1
|
Yabaji SM, Zhernovkov V, Araveti PB, Lata S, Rukhlenko OS, Abdullatif SA, Vanvalkenburg A, Alekseev Y, Ma Q, Dayama G, Lau NC, Johnson WE, Bishai WR, Crossland NA, Campbell JD, Kholodenko BN, Gimelbrant AA, Kobzik L, Kramnik I. Lipid Peroxidation and Type I Interferon Coupling Fuels Pathogenic Macrophage Activation Causing Tuberculosis Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.05.583602. [PMID: 38496444 PMCID: PMC10942339 DOI: 10.1101/2024.03.05.583602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
A quarter of human population is infected with Mycobacterium tuberculosis, but less than 10% of those infected develop pulmonary TB. We developed a genetically defined sst1-susceptible mouse model that uniquely reproduces a defining feature of human TB: the development of necrotic lung granulomas and determined that the sst1-susceptible phenotype was driven by the aberrant macrophage activation. This study demonstrates that the aberrant response of the sst1-susceptible macrophages to prolonged stimulation with TNF is primarily driven by conflicting Myc and antioxidant response pathways leading to a coordinated failure 1) to properly sequester intracellular iron and 2) to activate ferroptosis inhibitor enzymes. Consequently, iron-mediated lipid peroxidation fueled Ifn-beta superinduction and sustained the Type I Interferon (IFN-I) pathway hyperactivity that locked the sst1-susceptible macrophages in a state of unresolving stress and compromised their resistance to Mtb. The accumulation of the aberrantly activated, stressed, macrophages within granuloma microenvironment led to the local failure of anti-tuberculosis immunity and tissue necrosis. The upregulation of Myc pathway in peripheral blood cells of human TB patients was significantly associated with poor outcomes of TB treatment. Thus, Myc dysregulation in activated macrophages results in an aberrant macrophage activation and represents a novel target for host-directed TB therapies.
Collapse
|
2
|
Betancourt JJ, Ding M, Yoder JM, Mutyaba I, Atkins HM, De la Cruz G, Meya DB, Nielsen K. Pulmonary granuloma formation during latent Cryptococcus neoformans infection in C3HeB/FeJ mice involves progression through three immunological phases. mBio 2025; 16:e0361024. [PMID: 39807873 PMCID: PMC11796415 DOI: 10.1128/mbio.03610-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs. To investigate this, we performed an analysis of pulmonary immune cell populations, cytokine changes, and granuloma formation during infection with a latent disease-causing clinical isolate in C3HeB/FeJ mice over 360 days. We found that latently infected mice progress through three phases of granuloma formation where different immune profiles dominate: an early phase characterized by eosinophilia, high IL-4/IL-13, and C. neoformans proliferation in the lungs; an intermediate phase characterized by multinucleated giant cell formation, high IL-1α/IFNγ, granuloma expansion, and increased blood antigen levels; and a late phase characterized by a significant expansion of T cells, granuloma condensation, and decreases in lung fungal burden and blood antigen levels. These findings highlight a complex series of immune changes that occur during the establishment of granulomas that control C. neoformans in the lungs and lay the foundation for studies to identify critical beneficial immune responses to Cryptococcus infections.IMPORTANCECryptococcus neoformans is a fungal pathogen that disseminates from the lungs to the brain to cause fatal disease. Latent C. neoformans infection in the lungs is controlled by organized collections of immune cells called granulomas. The formation and structure of Cryptococcus granulomas are poorly understood due to inconsistent human pathology results and disagreement between necrotic granuloma-forming rat models and non-necrotic granuloma-forming mouse models. To overcome this, we investigated granuloma formation during latent C. neoformans infection in the C3HeB/FeJ mouse strain which forms necrotic lung granulomas in response to other pathogens. We found that latent C. neoformans granuloma formation progresses through phases that we described as early, intermediate, and late with different immune response profiles and granulomatous characteristics. Ultimately, we show that C3HeB/FeJ mice latently infected with C. neoformans form non-necrotic granulomas and could provide a novel mouse model to investigate host immune response profiles.
Collapse
Affiliation(s)
- Jovany J. Betancourt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Minna Ding
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - J. Marina Yoder
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Issa Mutyaba
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hannah M. Atkins
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabriela De la Cruz
- Pathology Services Core, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - David B. Meya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Meade RK, Smith CM. Immunological roads diverged: mapping tuberculosis outcomes in mice. Trends Microbiol 2025; 33:15-33. [PMID: 39034171 DOI: 10.1016/j.tim.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
The journey from phenotypic observation to causal genetic mechanism is a long and challenging road. For pathogens like Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), host-pathogen coevolution has spanned millennia, costing millions of human lives. Mammalian models can systematically recapitulate host genetic variation, producing a spectrum of disease outcomes. Leveraging genome sequences and deep phenotyping data from infected mouse genetic reference populations (GRPs), quantitative trait locus (QTL) mapping approaches have successfully identified host genomic regions associated with TB phenotypes. Here, we review the ongoing optimization of QTL mapping study design alongside advances in mouse GRPs. These next-generation resources and approaches have enabled identification of novel host-pathogen interactions governing one of the most prevalent infectious diseases in the world today.
Collapse
Affiliation(s)
- Rachel K Meade
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Clare M Smith
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Betancourt JJ, Ding M, Yoder JM, Mutyaba I, Atkins HM, de la Cruz G, Meya DB, Nielsen K. Pulmonary granuloma formation during latent Cryptococcus neoformans infection in C3HeB/FeJ mice involves progression through three immunological phases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626680. [PMID: 39677654 PMCID: PMC11643028 DOI: 10.1101/2024.12.03.626680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cryptococcus neoformans is a fungal pathogen that can cause lethal disease in immunocompromised patients. Immunocompetent host immune responses, such as formation of pulmonary granulomas, control the infection and prevent disseminated disease. Little is known about the immunological conditions establishing the latent infection granuloma in the lungs. To investigate this, we performed an analysis of pulmonary immune cell populations, cytokine changes, and granuloma formation during infection with a latent disease-causing clinical isolate in C3HeB/FeJ mice over 360 days. We found that latently infected mice progress through three phases of granuloma formation where different immune profiles dominate: an early phase characterized by eosinophilia, high IL-4/IL-13, and C. neoformans proliferation in the lungs; an intermediate phase characterized by multinucleated giant cell formation, high IL-1α/IFNγ, granuloma expansion, and increased blood antigen levels; and a late phase characterized by a significant expansion of T cells, granuloma condensation, and decreases in lung fungal burden and blood antigen levels. These findings highlight a complex series of immune changes that occur during the establishment of granulomas that control C. neoformans in the lungs and lay the foundation for studies to identify critical beneficial immune responses to Cryptococcus infections. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that disseminates from the lungs to the brain to cause fatal disease. Latent C . neoformans infection in the lungs is controlled by organized collections of immune cells called granulomas. The formation and structure of Cryptococcus granulomas are poorly understood due to inconsistent human pathology results and disagreement between necrotic granuloma-forming rat models and non-necrotic granuloma-forming mouse models. To overcome this, we investigated granuloma formation during latent C. neoformans infection in the C3HeB/FeJ mouse strain which forms necrotic lung granulomas in response to other pathogens. We found that latent C. neoformans granuloma formation progresses through phases that we described as early, intermediate, and late with different immune response profiles and granulomatous characteristics. Ultimately, we show that C3HeB/FeJ mice latently infected with C. neoformans form non-necrotic granulomas and could provide a novel mouse model to investigate host immune response profiles.
Collapse
|
5
|
Rosenbloom R, Gavrish I, Tseng AE, Seidel K, Yabaji SM, Gertje HP, Huber BR, Kramnik I, Crossland NA. Progression and Dissemination of Pulmonary Mycobacterium Avium Infection in a Susceptible Immunocompetent Mouse Model. Int J Mol Sci 2022; 23:ijms23115999. [PMID: 35682679 PMCID: PMC9181083 DOI: 10.3390/ijms23115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary infections caused by the group of nontuberculosis mycobacteria (NTM), Mycobacterium avium complex (MAC), are a growing public health concern with incidence and mortality steadily increasing globally. Granulomatous inflammation is the hallmark of MAC lung infection, yet reliable correlates of disease progression, susceptibility, and resolution are poorly defined. Unlike widely used inbred mouse strains, mice that carry the mutant allele at the genetic locus sst1 develop human-like pulmonary tuberculosis featuring well-organized caseating granulomas. We characterized pulmonary temporospatial outcomes of intranasal and left intrabronchial M. avium spp. hominissuis (M.av) induced pneumonia in B6.Sst1S mice, which carries the sst1 mutant allele. We utilized traditional semi-quantitative histomorphological evaluation, in combination with fluorescent multiplex immunohistochemistry (fmIHC), whole slide imaging, and quantitative digital image analysis. Followingintrabronchiolar infection with the laboratory M.av strain 101, the B6.Sst1S pulmonary lesions progressed 12-16 weeks post infection (wpi), with plateauing and/or resolving disease by 21 wpi. Caseating granulomas were not observed during the study. Disease progression from 12-16 wpi was associated with increased acid-fast bacilli, area of secondary granulomatous pneumonia lesions, and Arg1+ and double positive iNOS+/Arg1+ macrophages. Compared to B6 WT, at 16 wpi, B6.Sst1S lungs exhibited an increased area of acid-fast bacilli, larger secondary lesions with greater Arg1+ and double positive iNOS+/Arg1+ macrophages, and reduced T cell density. This morphomolecular analysis of histologic correlates of disease progression in B6.Sst1S could serve as a platform for assessment of medical countermeasures against NTM infection.
Collapse
Affiliation(s)
- Raymond Rosenbloom
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Igor Gavrish
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Anna E. Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kerstin Seidel
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Shivraj M. Yabaji
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
| | - Bertrand R. Huber
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (I.K.); (N.A.C.); Tel.: +1-617-358-9285 (I.K. & N.A.C.)
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; (I.G.); (A.E.T.); (K.S.); (S.M.Y.); (H.P.G.)
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: (I.K.); (N.A.C.); Tel.: +1-617-358-9285 (I.K. & N.A.C.)
| |
Collapse
|
6
|
Ji DX, Witt KC, Kotov DI, Margolis SR, Louie A, Chevée V, Chen KJ, Gaidt MM, Dhaliwal HS, Lee AY, Nishimura SL, Zamboni DS, Kramnik I, Portnoy DA, Darwin KH, Vance RE. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife 2021; 10:e67290. [PMID: 34151776 PMCID: PMC8248984 DOI: 10.7554/elife.67290] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/20/2021] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are essential for anti-viral immunity, but often impair protective immune responses during bacterial infections. An important question is how type I IFNs are strongly induced during viral infections, and yet are appropriately restrained during bacterial infections. The Super susceptibility to tuberculosis 1 (Sst1) locus in mice confers resistance to diverse bacterial infections. Here we provide evidence that Sp140 is a gene encoded within the Sst1 locus that represses type I IFN transcription during bacterial infections. We generated Sp140-/- mice and found that they are susceptible to infection by Legionella pneumophila and Mycobacterium tuberculosis. Susceptibility of Sp140-/- mice to bacterial infection was rescued by crosses to mice lacking the type I IFN receptor (Ifnar-/-). Our results implicate Sp140 as an important negative regulator of type I IFNs that is essential for resistance to bacterial infections.
Collapse
Affiliation(s)
- Daisy X Ji
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Kristen C Witt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Dmitri I Kotov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Shally R Margolis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexander Louie
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Victoria Chevée
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Moritz M Gaidt
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Stephen L Nishimura
- Department of Pathology, University of California, San FranciscoSan FranciscoUnited States
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São PauloSão PauloBrazil
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of MedicineBostonUnited States
| | - Daniel A Portnoy
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - K Heran Darwin
- Department of Microbiology, New York University Grossman School of MedicineNew YorkUnited States
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
7
|
Fraschilla I, Jeffrey KL. The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends Immunol 2020; 41:572-585. [PMID: 32386862 PMCID: PMC8327362 DOI: 10.1016/j.it.2020.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 01/25/2023]
Abstract
Chromatin 'readers' are central interpreters of the epigenome that facilitate cell-specific transcriptional programs and are therapeutic targets in cancer and inflammation. The Speckled Protein (SP) family of chromatin 'readers' in humans consists of SP100, SP110, SP140, and SP140L. SPs possess functional domains (SAND, PHD, bromodomain) that dock to DNA or post-translationally modified histones and a caspase activation and recruitment domain (CARD) to promote multimerization. Mutations within immune expressed SPs associate with numerous immunological diseases including Crohn's disease, multiple sclerosis, chronic lymphocytic leukemia, veno-occlusive disease with immunodeficiency, as well as Mycobacterium tuberculosis infection, underscoring their importance in immune regulation. In this review, we posit that SPs are central chromatin regulators of gene silencing that establish immune cell identity and function.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Immunology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I, Darwin KH, Vance RE. Type I interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat Microbiol 2019; 4:2128-2135. [PMID: 31611644 PMCID: PMC6879852 DOI: 10.1038/s41564-019-0578-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
The bacterium Mycobacterium tuberculosis (Mtb) causes tuberculosis and is responsible for more human mortality than any other single pathogen1. Progression to active disease occurs in only a fraction of infected individuals and is predicted by an elevated type I interferon (IFN) response2-7. Whether or how IFNs mediate susceptibility to Mtb has been difficult to study due to a lack of suitable mouse models6-11. Here, we examined B6.Sst1S congenic mice that carry the 'susceptible' allele of the Sst1 locus that results in exacerbated Mtb disease12-14. We found that enhanced production of type I IFNs was responsible for the susceptibility of B6.Sst1S mice to Mtb. Type I IFNs affect the expression of hundreds of genes, several of which have previously been implicated in susceptibility to bacterial infections6,7,15-18. Nevertheless, we found that heterozygous deficiency in just a single IFN target gene, Il1rn, which encodes interleukin-1 receptor antagonist (IL-1Ra), is sufficient to reverse IFN-driven susceptibility to Mtb in B6.Sst1S mice. In addition, antibody-mediated neutralization of IL-1Ra provided therapeutic benefit to Mtb-infected B6.Sst1S mice. Our results illustrate the value of the B6.Sst1S mouse to model IFN-driven susceptibility to Mtb, and demonstrate that IL-1Ra is an important mediator of type I IFN-driven susceptibility to Mtb infections in vivo.
Collapse
Affiliation(s)
- Daisy X Ji
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Livia H Yamashiro
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Katherine J Chen
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Department of Medicine (Pulmonary Center), and Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Cancer Research Laboratory, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Strauss M, Acosta-Herrera M, Alcaraz A, Casares-Marfil D, Bosch-Nicolau P, Lo Presti MS, Molina I, González CI, Martín J. Association of IL18 genetic polymorphisms with Chagas disease in Latin American populations. PLoS Negl Trop Dis 2019; 13:e0007859. [PMID: 31751351 PMCID: PMC6894881 DOI: 10.1371/journal.pntd.0007859] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/05/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Host genetic factors have been suggested to play an important role in the susceptibility to Chagas disease. Given the influence of interleukin 18 (IL-18) in the development of the disease, in the present study, we analyzed three IL18 genetic variants (rs2043055, rs1946518, rs360719) regarding the predisposition to Trypanosoma cruzi infection and the development of chronic Chagas cardiomyopathy (CCC), in different Latin America populations. Genetic data of 3,608 patients from Colombia, Bolivia, Argentina, and Brazil were meta-analyzed to validate previous findings with increased statistical power. Seropositive and seronegative individuals were compared for T. cruzi infection susceptibility. In the Colombian cohort, the allelic frequencies of the three variants showed a significant association, with adjustment for sex and age, and also after applying multiple testing adjustments. Among the Colombian and Argentinean cohorts, rs360719 showed a significant genetic effect in a fixed-effects meta-analysis after a Bonferroni correction (OR: 0.76, CI: 0.66-0.89, P = 0.001). For CCC, the rs2043055 showed an association with protection from cardiomyopathy in the Colombian cohort (OR: 0.79, CI: 0.64-0.99, P = 0.037), with adjustment for sex and age, and after applying multiple testing adjustments. The meta-analysis of the CCC vs. asymptomatic patients from the four cohorts showed no evidence of association. In conclusion, our results validated the association found previously in the Colombian cohort suggesting that IL18 rs360719 plays an important role in the susceptibility to T. cruzi infection and no evidence of association was found between the IL18 genetic variants and CCC in the Latin American population studied.
Collapse
Affiliation(s)
- Mariana Strauss
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina
| | | | - Alexia Alcaraz
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| | - Desiré Casares-Marfil
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| | - Pau Bosch-Nicolau
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | - María Silvina Lo Presti
- Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, FCM, INICSA-CONICET-UNC, Córdoba, Argentina
| | - Israel Molina
- Unidad de Medicina Tropical y Salud Internacional Hospital Universitari Vall d'Hebron, PROSICS, Barcelona, España
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, PTS Granada, Granada, España
| |
Collapse
|
10
|
Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, Kalil J, Cunha-Neto E. Disease Tolerance and Pathogen Resistance Genes May Underlie Trypanosoma cruzi Persistence and Differential Progression to Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:2791. [PMID: 30559742 PMCID: PMC6286977 DOI: 10.3389/fimmu.2018.02791] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/13/2018] [Indexed: 01/01/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi and affects over 8 million people worldwide. In spite of a powerful innate and adaptive immune response in acute infection, the parasite evades eradication, leading to a chronic persistent infection with low parasitism. Chronically infected subjects display differential patterns of disease progression. While 30% develop chronic Chagas disease cardiomyopathy (CCC)-a severe inflammatory dilated cardiomyopathy-decades after infection, 60% of the patients remain disease-free, in the asymptomatic/indeterminate (ASY) form, and 10% develop gastrointestinal disease. Infection of genetically deficient mice provided a map of genes relevant for resistance to T. cruzi infection, leading to the identification of multiple genes linked to survival to infection. These include pathogen resistance genes (PRG) needed for intracellular parasite destruction, and genes involved in disease tolerance (protection against tissue damage and acute phase death-DTG). All identified DTGs were found to directly or indirectly inhibit IFN-γ production or Th1 differentiation. We hypothesize that the absolute need for DTG to control potentially lethal IFN-γ PRG activity leads to T. cruzi persistence and establishment of chronic infection. IFN-γ production is higher in CCC than ASY patients, and is the most highly expressed cytokine in CCC hearts. Key DTGs that downmodulate IFN-γ, like IL-10, and Ebi3/IL27p28, are higher in ASY patients. Polymorphisms in PRG and DTG are associated with differential disease progression. We thus hypothesize that ASY patients are disease tolerant, while an imbalance of DTG and IFN-γ PRG activity leads to the inflammatory heart damage of CCC.
Collapse
Affiliation(s)
| | - João Paulo Silva Nunes
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Amanda Farage Frade
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
- Department of Bioengineering, Brazil University, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Ramendra Pati Pandey
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Marilda Savóia Nascimento
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Jorge Kalil
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Disciplina de Imunologia Clínica e Alergia, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
11
|
Nuermberger EL. Preclinical Efficacy Testing of New Drug Candidates. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0034-2017. [PMID: 28643624 PMCID: PMC11687513 DOI: 10.1128/microbiolspec.tbtb2-0034-2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 01/17/2023] Open
Abstract
This is a review of the preclinical efficacy testing of new antituberculosis drug candidates. It describes existing dynamic in vitro and in vivo models of antituberculosis chemotherapy and their utility in preclinical evaluations of promising new drugs and combination regimens, with an effort to highlight recent developments. Emphasis is given to the integration of quantitative pharmacokinetic/pharmacodynamic analyses and the impact of lesion pathology on drug efficacy. Discussion also includes in vivo models of chemotherapy of latent tuberculosis infection.
Collapse
Affiliation(s)
- Eric L Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231-1002
| |
Collapse
|
12
|
Geadas C, Stoszek SK, Sherman D, Andrade BB, Srinivasan S, Hamilton CD, Ellner J. Advances in basic and translational tuberculosis research. Tuberculosis (Edinb) 2017; 102:55-67. [DOI: 10.1016/j.tube.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
|
13
|
Chen Q, Tong Q, Ge H, Li W, Liu J, Wang Y, Guo Z, Quan F, Zhang Y. Identification of SP110 in horse (Equus caballus): Isolation of novel splice variants and evidence of activation effects on macrophages. Tuberculosis (Edinb) 2016; 101:85-94. [PMID: 27865405 DOI: 10.1016/j.tube.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 11/30/2022]
Abstract
SP110 has previously shown to be a genetic determinant of host resistance to the intracellular pathogen infection in mouse and human. However, its relevant biological information in large non-primate animals still remains unknown. Here we report the novel discovery and characterization of three transcript variants of horse SP110. The transcript variant 1 (Tv1) of horse SP110 with the longest open reading frame has four domains (Sp100, SAND, PHD and Bromo domain). Tv2 and Tv3 share the same N-terminal sequence as Tv1, which contains Sp100 and SAND. We show that Tv2 is generated from alternative splicing and deletion of Exon17-Exon18 segment, while Tv3 is generated by pre-mature transcriptional termination at Exon 16. Furthermore, we demonstrate that the heterologous expression of horse SP110 variants stimulate macrophages into an activation-like phenotype. The macrophages underwent a shift in enhancing the secretion of cytokines (interleukin-1 (IL-1) and TNF-α) and accelerating inducible nitric oxide synthase (iNOS) activity, and eventually went into apoptotic cell death. Intriguingly, horse SP110 Tv1 showed more capability to trigger the immune activities compared to Tv2 and Tv3. To our knowledge, the identification of SP110 transcript variants from horse is the first report on biological function of SP110 in perissodactyla animals.
Collapse
Affiliation(s)
- Qi Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Tong
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hengtao Ge
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenzhong Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
14
|
Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis Model Mech 2016; 9:779-88. [PMID: 27482816 PMCID: PMC4958312 DOI: 10.1242/dmm.025643] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Supriya Pokkali
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ziyue Xu
- Center for Infectious Disease Imaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariah H Klunk
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Bhattacharya B, Chatterjee S, Devine WG, Kobzik L, Beeler AB, Porco JA, Kramnik I. Fine-tuning of macrophage activation using synthetic rocaglate derivatives. Sci Rep 2016; 6:24409. [PMID: 27086720 PMCID: PMC4834551 DOI: 10.1038/srep24409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/29/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| | - Sujoy Chatterjee
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| | - William G Devine
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Aaron B Beeler
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| |
Collapse
|
16
|
Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells. Sci Rep 2015; 5:18016. [PMID: 26657798 PMCID: PMC4676018 DOI: 10.1038/srep18016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells.
Collapse
|
17
|
Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol 2015; 38:221-37. [PMID: 26542392 PMCID: PMC4779126 DOI: 10.1007/s00281-015-0538-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
Abstract
A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M. tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis—induction of necrotic TB lesions in the lungs—and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.
Collapse
|
18
|
He X, Liang Y, LaValley MP, Lai J, Ingalls RR. Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion. BMC Microbiol 2015; 15:228. [PMID: 26494400 PMCID: PMC4619265 DOI: 10.1186/s12866-015-0569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Chlamydia pneumoniae is a common human pathogen that is associated with upper and lower respiratory tract infections. It has also been suggested that C. pneumoniae infection can trigger or promote a number of chronic inflammatory conditions, including asthma and atherosclerosis. Several strains of C. pneumoniae have been isolated from humans and animals, and sequence data demonstrates marked genetic conservation, leaving unanswered the question as to why chronic inflammatory conditions may occur following some respiratory-acquired infections. Methods C. pneumoniae strains AR39 and AO3 were used in vitro to infect murine bone marrow derived macrophages and L929 fibroblasts, or in vivo to infect C57BL/6 mice via the intranasal route. Results We undertook a comparative study of a respiratory isolate, AR39, and an atheroma isolate, AO3, to determine if bacterial growth and host responses to infection varied between these two strains. We observed differential growth depending on the host cell type and the growth temperature; however both strains were capable of forming plaques in vitro. The host response to the respiratory isolate was found to be more inflammatory both in vitro, in terms of inflammatory cytokine induction, and in vivo, as measured by clinical response and lung inflammatory markers using a mouse model of respiratory infection. Conclusions Our data demonstrates that a subset of C. pneumoniae strains is capable of evading host innate immune defenses during the acute respiratory infection. Further studies on the genetic basis for these differences on both the host and pathogen side could enhance our understanding how C. pneumoniae contributes to the development chronic inflammation at local and distant sites.
Collapse
Affiliation(s)
- Xianbao He
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| | - Yanmei Liang
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Michael P LaValley
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| | - Juying Lai
- Division of Rheumatology, Immunology and Allergy, Brigham & Women's Hospital, Boston, MA, USA.
| | - Robin R Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA. .,Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
19
|
|