1
|
Bortolin V, Mansuroglu Z, Conquet L, Calcagno G, Lambert F, Marin-Obando JP, Segrt H, Savino M, Menidjel R, Souès S, Buée L, Niedergang F, Galas MC, Montagutelli X, Bonnefoy E. Protein kinase R induced by type I interferons is a main regulator of reactive microglia in Zika virus infection. Glia 2025; 73:80-104. [PMID: 39359232 DOI: 10.1002/glia.24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Microglial cells are the phagocytic cells of the brain that under physiological conditions participate in brain homeostasis and surveillance. Under pathogenic states, microglia undergoes strong morphological and transcriptional changes potentially leading to sustained neuroinflammation, brain damage, and cognitive disorders. Postnatal and adult Zika virus (ZIKV) brain infection is characterized by the induction of reactive microglia associated with brain inflammation, synapse loss and neuropathogenesis. Contrary to neurons, microglial cells are not infected by ZIKV thus raising the question of the mechanism governing ZIKV-induced microglia's reactivity. In this work, we have questioned the role of exogenous, neuronal type I interferons (IFNs-I) in regulating ZIKV-induced microglia's reactivity. Primary cultured microglial cells were either treated with conditioned media from ZIKV-infected mature neurons or co-cultured with ZIKV-infected neurons. Using either an antibody directed against the IFNAR receptor that neutralizes the IFNs-I response or Ifnar-/-microglial cells, we demonstrate that IFNs-I produced by ZIKV-infected neurons are the main regulators of the phagocytic capacity and the pro-inflammatory gene expression profile of reactive, non-infected microglial cells. We identify protein kinase R (PKR), whose expression is activated by IFNs-I, as a major regulator of the phagocytic capacity, pro-inflammatory response, and morphological changes of microglia induced by IFNs-I while up-regulating STAT1 phosphorylation and IRF1 expression. Results obtained herein in vitro with primary cultured cells and in vivo in ZIKV-infected adult immunocompetent mice, unravel a role for IFNs-I and PKR in directly regulating microglia's reactivity that could be at work in other infectious and non-infectious brain pathologies.
Collapse
Affiliation(s)
| | - Zeyni Mansuroglu
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Gaetano Calcagno
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Fanny Lambert
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| | | | - Helena Segrt
- Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, University of Lille, Lille, France
| | - Mary Savino
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| | - Reyene Menidjel
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| | - Sylvie Souès
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| | - Luc Buée
- Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, University of Lille, Lille, France
| | | | - Marie-Christine Galas
- Inserm, CHU Lille, CNRS, LilNCog-Lille Neuroscience & Cognition, University of Lille, Lille, France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, Paris, France
| | - Eliette Bonnefoy
- CNRS, Inserm, Institut Cochin, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
3
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
4
|
Borucki DM, Rohrer B, Tomlinson S. Complement propagates visual system pathology following traumatic brain injury. J Neuroinflammation 2024; 21:98. [PMID: 38632569 PMCID: PMC11022420 DOI: 10.1186/s12974-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is associated with the development of visual system disorders. Visual deficits can present with delay and worsen over time, and may be associated with an ongoing neuroinflammatory response that is known to occur after TBI. Complement system activation is strongly associated with the neuroinflammatory response after TBI, but whether it contributes to vision loss after TBI is unexplored. METHODS Acute and chronic neuroinflammatory changes within the dorsal lateral geniculate nucleus (dLGN) and retina were investigated subsequent to a moderate to severe murine unilateral controlled cortical impact. Neuroinflammatory and histopathological outcomes were interpreted in the context of behavioral and visual function data. To investigate the role of complement, cohorts were treated after TBI with the complement inhibitor, CR2-Crry. RESULTS At 3 days after TBI, complement component C3 was deposited on retinogeniculate synapses in the dLGN both ipsilateral and contralateral to the lesion, which was reduced in CR2-Crry treated animals. This was associated with microglia morphological changes in both the ipsilateral and contralateral dLGN, with a less ramified phenotype in vehicle compared to CR2-Crry treated animals. Microglia in vehicle treated animals also had a greater internalized VGlut2 + synaptic volume after TBI compared to CR2-Crry treated animals. Microglia morphological changes seen acutely persisted for at least 49 days after injury. Complement inhibition also reduced microglial synaptic internalization in the contralateral dLGN and increased the association between VGLUT2 and PSD95 puncta, indicating preservation of intact synapses. Unexpectedly, there were no changes in the thickness of the inner retina, retinal nerve fiber layer or retinal ganglion layer. Neuropathological changes in the dLGN were accompanied by reduced visual acuity at subacute and chronic time points after TBI, with improvement seen in CR2-Crry treated animals. CONCLUSION TBI induces complement activation within the dLGN and promotes microglial activation and synaptic internalization. Complement inhibition after TBI in a clinically relevant paradigm reduces complement activation, maintains a more surveillance-like microglia phenotype, and preserves synaptic density within the dLGN. Together, the data indicate that complement plays a key role in the development of visual deficits after TBI via complement-dependent microglial phagocytosis of synapses within the dLGN.
Collapse
Affiliation(s)
- Davis M Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
5
|
Borucki D, Rohrer B, Tomlinson S. Complement propagates visual system pathology following traumatic brain injury. RESEARCH SQUARE 2024:rs.3.rs-3970621. [PMID: 38464312 PMCID: PMC10925413 DOI: 10.21203/rs.3.rs-3970621/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Traumatic brain injury (TBI) is associated with the development of visual system disorders. Visual deficits can present with delay and worsen over time, and may be associated with an ongoing neuroinflammatory response that is known to occur after TBI. Complement activation is strongly associated with the neuroinflammatory response after TBI, but whether it contributes to vision loss after TBI is unexplored. Methods Acute and chronic neuroinflammatory changes within the dorsal lateral geniculate nucleus (dLGN) and retina were investigated subsequent to murine controlled unilateral cortical impact. Neuroinflammatory and histopathological data were interpreted in the context of behavioral and visual function data. To investigate the role of complement, cohorts were treated after TBI with the complement inhibitor, CR2-Crry. Results At 3 days after TBI, complement C3 was deposited on retinogeniculate synapses in the dLGN both ipsilateral and contralateral to the lesion, which was reduced in CR2-Crry treated animals. This was associated with microglia morphological changes in both the ipsilateral and contralateral dLGN, with a more amoeboid phenotype in vehicle compared to CR2-Crry treated animals. Microglia in vehicle treated animals also had a greater internalized VGlut2+ synaptic volume after TBI compared to CR2-Crry treated animals. Microglia morphological changes seen acutely persisted for at least 49 days after injury. Complement inhibition also reduced microglial synaptic internalization in the contralateral dLGN and increased the association between VGLUT2 and PSD95 puncta, indicating preservation of intact synapses. Unexpectedly, there were no changes in the thickness of the inner retina, retinal nerve fiber layer or retinal ganglion layer. Pathologies were accompanied by reduced visual acuity at subacute and chronic time points after TBI, with improvement seen in CR2-Crry treated animals. Conclusion TBI induces complement activation within the dLGN and promotes microglial activation and synaptic internalization. Complement inhibition after TBI in a clinically relevant paradigm reduces complement activation, maintains a more surveillance-like microglia phenotype, and preserves synaptic density within the dLGN. Together, the data indicate that complement plays a key role in the development of visual deficits after TBI via complement-dependent microglial phagocytosis of synapses within the dLGN.
Collapse
|
6
|
Wangler LM, Godbout JP. Microglia moonlighting after traumatic brain injury: aging and interferons influence chronic microglia reactivity. Trends Neurosci 2023; 46:926-940. [PMID: 37723009 PMCID: PMC10592045 DOI: 10.1016/j.tins.2023.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Most of the individuals who experience traumatic brain injury (TBI) develop neuropsychiatric and cognitive complications that negatively affect recovery and health span. Activation of multiple inflammatory pathways persists after TBI, but it is unclear how inflammation contributes to long-term behavioral and cognitive deficits. One outcome of TBI is microglial priming and subsequent hyper-reactivity to secondary stressors, injuries, or immune challenges that further augment complications. Additionally, microglia priming with aging contributes to exaggerated glial responses to TBI. One prominent inflammatory pathway, interferon (IFN) signaling, is increased after TBI and may contribute to microglial priming and subsequent reactivity. This review discusses the contributions of microglia to inflammatory processes after TBI, as well as the influence of aging and IFNs on microglia reactivity and chronic inflammation after TBI.
Collapse
Affiliation(s)
- Lynde M Wangler
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 W 10th Ave, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, 460 Medical Center Drive, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, Columbus, OH, USA.
| |
Collapse
|
7
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A role for P-selectin and complement in the pathological sequelae of germinal matrix hemorrhage. J Neuroinflammation 2023; 20:143. [PMID: 37322469 PMCID: PMC10273747 DOI: 10.1186/s12974-023-02828-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Germinal matrix hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. METHODS We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal C57BL/6 J mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. RESULTS Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. In addition, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. CONCLUSIONS GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
Affiliation(s)
- Devin Hatchell
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Mohammed Alshareef
- Department of Neurological Surgery, Children's Hospital of Colorado, Aurora, CO, USA
| | - Tyler Vasas
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Guglietta
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Davis Borucki
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Chunfang Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ramin Eskandari
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
8
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A Role for P-selectin and Complement in the Pathological Sequelae of Germinal Matrix Hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2617965. [PMID: 36909595 PMCID: PMC10002788 DOI: 10.21203/rs.3.rs-2617965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Background Germinal Matrix Hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. Methods We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. Results Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. Also, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. Conclusion GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
|
9
|
Liu D, Wu L, Wei H, Zhu C, Tian R, Zhu W, Xu Q. The SFT2D2 gene is associated with the autoimmune pathology of schizophrenia in a Chinese population. Front Neurol 2022; 13:1037777. [PMID: 36619926 PMCID: PMC9810986 DOI: 10.3389/fneur.2022.1037777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background The relative risk of GWAS-confirmed loci strongly associated with schizophrenia may be underestimated due to the decay of linkage disequilibrium between index SNPs and causal variants. This study is aimed to investigate schizophrenia-associated signals detected in the 1q24-25 region in order to identify a causal variant in LD with GWAS index SNPs, and the potential biological functions of the risk gene. Methods Re-genotyping analysis was performed in the 1q24-25 region that harbors three GWAS index SNPs associated with schizophrenia (rs10489202, rs11586522, and rs6670165) in total of 9801 case-control subjects of Chinese Han origin. Circulating autoantibody levels were assessed using an in-house ELISA against a protein derived fragment encoded by SFT2D2 in total of 682 plasma samples. Results A rare variant (rs532193193) in the SFT2D2 locus was identified to be strongly associated with schizophrenia. Compared with control subjects, patients with schizophrenia showed increased anti-SFT2D2 IgG levels. Receiver operating characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.803 with sensitivity of 28.57% against specificity of 95% for the anti-SFT2D2 IgG assay. Discussion Our findings indicate that SFT2D2 is a novel gene for risk of schizophrenia, while endogenous anti-SFT2D2 IgG may underlie the pathophysiology of the immunological aspects of schizophrenia.
Collapse
Affiliation(s)
- Duilin Liu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Runhui Tian
- Mental Health Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Qi Xu
| |
Collapse
|
10
|
Ekkert A, Šliachtenko A, Utkus A, Jatužis D. Intracerebral Hemorrhage Genetics. Genes (Basel) 2022; 13:genes13071250. [PMID: 35886033 PMCID: PMC9322856 DOI: 10.3390/genes13071250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke, frequently resulting in unfavorable functional outcomes. Up to 15% of stroke patients experience ICH and approximately half of those have a lethal outcome within a year. Considering the huge burden of ICH, timely prevention and optimized treatment strategies are particularly relevant. Nevertheless, ICH management options are quite limited, despite thorough research. More and more trials highlight the importance of the genetic component in the pathogenesis of ICH. Apart from distinct monogenic disorders of familial character, mostly occurring in younger subjects, there are numerous polygenic risk factors, such as hypertension, neurovascular inflammation, disorders of lipid metabolism and coagulation cascade, and small vessel disease. In this paper we describe gene-related ICH types and underlying mechanisms. We also briefly discuss the emerging treatment options and possible clinical relevance of the genetic findings in ICH management. Although existing data seems of more theoretical and scientific value so far, a growing body of evidence, combined with rapidly evolving experimental research, will probably serve clinicians in the future.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
- Correspondence:
| | | | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania;
| |
Collapse
|
11
|
Cowan MN, Sethi I, Harris TH. Microglia in CNS infections: insights from Toxoplasma gondii and other pathogens. Trends Parasitol 2022; 38:217-229. [PMID: 35039238 PMCID: PMC8852251 DOI: 10.1016/j.pt.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are poised to respond to neuropathology. Microglia play multiple roles in maintaining homeostasis and promoting inflammation in numerous disease states. The study of microglial innate immune programs has largely focused on exploring neurodegenerative disease states with the use of genetic targeting approaches. Our understanding of how microglia participate in immune responses against pathogens is just beginning to take shape. Here, we review existing animal models of CNS infection, with a focus on how microglial physiology and inflammatory processes control protozoan and viral infections of the brain. We further discuss how microglial participation in over-exuberant immune responses can drive immunopathology that is detrimental to CNS health and homeostasis.
Collapse
Affiliation(s)
- Maureen N. Cowan
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ish Sethi
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States,Correspondence: (T. H. Harris)
| |
Collapse
|
12
|
Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021; 95:e0083521. [PMID: 34190599 DOI: 10.1128/jvi.00835-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-β), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.
Collapse
|
13
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
15
|
IFN-I Independent Antiviral Immune Response to Vesicular Stomatitis Virus Challenge in Mouse Brain. Vaccines (Basel) 2020; 8:vaccines8020326. [PMID: 32575459 PMCID: PMC7350232 DOI: 10.3390/vaccines8020326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferon (IFN-I) plays a pivotal role during viral infection response in the central nervous system (CNS). The IFN-I can orchestrate and regulate most of the innate immune gene expression and myeloid cell dynamics following a noncytopathic virus infection. However, the role of IFN-I in the CNS against viral encephalitis is not entirely clear. Here we have implemented the combination of global differential gene expression profiling followed by bioinformatics analysis to decipher the CNS immune response in the presence and absence of the IFN-I signaling. We observed that vesicular stomatitis virus (VSV) infection induced 281 gene changes in wild-type (WT) mice primarily associated with IFN-I signaling. This was accompanied by an increase in antiviral response through leukocyte vascular patrolling and leukocyte influx along with the expression of potent antiviral factors. Surprisingly, in the absence of the IFN-I signaling (IFNAR−/− mice), a significantly higher (1357) number of genes showed differential expression compared to the WT mice. Critical candidates such as IFN-γ, CCL5, CXCL10, and IRF1, which are responsible for the recruitment of the patrolling leukocytes, are also upregulated in the absence of IFN-I signaling. The computational network analysis suggests the presence of the IFN-I independent pathway that compensates for the lack of IFN-I signaling in the brain. The analysis shows that TNF-α is connected maximally to the networked candidates, thus emerging as a key regulator of gene expression and recruitment of myeloid cells to mount antiviral action. This pathway could potentiate IFN-γ release; thereby, synergistically activating IRF1-dependent ISG expression and antiviral response.
Collapse
|
16
|
Chhatbar C, Detje CN, Grabski E, Borst K, Spanier J, Ghita L, Elliott DA, Jordão MJC, Mueller N, Sutton J, Prajeeth CK, Gudi V, Klein MA, Prinz M, Bradke F, Stangel M, Kalinke U. Type I Interferon Receptor Signaling of Neurons and Astrocytes Regulates Microglia Activation during Viral Encephalitis. Cell Rep 2020; 25:118-129.e4. [PMID: 30282022 PMCID: PMC7103936 DOI: 10.1016/j.celrep.2018.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/06/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
In sterile neuroinflammation, a pathological role is proposed for microglia, whereas in viral encephalitis, their function is not entirely clear. Many viruses exploit the odorant system and enter the CNS via the olfactory bulb (OB). Upon intranasal vesicular stomatitis virus instillation, we show an accumulation of activated microglia and monocytes in the OB. Depletion of microglia during encephalitis results in enhanced virus spread and increased lethality. Activation, proliferation, and accumulation of microglia are regulated by type I IFN receptor signaling of neurons and astrocytes, but not of microglia. Morphological analysis of myeloid cells shows that type I IFN receptor signaling of neurons has a stronger impact on the activation of myeloid cells than of astrocytes. Thus, in the infected CNS, the cross talk among neurons, astrocytes, and microglia is critical for full microglia activation and protection from lethal encephalitis.
Collapse
Affiliation(s)
- Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Elena Grabski
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Katharina Borst
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - David A Elliott
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Disease Research (DZNE), Bonn, Germany
| | - Marta Joana Costa Jordão
- Institute of Neuropathology, Freiburg University Medical Centre, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nora Mueller
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - James Sutton
- Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Michael A Klein
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Freiburg University Medical Centre, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Disease Research (DZNE), Bonn, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
17
|
Genes conferring immunity against viral infections. GENETICS AND BREEDING FOR DISEASE RESISTANCE OF LIVESTOCK 2020. [PMCID: PMC7153329 DOI: 10.1016/b978-0-12-816406-8.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunity against viral infection is different from that for other infections. The virus utilizes the host’s immune mechanism for its survival and infection. Innate immune reaction is initially activated by conserved pathogen-associated molecular patterns, pattern recognition receptors, retinoic acid-inducible gene I, MDA5, LGP2, and toll-like receptors (TLRs) such as TLR3 and TLR7. Some important molecules responsible for viral infection include cytokines and chemokines. The current chapter includes the basic mechanism of action of immune-response genes and a list of important genes and their protein IDs. Chemokines include CCL19 and CCL21, and reactivate antiviral CCR7, monocyte chemoattractant protein 1, a CC chemokine, and interleukin 8, an interferon-stimulated gene.
Collapse
|
18
|
Hatton CF, Duncan CJA. Microglia Are Essential to Protective Antiviral Immunity: Lessons From Mouse Models of Viral Encephalitis. Front Immunol 2019; 10:2656. [PMID: 31798586 PMCID: PMC6863772 DOI: 10.3389/fimmu.2019.02656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Viral encephalitis is a rare but clinically serious consequence of viral invasion of the brain and insight into its pathogenesis is urgently needed. Important research questions concern the involvement of the host innate immune response in pathogenesis, key to which is the role played by microglia, resident macrophages of the brain parenchyma. Do microglia have a protective function, by coordinating the innate immune response to viral infection, or do they drive pathogenic neuroinflammation? Here we synthesize recent data from mouse models of acute viral encephalitis, which reveal an unambiguously protective role for microglia. Depletion of microglia, via blockade of colony-stimulating factor 1 receptor (CSF1R) signaling, led to increased viral replication accompanied by more severe neurological disease and heightened mortality. Whilst the underlying mechanism(s) remain to be defined, microglial interactions with T cells and phagocytosis of infected neurones appear to play a role. Paradoxically, the production of inflammatory cytokines was increased in several instances following viral infection in microglia-depleted brains, suggesting that: (i) cells other than microglia mediate inflammatory responses and/or (ii) microglia may exert a regulatory function. Under certain circumstances the microglial antiviral response might contribute negatively to longer-term neurological sequelae, although fewer studies have focused on this aspect in encephalitis models. Understanding regulation of the microglial response, and how it contributes to disease is therefore a priority for future studies. Collectively, these findings demonstrate the central role of microglia in pathogenesis, suggesting the exciting possibility that defects of microglial function might contribute to encephalitis susceptibility and/or outcome in humans.
Collapse
Affiliation(s)
- Catherine F Hatton
- Immunity and Inflammation Theme, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher J A Duncan
- Immunity and Inflammation Theme, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Milora KA, Rall GF. Interferon Control of Neurotropic Viral Infections. Trends Immunol 2019; 40:842-856. [PMID: 31439415 DOI: 10.1016/j.it.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022]
Abstract
Interferons (IFNs) comprise a pleiotropic family of signaling molecules that are often the first line of defense against viral infection. Inflammatory responses induced by IFN are generally well tolerated during peripheral infections; yet, the same degree of inflammation during infection of the central nervous system (CNS) could be catastrophic. Thus, IFN responses must be modified within the CNS to ensure host survival. In this review, we discuss emerging principles highlighting unique aspects of antiviral effects of IFN protection following neurotropic viral infection, chiefly using new techniques in rodent models. Evaluation of these unique responses provides insights into how the immune system eradicates or controls pathogens, while avoiding host damage. Defining these principles may have direct impact on the development of novel clinical approaches.
Collapse
Affiliation(s)
- Katelynn A Milora
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
20
|
Cengiz P, Zafer D, Chandrashekhar JH, Chanana V, Bogost J, Waldman A, Novak B, Kintner DB, Ferrazzano PA. Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia. Neurochem Int 2019; 127:137-147. [PMID: 30639264 DOI: 10.1016/j.neuint.2018.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuroinflammation plays an important role in ischemic brain injury and recovery, however the interplay between brain development and the neuroinflammatory response is poorly understood. We previously described age-dependent differences in the microglial response and the effect of microglial inhibition. Here we investigate whether age-dependent microglial responses may be related to pre-injury developmental differences in microglial phenotype. METHODS Measures of microglia morphology were quantified using semi-automated software analysis of immunostained sections from postnatal day 2 (P2), P9, P30 and P60 mice using IMARIS. Microglia were isolated from P2, P9, P30 and P60 mice, and expression of markers of classical and alternative microglial activation was assessed, as well as transforming growth factor beta (TGF-β) receptor, Serpine1, Mer Tyrosine Kinase (MerTK), and the suppressor of cytokine signaling (SOCS3). Hypoxia-ischemia (HI) was induced in P9 and P30 mice using unilateral carotid artery ligation and exposure to 10% oxygen for 50 min. Microglia morphology and microglial expression of genes in the TGF-β and MerTK pathways were determined in ipsilateral and contralateral hippocampus. RESULTS A progressive and significant increase in microglia branching morphology was seen in all brain regions from P2 to P30. No consistent classical or alternative activation profile was seen in isolated microglia. A clear transition to increased expression of TGF-β and its downstream effector serpine1 was seen between P9 and P30. A similar increase in expression was seen in MerTK and its downstream effector SOCS3. HI resulted in a significant decrease in branching morphology only in the P9 mice, and expression of TGF-β receptor, Serpine1, MerTK, and SOCS3 were elevated in P30 mice compared to P9 post-HI. CONCLUSION Microglia maturation is associated with changes in morphology and gene expression, and microglial responses to ischemia in the developing brain differ based on the age at which injury occurs.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Dila Zafer
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jayadevi H Chandrashekhar
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Illinois at Urbana-Champaign, IL, USA
| | - Vishal Chanana
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jacob Bogost
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alex Waldman
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Emory University School of Medicine, Atlanta, GA, USA
| | - Becca Novak
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Douglas B Kintner
- Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peter A Ferrazzano
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Waisman Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
21
|
Chen YC, Chang KH, Chen CM. Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2018; 19:ijms19123879. [PMID: 30518145 PMCID: PMC6321144 DOI: 10.3390/ijms19123879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 01/14/2023] Open
Abstract
Differences in the incidence of spontaneous intracerebral hemorrhage (ICH) between ethnicities exist, with an estimated 42% of the variance explained by ethnicity itself. Caucasians have a higher proportion of lobar ICH (LICH, 15.4% of all ICH) than do Asians (3.4%). Alterations in the causal factor exposure between countries justify part of the ethnic variance in ICH incidence. One third of ICH risk can be explained by genetic variation; therefore, genetic differences between populations can partly explain the difference in ICH incidence. In this paper, we review the current knowledge of genetic variants associated with ICH in multiple ethnicities. Candidate gene variants reportedly associated with ICH were involved in the potential pathways of hypertension, vessel wall integrity, lipid metabolism, endothelial dysfunction, inflammation, platelet function, and coagulopathy. Furthermore, variations in APOE (in multiple ethnicities), PMF1/SLC25A44 (in European), ACE (in Asian), MTHFR (in multiple ethnicities), TRHDE (in European), and COL4A2 (in European) were the most convincingly associated with ICH. The majority of the associated genes provide small contributions to ICH risk, with few of them being replicated in multiple ethnicities.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, No.5, Fuxing St., Guishan Township, Taoyuan County 333, Taiwan.
| |
Collapse
|
22
|
Hwang M, Bergmann CC. Intercellular Communication Is Key for Protective IFNα/β Signaling During Viral Central Nervous System Infection. Viral Immunol 2018; 32:1-6. [PMID: 30222502 DOI: 10.1089/vim.2018.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A variety of viruses can induce central nervous system (CNS) infections and neurological diseases, although the incidence is rare. Similar to peripheral infections, IFNα/β induction and signaling constitutes a first line of defense to limit virus dissemination. However, CNS-resident cells differ widely in their repertoire and magnitude of both basal and inducible components in the IFNα/β pathway. While microglia as resident myeloid cells have been implicated as prominent sentinels of CNS invading pathogens or insults, astrocytes are emerging as key responders to many neurotropic RNA virus infections. Focusing on RNA viruses, this review discusses the role of astrocytes as IFNα/β inducers and responders and touches on the role of IFNα/β receptor signaling in regulating myeloid cell activation and IFNγ responsiveness. A summary picture emerges implicating IFNα/β not only as key in establishing the classical "antiviral" state, but also orchestrating cell mobility and IFNγ-mediated effector functions.
Collapse
Affiliation(s)
- Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute , Cleveland Clinic Foundation, Cleveland, Ohio
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute , Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
23
|
Pittet MJ, Garris CS, Arlauckas SP, Weissleder R. Recording the wild lives of immune cells. Sci Immunol 2018; 3:eaaq0491. [PMID: 30194240 PMCID: PMC6771424 DOI: 10.1126/sciimmunol.aaq0491] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Intravital microscopic imaging can uncover fundamental aspects of immune cell behavior in real time in both healthy and pathological states. Here, we discuss approaches for single-cell imaging of adaptive and innate immune cells to explore how they migrate, communicate, and mediate regulatory or effector functions in various tissues throughout the body. We further review how intravital single-cell imaging can be used to study drug effects on immune cells.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Sean P Arlauckas
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
24
|
Li W, Viengkhou B, Denyer G, West PK, Campbell IL, Hofer MJ. Microglia have a more extensive and divergent response to interferon-α compared with astrocytes. Glia 2018; 66:2058-2078. [PMID: 30051922 DOI: 10.1002/glia.23460] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Type I interferons (IFN-I) are crucial for effective antimicrobial defense in the central nervous system (CNS) but also can cause severe neurological disease (termed cerebral interferonopathy) as exemplified by Aicardi-Goutières Syndrome. In the CNS, microglia and astrocytes have essential roles in host responses to infection and injury, with both cell types responding to IFN-I. While the IFN-I signaling pathways are the same in astrocytes and microglia, the extent to which the IFN-I responses of these cells differ, if at all, is unknown. Here we determined the global transcriptional responses of astrocytes and microglia to the IFN-I, IFN-α. We found that under basal conditions, each cell type has a unique gene expression pattern reflective of its developmental origin and biological function. Following stimulation with IFN-α, astrocytes and microglia also displayed a common core response that was characterized by the increased expression of genes required for pathogen detection and elimination. Compared with astrocytes, microglia had a more extensive and diverse response to IFN-α with significantly more genes with expression upregulated (282 vs. 141) and downregulated (81 vs. 3). Further validation was documented for selected IFN-I-regulated genes in a murine model of cerebral interferonopathy. In all, the findings highlight not only overlapping but importantly divergent responses to IFN-I by astrocytes versus microglia. This suggests specialized roles for these cells in host defense and in the development of cerebral interferonopathy.
Collapse
Affiliation(s)
- Wen Li
- The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia
| | - Barney Viengkhou
- The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia.,The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Gareth Denyer
- The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Phillip K West
- The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia.,The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| | - Iain L Campbell
- The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia
| | - Markus J Hofer
- The University of Sydney, School of Molecular Bioscience, the Marie Bashir Institute for Infectious Diseases and Biosecurity, the Charles Perkins Centre, and the Bosch Institute, Sydney, Australia.,The University of Sydney, School of Life and Environmental Sciences, Sydney, Australia
| |
Collapse
|
25
|
Alpha/Beta Interferon (IFN-α/β) Signaling in Astrocytes Mediates Protection against Viral Encephalomyelitis and Regulates IFN-γ-Dependent Responses. J Virol 2018; 92:JVI.01901-17. [PMID: 29491163 PMCID: PMC5923078 DOI: 10.1128/jvi.01901-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
The contribution of distinct central nervous system (CNS) resident cells to protective alpha/beta interferon (IFN-α/β) function following viral infections is poorly understood. Based on numerous immune regulatory functions of astrocytes, we evaluated the contribution of astrocyte IFN-α/β signaling toward protection against the nonlethal glia- and neuronotropic mouse hepatitis virus (MHV) strain A59. Analysis of gene expression associated with IFN-α/β function, e.g., pattern recognition receptors (PRRs) and interferon-stimulated genes (ISGs), revealed lower basal mRNA levels in brain-derived astrocytes than in microglia. Although astrocytes poorly induced Ifnβ mRNA following infection, they upregulated various mRNAs in the IFN-α/β pathway to a higher extent than microglia, supporting effective IFN-α/β responsiveness. Ablation of the IFN-α/β receptor (IFNAR) in astrocytes using mGFAPcre IFNARfl/fl mice resulted in severe encephalomyelitis and mortality, coincident with uncontrolled virus replication. Further, virus spread was not restricted to astrocytes but also affected microglia and neurons, despite increased and sustained Ifnα/β and ISG mRNA levels within the CNS. IFN-γ, a crucial mediator for MHV control, was not impaired in infected mGFAPcre IFNARfl/fl mice despite reduced T cell CNS infiltration. Unexpectedly however, poor induction of IFN-γ-dependent major histocompatibility complex (MHC) class II expression on microglia supported that defective IFN-γ signaling contributes to uncontrolled virus replication. A link between sustained elevated IFN-α/β and impaired responsiveness to IFN-γ supports the novel concept that temporally limited early IFN-α/β responses are critical for effective antiviral IFN-γ function. Overall, our results imply that IFN-α/β signaling in astrocytes is not only critical in limiting early CNS viral spread but also promotes protective antiviral IFN-γ function.IMPORTANCE An antiviral state established by IFN-α/β contains initial viral spread as adaptive immunity develops. While it is apparent that the CNS lacks professional IFN-α/β producers and that resident cells have distinct abilities to elicit innate IFN-α/β responses, protective interactions between inducer and responder cells require further investigation. Infection with a glia- and neuronotropic coronavirus demonstrates that astrocytes mount a delayed but more robust response to infection than microglia, despite their lower basal mRNA levels of IFN-α/β-inducing components. Lethal, uncontrolled viral dissemination following ablation of astrocyte IFN-α/β signaling revealed the importance of IFN-α/β responses in a single cell type for protection. Sustained global IFN-α/β expression associated with uncontrolled virus did not suffice to protect neurons and further impaired responsiveness to protective IFN-γ. The results support astrocytes as critical contributors to innate immunity and the concept that limited IFN-α/β responses are critical for effective subsequent antiviral IFN-γ function.
Collapse
|
26
|
Abstract
Advances in CNS immunity and anatomy bridge the CNS and the peripheral immune system. Region-specific antiviral responses alter BBB permeability during viral invasion. CNS barriers have anatomical specializations with tailored defenses against pathogens. Immunocytotherapies for persistent CNS infections can promote non-cytopathic viral clearance.
The central nervous system (CNS) is an immunologically specialized organ where restrictive barrier structures protect the parenchyma from inflammation and infection. This protection is important in preventing damage to non-renewable resident cell populations, such as neurons, responsible for functions ranging from executive to autonomic. Despite these barriers, the CNS can be infected through several entry portals, giving rise to meningitis and encephalitis. Following infection, resident cells recruit peripherally derived immune cells to sites of viral infection. In this review, we discuss recent advances in immune recruitment and entry at barrier structures as well as current immunotherapeutic strategies for the treatment of persistent viral infections.
Collapse
|
27
|
Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R, Spinrad A, Singer O, David E, Winter DR, Smith LK, Kertser A, Baruch K, Rosenzweig N, Terem A, Prinz M, Villeda S, Citri A, Amit I, Schwartz M. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat Commun 2017; 8:717. [PMID: 28959042 PMCID: PMC5620041 DOI: 10.1038/s41467-017-00769-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/23/2017] [Indexed: 11/08/2022] Open
Abstract
During ageing, microglia acquire a phenotype that may negatively affect brain function. Here we show that ageing microglial phenotype is largely imposed by interferon type I (IFN-I) chronically present in aged brain milieu. Overexpression of IFN-β in the CNS of adult wild-type mice, but not of mice lacking IFN-I receptor on their microglia, induces an ageing-like transcriptional microglial signature, and impairs cognitive performance. Furthermore, we demonstrate that age-related IFN-I milieu downregulates microglial myocyte-specific enhancer factor 2C (Mef2C). Immune challenge in mice lacking Mef2C in microglia results in an exaggerated microglial response and has an adverse effect on mice behaviour. Overall, our data indicate that the chronic presence of IFN-I in the brain microenvironment, which negatively affects cognitive function, is mediated via modulation of microglial activity. These findings may shed new light on other neurological conditions characterized by elevated IFN-I signalling in the brain.Microglia cells in the brain regulate immune responses, but in ageing can negatively affect brain function. Here the authors show that the chronic presence of type I interferon in aged mouse brain impedes cognitive ability by altering microglia transcriptome and limiting Mef2C, a microglia 'off' signal.
Collapse
Affiliation(s)
| | - Orit Matcovitch-Natan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Sefi Ben-Hamo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Raz Dvir-Szternfeld
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Amit Spinrad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Oded Singer
- Faculty of Biochemistry, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lucas K Smith
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Alexander Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Rosenzweig
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anna Terem
- Department of Biological Chemistry, Institute of Life Sciences, Faculty of Natural Sciences, The Hebrew University, Jerusalem, 91904, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 91904, Israel
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, 79104, Germany
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ami Citri
- Department of Biological Chemistry, Institute of Life Sciences, Faculty of Natural Sciences, The Hebrew University, Jerusalem, 91904, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, 91904, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
28
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Interferon-β regulates the production of IL-10 by toll-like receptor-activated microglia. Glia 2017; 65:1439-1451. [PMID: 28617991 PMCID: PMC7165667 DOI: 10.1002/glia.23172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022]
Abstract
Pattern recognition receptors, such as toll‐like receptors (TLRs), perceive tissue alterations and initiate local innate immune responses. Microglia, the resident macrophages of the brain, encode TLRs which primary role is to protect the tissue integrity. However, deregulated activation of TLRs in microglia may lead to chronic neurodegeneration. This double role of microglial responses is often reported in immune‐driven neurologic diseases, as in multiple sclerosis (MS). Consequently, strategies to manipulate microglia inflammatory responses may help to ameliorate disease progression. In this context, the anti‐inflammatory cytokine interleukin (IL)‐10 appears as an attractive target. In this study, we investigated how activation of microglia by TLRs with distinct roles in MS impacts on IL‐10 production. We found that activation of TLR2, TLR4, and TLR9 induced the production of IL‐10 to a greater extent than activation of TLR3. This was surprising as both TLR3 and IL‐10 play protective roles in animal models of MS. Interestingly, combination of TLR3 triggering with the other TLRs, enhanced IL‐10 through the modulation of its transcription, via interferon (IFN)‐β, but independently of IL‐27. Thus, in addition to the modulation of inflammatory responses of the periphery described for the axis TLR3/IFN‐β, we now report a direct modulation of microglial responses. We further show that the presence of IFN‐γ in the microenvironment abrogated the modulation of IL‐10 by TLR3, whereas that of IL‐17 had no effect. Considering the therapeutic application of IFN‐β in MS, our study bears important implications for the understanding of the cytokine network regulating microglia responses in this setting.
Collapse
Affiliation(s)
- Diogo Lobo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A, Sekiguchi KJ, O'Shea CC, Lemke G, Nimmerjahn A. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron 2017; 93:574-586.e8. [PMID: 28111081 DOI: 10.1016/j.neuron.2016.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled.
Collapse
Affiliation(s)
- Yusuf Tufail
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela Cook
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Colin J Powers
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles L Clark
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Hoffman
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander Ngo
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Hickman HD. New insights into antiviral immunity gained through intravital imaging. Curr Opin Virol 2017; 22:59-63. [PMID: 28081484 DOI: 10.1016/j.coviro.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/25/2023]
Abstract
Viral infections pose an ongoing challenge for mankind. Much of our knowledge of the immune response to viral infections comes from ex vivo analyses of infected animals, which provide important yet static information about events occurring within the host. Recently, a relatively new technique known as intravital microscopy (IVM) has been applied to the study of antiviral immunity. Intravital imaging affords a unique, real-time view of both viral dynamics and the ensuing immune response (along with their interplay) in the living animal. This review details some of the newest observations about the antiviral immune response gained using IVM.
Collapse
Affiliation(s)
- Heather D Hickman
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
32
|
The brain parenchyma has a type I interferon response that can limit virus spread. Proc Natl Acad Sci U S A 2016; 114:E95-E104. [PMID: 27980033 DOI: 10.1073/pnas.1618157114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.
Collapse
|
33
|
Miller KD, Schnell MJ, Rall GF. Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat Rev Neurosci 2016; 17:766-776. [PMID: 27811921 DOI: 10.1038/nrn.2016.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming clear that the manner by which the immune response resolves or contains infection by a pathogen varies according to the tissue that is affected. Unlike many peripheral cell types, CNS neurons are generally non-renewable. Thus, the cytolytic and inflammatory strategies that are effective in controlling infections in the periphery could be damaging if deployed in the CNS. Perhaps for this reason, the immune response to some CNS viral infections favours maintenance of neuronal integrity and non-neurolytic viral control. This modified immune response - when combined with the unique anatomy and physiology of the CNS - provides an ideal environment for the maintenance of viral genomes, including those of RNA viruses. Therefore, it is possible that such viruses can reactivate long after initial viral exposure, contributing to CNS disease.
Collapse
Affiliation(s)
- Katelyn D Miller
- Program in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Glenn F Rall
- Program in Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
34
|
Lovelace MD, Varney B, Sundaram G, Franco NF, Ng ML, Pai S, Lim CK, Guillemin GJ, Brew BJ. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis. Front Immunol 2016; 7:246. [PMID: 27540379 PMCID: PMC4972824 DOI: 10.3389/fimmu.2016.00246] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington’s disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood–brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP inhibitors are currently in clinical trials for other neurological diseases, and hence may make suitable candidates for MS patients. Underpinning these drug discovery endeavors, in recent years, several advances have been made in how KP metabolites are assayed in various biological fluids, and tremendous advancements have been made in how specimens are imaged to determine disease progression and involvement of various cell types and molecules in MS.
Collapse
Affiliation(s)
- Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Bianca Varney
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Gayathri Sundaram
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Nunzio F Franco
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research , Sydney, NSW , Australia
| | - Mei Li Ng
- Faculty of Medicine, Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Saparna Pai
- Sydney Medical School, University of Sydney , Sydney, NSW , Australia
| | - Chai K Lim
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University , Sydney, NSW , Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia; Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia
| |
Collapse
|
35
|
Zhu X, Levasseur PR, Michaelis KA, Burfeind KG, Marks DL. A distinct brain pathway links viral RNA exposure to sickness behavior. Sci Rep 2016; 6:29885. [PMID: 27435819 PMCID: PMC4951726 DOI: 10.1038/srep29885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/23/2016] [Indexed: 11/14/2022] Open
Abstract
Sickness behaviors and metabolic responses to invading pathogens are common to nearly all types of infection. These responses evolved to provide short-term benefit to the host to ward off infection, but impact on quality of life, and when prolonged lead to neurodegeneration, depression, and cachexia. Among the major infectious agents, viruses most frequently enter the brain, resulting in profound neuroinflammation. We sought to define the unique features of the inflammatory response in the brain to these infections. We demonstrate that the molecular pathway defining the central response to dsRNA is distinct from that found in the periphery. The behavioral and physical response to the dsRNA mimetic poly I:C is dependent on signaling via MyD88 when it is delivered centrally, whereas this response is mediated via the TRIF pathway when delivered peripherally. We also define the likely cellular candidates for this MyD88-dependent step. These findings suggest that symptom management is possible without ameliorating protective antiviral immune responses.
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| | - Pete R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| | - Katherine A Michaelis
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA.,MD/PhD Program, Oregon Health &Science University, Portland, OR 97239, USA
| | - Kevin G Burfeind
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA.,MD/PhD Program, Oregon Health &Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health &Science University, Portland, OR 97239, USA
| |
Collapse
|
36
|
Nagaraju K, Ghimbovschi S, Rayavarapu S, Phadke A, Rider LG, Hoffman EP, Miller FW. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients. Rheumatology (Oxford) 2016; 55:1673-80. [PMID: 27215813 DOI: 10.1093/rheumatology/kew213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. METHODS In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. RESULTS Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. CONCLUSION Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity.
Collapse
Affiliation(s)
- Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center Department of Integrative Systems Biology, Institute for Biomedical Sciences, George Washington University, Washington, DC
| | | | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children's National Medical Center Department of Integrative Systems Biology, Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Aditi Phadke
- Research Center for Genetic Medicine, Children's National Medical Center
| | - Lisa G Rider
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center Department of Integrative Systems Biology, Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Frederick W Miller
- Environmental Autoimmunity Group, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Watanabe R, Kakizaki M, Ikehara Y, Togayachi A. Formation of fibroblastic reticular network in the brain after infection with neurovirulent murine coronavirus. Neuropathology 2016; 36:513-526. [PMID: 27121485 PMCID: PMC7167860 DOI: 10.1111/neup.12302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 01/12/2023]
Abstract
cl‐2 virus is an extremely neurovirulent murine coronavirus. However, during the initial phase of infection between 12 and 24 h post‐inoculation (hpi), the viral antigens are detected only in the meninges, followed by viral spread into the ventricular wall before invasion into the brain parenchyma, indicating that the viruses employ a passage between the meninges and ventricular wall as an entry route into the brain parenchyma. At 48 hpi, the passage was found to be constructed by ER‐TR7 antigen (ERag)‐positive fibers (ERfibs) associated with laminin and collagen III between the fourth ventricle and meninges at the cerebellopontine angle. The construct of the fibers mimics the reticular fibers of the fibroblastic reticular network, which comprises a conduit system in the lymphoid organs. In the meninges, ERfibs together with collagen fibers, lining in a striped pattern, made up a pile of thin sheets. In the brain parenchyma, mature ERfibs associated with laminin were found around blood vessels. Besides mature ERfibs, immature Erfibs without associations with other extracellular matrix components like laminin and collagen appeared after infection, suggesting that the CNS creates a unique conduit system for immune communication triggered by viral invasion.
Collapse
Affiliation(s)
- Rihito Watanabe
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Masatoshi Kakizaki
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Yuzuru Ikehara
- Research Center For Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akira Togayachi
- Research Center For Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 2016; 36:637-650. [PMID: 26431941 DOI: 10.1016/j.it.2015.08.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) contains a sophisticated neural network that must be constantly surveyed in order to detect and mitigate a diverse array of challenges. The innate and adaptive immune systems actively participate in this surveillance, which is critical for the maintenance of CNS homeostasis and can facilitate the resolution of infections, degeneration, and tissue damage. Infections and sterile injuries represent two common challenges imposed on the CNS that require a prompt immune response. While the inducers of these two challenges differ in origin, the resultant responses orchestrated by the CNS share some overlapping features. Here, we review how the CNS immunologically discriminates between pathogens and sterile injuries, mobilizes an immune reaction, and, ultimately, regulates local and peripherally-derived immune cells to provide a supportive milieu for tissue repair.
Collapse
|
39
|
Stolp B, Melican K. Microbial pathogenesis revealed by intravital microscopy: pros, cons and cautions. FEBS Lett 2016; 590:2014-26. [PMID: 26938770 DOI: 10.1002/1873-3468.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022]
Abstract
Intravital multiphoton imaging allows visualization of infections and pathogenic mechanisms within intact organs in their physiological context. Today, most organs of mice and rats are applicable to in vivo or ex vivo imaging, opening completely new avenues for many researchers. Advances in fluorescent labeling of pathogens and infected cells, as well as improved small animal models for human pathogens, led to the increased application of in vivo imaging in infectious diseases research in recent years. Here, we review the latest literature on intravital or ex vivo imaging of viral and bacterial infections and critically discuss requirements, benefits and drawbacks of applied animal models, labeling strategies, and imaged organs.
Collapse
Affiliation(s)
- Bettina Stolp
- Heidelberg University Hospital, Center of Infectious Diseases, Integrative Virology, Heidelberg, Germany
| | - Keira Melican
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 2016; 64:300-16. [PMID: 26470014 PMCID: PMC4707977 DOI: 10.1002/glia.22930] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022]
Abstract
Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2-12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2-4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba-1(+)) and astrocytes (GFAP(+)), however, were undetected during this 2-12 h timeframe. Increased Iba-1 immunoreactivity and de-ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba-1 or GFAP immunoreactivity after LPS challenge.
Collapse
Affiliation(s)
- Diana M. Norden
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Paige J. Trojanowski
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Emmanuel Villanueva
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Elisa Navarro
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
| | - Jonathan P. Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10 Ave, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA
- Corresponding author: J.P. Godbout, 259 IBMR Bldg, 460 Medical Center Dr., The Ohio State University, Columbus, OH 43210, USA. Tel: (614) 293-3456 Fax: (614) 366-2097,
| |
Collapse
|
41
|
Goldmann T, Blank T, Prinz M. Fine-tuning of type I IFN-signaling in microglia--implications for homeostasis, CNS autoimmunity and interferonopathies. Curr Opin Neurobiol 2015; 36:38-42. [PMID: 26397019 PMCID: PMC7126514 DOI: 10.1016/j.conb.2015.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are pleiotropic cytokines originally described as molecules used for communication between cells to trigger the protective defenses against viral infections. Upon activation, type I IFN can be produced locally in the central nervous system (CNS) from a number of different cell types including microglia, the CNS-resident macrophages. Increased type I IFN production and signaling in microglia are critically important to limit viral infection and disease progression in multiple sclerosis. However, recent findings suggest that even baseline levels of constitutive IFN expression and secretion are important for homeostasis of the CNS. In fact, in the absence of viral particles chronic elevation of IFN I may be tremendously harmful for the CNS, as assumed for patients suffering from Aicardi-Goutières syndrome, Cree encephalitis or other type I interferonopathies. The highly diverse nature of type I IFN for brain homeostasis during health and disease will be discussed in this report.
Collapse
Affiliation(s)
- Tobias Goldmann
- Institute of Neuropathology, University of Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
42
|
Rua R, McGavern DB. Elucidation of monocyte/macrophage dynamics and function by intravital imaging. J Leukoc Biol 2015; 98:319-32. [PMID: 26162402 PMCID: PMC4763596 DOI: 10.1189/jlb.4ri0115-006rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Monocytes and macrophages are a diverse population of innate immune cells that play a critical role in homeostasis and inflammation. These cells are surveillant by nature and closely monitor the vasculature and surrounding tissue during states of health and disease. Given their abundance and strategic positioning throughout the body, myeloid cells are among the first responders to any inflammatory challenge and are active participants in most immune-mediated diseases. Recent studies have shed new light on myeloid cell dynamics and function by use of an imaging technique referred to as intravital microscopy (IVM). This powerful approach allows researchers to gain real-time insights into monocytes and macrophages performing homeostatic and inflammatory tasks in living tissues. In this review, we will present a contemporary synopsis of how intravital microscopy has revolutionized our understanding of myeloid cell contributions to vascular maintenance, microbial defense, autoimmunity, tumorigenesis, and acute/chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
43
|
Herz J, Johnson KR, McGavern DB. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. ACTA ACUST UNITED AC 2015; 212:1153-69. [PMID: 26122661 PMCID: PMC4516789 DOI: 10.1084/jem.20142047] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/04/2015] [Indexed: 01/12/2023]
Abstract
Clearance of neurotropic infections is challenging because the CNS is relatively intolerant of immunopathological reactions. Herz et al. use a model of persistent viral infection in mice to demonstrate therapeutic antiviral T cells can purge the CNS infection without causing tissue damage resulting from limited recruitment of inflammatory innate immune cells and conversion of microglia into APCs. Several viruses can infect the mammalian nervous system and induce neurological dysfunction. Adoptive immunotherapy is an approach that involves administration of antiviral T cells and has shown promise in clinical studies for the treatment of peripheral virus infections in humans such as cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus, among others. In contrast, clearance of neurotropic infections is particularly challenging because the central nervous system (CNS) is relatively intolerant of immunopathological reactions. Therefore, it is essential to develop and mechanistically understand therapies that noncytopathically eradicate pathogens from the CNS. Here, we used mice persistently infected from birth with lymphocytic choriomeningitis virus (LCMV) to demonstrate that therapeutic antiviral T cells can completely purge the persistently infected brain without causing blood–brain barrier breakdown or tissue damage. Mechanistically, this is accomplished through a tailored release of chemoattractants that recruit antiviral T cells, but few pathogenic innate immune cells such as neutrophils and inflammatory monocytes. Upon arrival, T cells enlisted the support of nearly all brain-resident myeloid cells (microglia) by inducing proliferation and converting them into CD11c+ antigen-presenting cells (APCs). Two-photon imaging experiments revealed that antiviral CD8+ and CD4+ T cells interacted directly with CD11c+ microglia and induced STAT1 signaling but did not initiate programmed cell death. We propose that noncytopathic CNS viral clearance can be achieved by therapeutic antiviral T cells reliant on restricted chemoattractant production and interactions with apoptosis-resistant microglia.
Collapse
Affiliation(s)
- Jasmin Herz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Kory R Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
44
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
45
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
46
|
Seo YJ, Hahm B. Sphingosine analog AAL-R promotes activation of LCMV-infected dendritic cells. Viral Immunol 2014; 27:82-6. [PMID: 24605791 DOI: 10.1089/vim.2013.0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sphingosine analogs display diverse immunoregulatory activities with curative potential in autoimmune diseases and viral infections. Recently, the sphingosine analog AAL-R was shown to increase DC activation upon TLR7 stimulation. Here, we investigated the effect of AAL-R on activation of dendritic cells (DCs) infected by lymphocytic choriomeningitis virus (LCMV). Concomitant treatment of LCMV-infected DCs with AAL-R enhanced DC maturation and DC ability to stimulate and expand antiviral CD8(+) T cells. Importantly, AAL-R's stimulatory activity was abrogated in type I interferon (IFN) receptor-deficient DCs following LCMV infection. In support of this observation, AAL-R increased type I IFN production from DCs infected with LCMV. Taken together, the sphingosine analog could directly act on DCs to promote defensive host DC responses to the viral invasion via type I IFN signaling.
Collapse
Affiliation(s)
- Young-Jin Seo
- Departments of Surgery and Molecular Microbiology and Immunology, Center for Cellular and Molecular Immunology, University of Missouri-Columbia , Columbia, Missouri
| | | |
Collapse
|
47
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
48
|
Kim SK, Park HJ, Kim JW, Chung JH, Yoo SD, Kim DH, Yun DH, Kim HS. T Allele of nonsense polymorphism (rs2039381, Gln71Stop) of interferon-ε is a risk factor for the development of intracerebral hemorrhage. Hum Immunol 2013; 75:88-90. [PMID: 24055696 DOI: 10.1016/j.humimm.2013.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022]
Abstract
Interferons (IFNs) play key roles in various biologic responses including antiviral and immune reactions. We evaluated one possible risk factor in nonsense polymorphism (rs2039381, Gln71Stop) of interferon-ε (IFNE). We recruited stroke [119 ischemic stroke (IS) and 145 intracerebral hemorrhage (ICH)] and control (401), respectively. The nonsense SNP (rs2039381, Gln71Stop) of IFNE was selected. We identified individual genotype using sequencing. SNPStats and SPSS 18.0 programs were used to analyze genetic data. Genotype frequencies (C/C:C/T:T/T) in the ICH group and control group were 59.3:37.9:2.8 and 73.6:23.4:3.0, respectively. We found that rs2039381 was associated with ICH (OR = 2.01, 95% CI = 1.33-3.03, p = 0.001 in codominant1 model; OR = 1.91, 95% CI = 1.28-2.84, p = 0.0016 in dominant model; OR = 1.60, 95% CI = 1.14-2.26, p = 0.0074 in log-additive model). T allele frequency of rs2039381 was significantly higher in ICH than in controls. The nonsense SNP (rs2039381, Gln71Stop) of IFNE was associated with ICH (OR = 1.61, 95% CI = 1.14-2.26, p = 0.006). A nonsense SNP (rs2039381, Gln71Stop) of IFNE was associated with ICH in Korean population. Our findings raise the possibility that the T allele of rs2039381 is a risk factor which is susceptible to ICH.
Collapse
Affiliation(s)
- Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jong Woo Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Seung Don Yoo
- Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Dong Hwan Kim
- Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Dong Hwan Yun
- Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Hee-Sang Kim
- Physical Medicine and Rehabilitation, School of Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea.
| |
Collapse
|