumulation of nonsynonymous SNPs (nSNPs). A maximum likelihood tree based on genetic similarity clusters isolates from each time point separately. Within time points, there is segregation of subgroups with phenotypic differences in bacterial morphology, ability to induce inflammatory cytokines, and mouse colonization. Higher inflammatory cytokine induction in recent isolates maps to shared polymorphisms in the Cag PAI protein, CagY, while rod morphology in a subgroup of recent isolates mapped to eight mutations in three distinct helical cell shape determining (csd) genes. The presence of subgroups with unique genetic and phenotypic properties suggest complex selective forces and multiple niches within the stomach during chronic infection.
Collapse
Affiliation(s)
- Laura K. Jackson
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Barney Potter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Sean Schneider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Matthew Fitzgibbon
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Kris Blair
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hajirah Farah
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Uma Krishna
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Trevor Bedford
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nina R. Salama
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, United States of America
| |
Collapse
|
38
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factor Cytotoxin-Associated Gene A (CagA)-Mediated Gastric Pathogenicity. Int J Mol Sci 2020; 21:ijms21197430. [PMID: 33050101 PMCID: PMC7582651 DOI: 10.3390/ijms21197430] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori causes persistent infection in the gastric epithelium of more than half of the world’s population, leading to the development of severe complications such as peptic ulcer diseases, gastric cancer, and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Several virulence factors, including cytotoxin-associated gene A (CagA), which is translocated into the gastric epithelium via the type 4 secretory system (T4SS), have been indicated to play a vital role in disease development. Although infection with strains harboring the East Asian type of CagA possessing the EPIYA-A, -B, and -D sequences has been found to potentiate cell proliferation and disease pathogenicity, the exact mechanism of CagA involvement in disease severity still remains to be elucidated. Therefore, we discuss the possible role of CagA in gastric pathogenicity.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College, Bharatpur 44200, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health (GO-MARCH), Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
- Correspondence: ; Tel.: +81-97-586-5740; Fax: +81-97-586-5749
| |
Collapse
|
39
|
Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori. Mol Cell 2020; 80:210-226.e7. [PMID: 33002424 DOI: 10.1016/j.molcel.2020.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Collapse
Affiliation(s)
- Sara K Eisenbart
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sandy R Pernitzsch
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Stahl
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
40
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
Soluri MF, Puccio S, Caredda G, Edomi P, D’Elios MM, Cianchi F, Troilo A, Santoro C, Sblattero D, Peano C. Defining the Helicobacter pylori Disease-Specific Antigenic Repertoire. Front Microbiol 2020; 11:1551. [PMID: 32849324 PMCID: PMC7396715 DOI: 10.3389/fmicb.2020.01551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
The analysis of the interaction between Helicobacter pylori (HP) and the host in vivo is an extremely informative way to enlighten the molecular mechanisms behind the persistency/latency of the bacterium as well as in the progression of the infection. An important source of information is represented by circulating antibodies targeting the bacteria that define a specific "disease signature" with prospective diagnostic implications. The diagnosis of some of the HP induced diseases such as gastric cancer (GC), MALT lymphoma (MALT), and autoimmune gastritis (AIG) is not easy because patients do not show symptoms of illness in early-onset stages, at the same time they progress rapidly. The possibility of identifying markers able to provide an early diagnosis would be extremely beneficial since a late diagnosis results in a delay in undergoing active therapy and reduces the survival rate of patients. With the aim to identify the HP antigens recognized during the host immune-response to the infection and possibly disease progression, we applied a discovery-driven approach, that combines "phage display" and deep sequencing. The procedure is based on the selection of ORF phage libraries, specifically generated from the pathogen's genome, with sera antibodies from patients with different HP-related diseases. To this end two phage display libraries have been constructed starting from genomic DNA from the reference HP 26695 and the pathogenic HP B128 strains; libraries were filtered for ORFs by using an ORF selection vector developed by our group (Di Niro et al., 2005; Soluri et al., 2018), selected with antibodies from patients affected by GC, MALT, and AIG and putative HP antigens/epitopes were identified after Sequencing and ranking. The results show that individual selection significantly reduced the library diversity and comparison of individual ranks for each condition allowed us to highlight a pattern of putative antigens specific for the different pathological outcomes or common for all of them. Within the putative antigens enriched after selection, we have validated protein CagY/Cag7 by ELISA assay as a marker of HP infection and progression. Overall, we have defined HP antigenic repertoire and identified a panel of putative specific antigens/epitopes for three different HP infection pathological outcomes that could be validated in the next future.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giada Caredda
- Department of Excellence in Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paolo Edomi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Arianna Troilo
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, University of Florence, Florence, Italy
| | - Claudio Santoro
- Department of Health Sciences & IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease, Università del Piemonte Orientale, Novara, Italy
| | | | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Milan, Italy
- Genomic Unit, IRCCS, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
42
|
Temporal Control of the Helicobacter pylori Cag Type IV Secretion System in a Mongolian Gerbil Model of Gastric Carcinogenesis. mBio 2020; 11:mBio.01296-20. [PMID: 32605987 PMCID: PMC7327173 DOI: 10.1128/mbio.01296-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.
Collapse
|
43
|
Identification of Pathogenicity Island Genes Associated with Loss of Type IV Secretion Function during Murine Infection with Helicobacter pylori. Infect Immun 2020; 88:IAI.00801-19. [PMID: 32205402 DOI: 10.1128/iai.00801-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic Helicobacter pylori colonization in animal models often leads to downregulation of the type IV secretion system (T4SS), typically by recombination in cagY, which is an essential T4SS gene. However, 17 other cag pathogenicity island (cagPAI) genes, as well as some non-cagPAI genes, are also essential for T4SS function. To get a more complete picture of how H. pylori regulates the T4SS during animal colonization, we examined cagY in 534 mouse-passaged isolates that lost T4SS function, defined as a normalized interleukin-8 (IL-8) value of <0.3 relative to the input H. pylori strain PMSS1. In order to analyze the genetic changes in the strains with unchanged cagY, we sequenced the entire pathogenicity island of 60 such isolates using single-molecule, real-time (SMRT) sequencing technology (PacBio, Menlo Park, CA), and we compared the results to the PMSS1 wild type (WT). Of the 534 strains, 271 (51%) showed evidence of recombination in cagY, but we also found indels or nonsynonymous changes in 13 other essential cagPAI genes implicated in H. pylori T4SS function, most commonly cag5, cag10, and cagA While cagY recombination is the most common mechanism by which H. pylori downregulates T4SS function during murine infection, loss of function is also associated with changes in other essential cagPAI genes.
Collapse
|
44
|
Canzian F, Rizzato C, Obazee O, Stein A, Flores-Luna L, Camorlinga-Ponce M, Mendez-Tenorio A, Vivas J, Trujillo E, Jang H, Chen W, Kasamatsu E, Bravo MM, Torres J, Muñoz N, Kato I. Genetic polymorphisms in the cag pathogenicity island of Helicobacter pylori and risk of stomach cancer and high-grade premalignant gastric lesions. Int J Cancer 2020; 147:2437-2445. [PMID: 32363734 DOI: 10.1002/ijc.33032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori (Hp) infects the stomach of about half of the human population and is strongly associated with the risk of gastric cancer (GC) and its premalignant precursors. The cag pathogenicity island (cagPAI) is a region of the Hp genome encoding for key molecular machinery involved in the infection process. Following a sequencing study, we selected 50 genetic polymorphisms located in seven cagPAI genes and tested their associations with the risk of advanced gastric premalignant lesions and GC in 1220 subjects from various Latin American populations showing the whole spectrum of phenotypes from gastritis to GC. We found that three polymorphisms of cagA are associated with the risk of advanced gastric premalignant lesions (incomplete intestinal metaplasia [ie, Type 2 and 3] or dysplasia), and that six polymorphisms located in cagA, cagL and cagI were associated with risk of GC. When corrected for multiple testing none of the associations were statistically significant. However, scores built by integrating the individual polymorphisms were significantly associated with the risk of advanced gastric premalignant lesions and GC. These results have the potential of establishing markers for risk stratification in the general population, in view of targeting Hp eradication to high-risk population groups.
Collapse
Affiliation(s)
- Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lourdes Flores-Luna
- Center for Public Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Vivas
- Cancer Control Center of the Tachira State, San Cristobal, Venezuela
| | - Esperanza Trujillo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Hyejong Jang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wei Chen
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nubia Muñoz
- Cancer Institute of Colombia, Bogotá, Colombia
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
45
|
The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682-695. [PMID: 32451226 DOI: 10.1016/j.tim.2020.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.
Collapse
|
46
|
Helicobacter pylori-induced adrenomedullin modulates IFN-γ-producing T-cell responses and contributes to gastritis. Cell Death Dis 2020; 11:189. [PMID: 32184393 PMCID: PMC7078296 DOI: 10.1038/s41419-020-2391-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/13/2023]
Abstract
Adrenomedullin (ADM) is a multifunctional peptide that is expressed by many surface epithelial cells, but its relevance to Helicobacter pylori (H. pylori)-induced gastritis is unknown. Here, we found that gastric ADM expression was elevated in gastric mucosa of H. pylori-infected patients and mice. In H. pylori-infected human gastric mucosa, ADM expression was positively correlated with the degree of gastritis; accordingly, blockade of ADM resulted in decreased inflammation within the gastric mucosa of H. pylori-infected mice. During H. pylori infection, ADM production was promoted via PI3K–AKT signaling pathway activation by gastric epithelial cells in a cagA-dependent manner, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterized by the increased IFN-γ-producing T cells, whose differentiation was induced via the phosphorylation of AKT and STAT3 by ADM derived from gastric epithelial cells. ADM also induced macrophages to produce IL-12, which promoted the IFN-γ-producing T-cell responses, thereby contributing to the development of H. pylori-associated gastritis. Accordingly, blockade of IFN-γ or knockout of IFN-γ decreased inflammation within the gastric mucosa of H. pylori-infected mice. This study identifies a novel regulatory network involving H. pylori, gastric epithelial cells, ADM, macrophages, T cells, and IFN-γ, which collectively exert a pro-inflammatory effect within the gastric microenvironment.
Collapse
|
47
|
Gomez-Valero L, Chiner-Oms A, Comas I, Buchrieser C. Evolutionary Dissection of the Dot/Icm System Based on Comparative Genomics of 58 Legionella Species. Genome Biol Evol 2020; 11:2619-2632. [PMID: 31504472 PMCID: PMC6761968 DOI: 10.1093/gbe/evz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The Dot/Icm type IVB secretion system of Legionella pneumophila is essential for its pathogenesis by delivering >300 effector proteins into the host cell. However, their precise secretion mechanism and which components interact with the host cell is only partly understood. Here, we undertook evolutionary analyses of the Dot/Icm system of 58 Legionella species to identify those components that interact with the host and/or the substrates. We show that high recombination rates are acting on DotA, DotG, and IcmX, supporting exposure of these proteins to the host. Specific amino acids under positive selection on the periplasmic region of DotF, and the cytoplasmic domain of DotM, support a role of these regions in substrate binding. Diversifying selection acting on the signal peptide of DotC suggests its interaction with the host after cleavage. Positive selection acts on IcmR, IcmQ, and DotL revealing that these components are probably participating in effector recognition and/or translocation. Furthermore, our results predict the participation in host/effector interaction of DotV and IcmF. In contrast, DotB, DotO, most of the core subcomplex elements, and the chaperones IcmS-W show a high degree of conservation and not signs of recombination or positive selection suggesting that these proteins are under strong structural constraints and have an important role in maintaining the architecture/function of the system. Thus, our analyses of recombination and positive selection acting on the Dot/Icm secretion system predicted specific Dot/Icm components and regions implicated in host interaction and/or substrate recognition and translocation, which will guide further functional analyses.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| | - Alvaro Chiner-Oms
- Unidad Mixta "Infección y Salud Pública" FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas, Spain
| | - Iñaki Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain.,Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | - Carmen Buchrieser
- Institut Pasteur, Departement of Microbiology, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR3525, Paris, France
| |
Collapse
|
48
|
The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils. mBio 2020; 11:mBio.03256-19. [PMID: 32019805 PMCID: PMC7002351 DOI: 10.1128/mbio.03256-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori, and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori-CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology. The cag type IV secretion system (cag-T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori, via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology.
Collapse
|
49
|
Bacterial Energetic Requirements for Helicobacter pylori Cag Type IV Secretion System-Dependent Alterations in Gastric Epithelial Cells. Infect Immun 2020; 88:IAI.00790-19. [PMID: 31712269 DOI: 10.1128/iai.00790-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori colonizes the stomach in about half of the world's population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagβ, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagβ was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.
Collapse
|
50
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a resident bacterium in the stomach that accounts for 75% cases of gastric cancer. In this review, we comprehensively studied published papers on H. pylori vaccines using Google Scholar and NCBI databases to gather information about vaccines against H. pylori. Considering the pivotal roles of the enzyme urease (in production of NH3 and neutralization of the acidic medium of the stomach), cytotoxin-associated gene A, and vacuolating cytotoxin A proteins in H. pylori infection, they could be the best candidates for the construction of recombinant vaccines. The outer membrane porins (Hop), blood group antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and outer inflammatory protein A, play significant roles in binding of bacterium to human gastric tissues, and because binding is the first step in bacterial fixation and colonization, these antigens also can be considered as suitable candidates for designing vaccines. Likely, other significant bacterial antigens, such as NapA (chemotactic factor for recruitment of human neutrophils and monocytes to the site of infection), duodenal ulcer promoting protein A (to promote duodenal ulcer), and Hsp60 (as a molecular chaperon for activation of urease enzyme), can be used in the construction of subunit vaccines. New vaccines in use currently, such as DNA vaccines and subunit vaccines, can efficiently replace the dead and attenuated vaccines. Nonetheless, the results show that urease enzyme is most used compared with bacterial components in the designing and construction of recombinant vaccines. The BabA and SabA antigens belong to the outer membrane porins family in H. pylori and are required for binding and fixation of the bacterium to the human gastric tissues.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|