1
|
Harbecke R, Oxman MN, Selke S, Ashbaugh ME, Lan KF, Koelle DM, Wald A. Prior Herpes Simplex Virus Infection and the Risk of Herpes Zoster. J Infect Dis 2024; 229:64-72. [PMID: 37410908 PMCID: PMC10786259 DOI: 10.1093/infdis/jiad259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND The incidence of herpes zoster (HZ) has increased in the United States concurrent with decrease in herpes simplex virus (HSV) prevalence. We hypothesized that lack of HSV-elicited cross-reactive immunity to varicella-zoster virus (VZV) results in an increased risk of HZ. Using specimens from the placebo arm of the Shingles Prevention Study, we investigated whether persons who develop HZ are less likely to have prior HSV infection than persons who do not develop HZ, and whether HZ is less severe in persons with HSV than in HSV seronegative persons. METHODS We conducted a nested case-control (1:2) study comparing the seroprevalence of HSV-1 and HSV-2 in cases (persons with polymerase chain reaction-confirmed HZ) to age-, sex-, and health-matched controls (persons without HZ). RESULTS Sera from 639 study participants (213 cases and 426 controls) yielded definitive HSV antibody results and were analyzed. Overall, HSV seropositivity rate was 75%. HSV seronegativity was significantly higher in HZ cases than controls (30.5% vs 22.3%; P = .024), with a 55% higher risk of HZ in HSV seronegative than HSV seropositive participants. HSV seropositivity was associated with more severe HZ (P = .021). CONCLUSIONS Our study demonstrated that prior infection with HSV partly protects against HZ.
Collapse
Affiliation(s)
- Ruth Harbecke
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Michael N Oxman
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Medicine, University of California San Diego, San Diego, California, USA
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mark E Ashbaugh
- Department of Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Kristine F Lan
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Cormican JA, Soh WT, Mishto M, Liepe J. iBench: A ground truth approach for advanced validation of mass spectrometry identification method. Proteomics 2023; 23:e2200271. [PMID: 36189881 PMCID: PMC10078205 DOI: 10.1002/pmic.202200271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/19/2023]
Abstract
The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source. The proof-of-concept application to tryptic proteome digestions, immunopeptidomes, and synthetic peptide libraries dissected the impact that noncanonical peptides could have on the identification of canonical peptides by Mascot search with rescoring via Percolator (Mascot+Percolator).
Collapse
Affiliation(s)
- John A. Cormican
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Wai Tuck Soh
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of ImmunobiologyKing's College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Juliane Liepe
- Max‐Planck‐Institute for Multidisciplinary Sciences (MPI‐NAT)GöttingenGermany
| |
Collapse
|
3
|
Cormican JA, Horokhovskyi Y, Soh WT, Mishto M, Liepe J. inSPIRE: An Open-Source Tool for Increased Mass Spectrometry Identification Rates Using Prosit Spectral Prediction. Mol Cell Proteomics 2022; 21:100432. [PMID: 36280141 PMCID: PMC9720494 DOI: 10.1016/j.mcpro.2022.100432] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Rescoring of mass spectrometry (MS) search results using spectral predictors can strongly increase peptide spectrum match (PSM) identification rates. This approach is particularly effective when aiming to search MS data against large databases, for example, when dealing with nonspecific cleavage in immunopeptidomics or inflation of the reference database for noncanonical peptide identification. Here, we present inSPIRE (in silico Spectral Predictor Informed REscoring), a flexible and performant open-source rescoring pipeline built on Prosit MS spectral prediction, which is compatible with common database search engines. inSPIRE allows large-scale rescoring with data from multiple MS search files, increases sensitivity to minor differences in amino acid residue position, and can be applied to various MS sample types, including tryptic proteome digestions and immunopeptidomes. inSPIRE boosts PSM identification rates in immunopeptidomics, leading to better performance than the original Prosit rescoring pipeline, as confirmed by benchmarking of inSPIRE performance on ground truth datasets. The integration of various features in the inSPIRE backbone further boosts the PSM identification in immunopeptidomics, with a potential benefit for the identification of noncanonical peptides.
Collapse
Affiliation(s)
- John A Cormican
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
| | - Yehor Horokhovskyi
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
| | - Wai Tuck Soh
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Juliane Liepe
- Max-Planck-Institute for Multidisciplinary Sciences (MPI-NAT), Göttingen, Germany.
| |
Collapse
|
4
|
Laing KJ, Ouwendijk WJD, Campbell VL, McClurkan CL, Mortazavi S, Elder Waters M, Krist MP, Tu R, Nguyen N, Basu K, Miao C, Schmid DS, Johnston C, Verjans GMGM, Koelle DM. Selective retention of virus-specific tissue-resident T cells in healed skin after recovery from herpes zoster. Nat Commun 2022; 13:6957. [PMID: 36376285 PMCID: PMC9663441 DOI: 10.1038/s41467-022-34698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Herpes zoster is a localized skin infection caused by reactivation of latent varicella-zoster virus. Tissue-resident T cells likely control skin infections. Zoster provides a unique opportunity to determine if focal reinfection of human skin boosts local or disseminated antigen-specific tissue-resident T cells. Here, we show virus-specific T cells are retained over one year in serial samples of rash site and contralateral unaffected skin of individuals recovered from zoster. Consistent with zoster resolution, viral DNA is largely undetectable on skin from day 90 and virus-specific B and T cells decline in blood. In skin, there is selective infiltration and long-term persistence of varicella-zoster virus-specific T cells in the rash site relative to the contralateral site. The skin T cell infiltrates express the canonical tissue-resident T cell markers CD69 and CD103. These findings show that zoster promotes spatially-restricted long-term retention of antigen-specific tissue-resident T cells in previously infected skin.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Werner J D Ouwendijk
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Shahin Mortazavi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Maxwell P Krist
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Tu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nhi Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Krithi Basu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Congrong Miao
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - D Scott Schmid
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Georges M G M Verjans
- HerpeslabNL of the Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Translational Research, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
5
|
Chang A, Sholukh AM, Wieland A, Jaye DL, Carrington M, Huang ML, Xie H, Jerome KR, Roychoudhury P, Greninger AL, Koff JL, Cohen JB, Koelle DM, Corey L, Flowers CR, Ahmed R. Herpes simplex virus lymphadenitis is associated with tumor reduction in a patient with chronic lymphocytic leukemia. J Clin Invest 2022; 132:e161109. [PMID: 35862190 PMCID: PMC9479599 DOI: 10.1172/jci161109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundHerpes simplex virus lymphadenitis (HSVL) is an unusual presentation of HSV reactivation in patients with chronic lymphocytic leukemia (CLL) and is characterized by systemic symptoms and no herpetic lesions. The immune responses during HSVL have not, to our knowledge, been studied.MethodsPeripheral blood and lymph node (LN) samples were obtained from a patient with HSVL. HSV-2 viral load, antibody levels, B and T cell responses, cytokine levels, and tumor burden were measured.ResultsThe patient showed HSV-2 viremia for at least 6 weeks. During this period, she had a robust HSV-specific antibody response with neutralizing and antibody-dependent cellular phagocytotic activity. Activated (HLA-DR+, CD38+) CD4+ and CD8+ T cells increased 18-fold, and HSV-specific CD8+ T cells in the blood were detected at higher numbers. HSV-specific B and T cell responses were also detected in the LN. Markedly elevated levels of proinflammatory cytokines in the blood were also observed. Surprisingly, a sustained decrease in CLL tumor burden without CLL-directed therapy was observed with this and also a prior episode of HSVL.ConclusionHSVL should be considered part of the differential diagnosis in patients with CLL who present with signs and symptoms of aggressive lymphoma transformation. An interesting finding was the sustained tumor control after 2 episodes of HSVL in this patient. A possible explanation for the reduction in tumor burden may be that the HSV-specific response served as an adjuvant for the activation of tumor-specific or bystander T cells. Studies in additional patients with CLL are needed to confirm and extend these findings.FundingNIH grants 4T32CA160040, UL1TR002378, and 5U19AI057266 and NIH contracts 75N93019C00063 and HHSN261200800001E. Neil W. and William S. Elkin Fellowship (Winship Cancer Institute).
Collapse
Affiliation(s)
- Andres Chang
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Meei-Li Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Hong Xie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - Jonathon B. Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute and
| | - David M. Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department Medicine and
| | | | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Georgia, USA
| |
Collapse
|
6
|
Boccard M, Conrad A, Mouton W, Valour F, Roure-Sobas C, Frobert E, Rohmer B, Alcazer V, Labussière-Wallet H, Ghesquières H, Venet F, Brengel-Pesce K, Trouillet-Assant S, Ader F. A Simple-to-Perform ifn-γ mRNA Gene Expression Assay on Whole Blood Accurately Appraises Varicella Zoster Virus-Specific Cell-Mediated Immunity After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:919806. [PMID: 35967359 PMCID: PMC9363621 DOI: 10.3389/fimmu.2022.919806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Herpes zoster, which is due to the reactivation of Varicella zoster virus (VZV), is a leading cause of morbidity after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While cell-mediated immunity (CMI) is critical to inhibiting VZV reactivation, CMI is not routinely assessed due to a lack of reliable tests. In this study, we aimed to evaluate VZV-specific CMI among allo-HSCT recipients (n = 60) and healthy individuals (HI, n = 17) through a panel of three immune functional assays after ex vivo stimulation by VZV antigen: quantification of (i) IFN-γ release in the supernatants, (ii) T-cell proliferation after a 7-day stimulation of peripheral blood mononuclear cells (PBMC), and (iii) measurement of the ifn-γ mRNA gene expression level after 24 h of stimulation of a whole-blood sample. VZV responsiveness was defined according to IFN-γ release from VZV-stimulated PBMC. Upon VZV stimulation, we found that allo-HSCT recipients at a median time of 6 [5-8] months post-transplant had lower IFN-γ release (median [IQR], 0.34 [0.12–8.56] vs. 409.5 [143.9–910.2] pg/ml, P <.0001) and fewer proliferating T cells (0.05 [0.01–0.57] % vs. 8.74 [3.12–15.05] %, P <.0001) than HI. A subset of allo-HSCT recipients (VZV-responders, n = 15/57, 26%) distinguished themselves from VZV-non-responders (n = 42/57, 74%; missing data, n = 3) by higher IFN-γ release (80.45 [54.3–312.8] vs. 0.22 [0.12–0.42] pg/ml, P <.0001) and T-cell proliferation (2.22 [1.18–7.56] % vs. 0.002 [0.001–0.11] %, P <.0001), suggesting recovery of VZV-specific CMI. Interestingly, VZV responders had a significant fold increase in ifn-γ gene expression, whereas ifn-γ mRNA was not detected in whole blood of VZV-non-responders (P <.0001). This study is the first to suggest that measurement of ifn-γ gene expression in 24-h-stimulated whole blood could be an accurate test of VZV-specific CMI. The routine use of this immune functional assay to guide antiviral prophylaxis at an individual level remains to be evaluated.
Collapse
Affiliation(s)
- Mathilde Boccard
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département des Maladies infectieuses et tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Anne Conrad
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département des Maladies infectieuses et tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - William Mouton
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Laboratoire de Recherche Commun (LCR), Hospices Civils de Lyon/BioMérieux, Pierre-Bénite, France
| | - Florent Valour
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département des Maladies infectieuses et tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Chantal Roure-Sobas
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Emilie Frobert
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Barbara Rohmer
- Service d’Hépatologie Gastro-Entérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département d’Hématologie clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Hélène Labussière-Wallet
- Département d’Hématologie clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Hervé Ghesquières
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département d’Hématologie clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Fabienne Venet
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Laboratoire de Recherche Commun (LCR), Hospices Civils de Lyon/BioMérieux, Pierre-Bénite, France
- Laboratoire d’Immunologie, Hospices Civils de Lyon, Lyon, France
- EA7426 UCBL1-HCL-bioMérieux Pathophysiology of Injury-induced Immunosuppression, Lyon, France
| | - Karen Brengel-Pesce
- Laboratoire de Recherche Commun (LCR), Hospices Civils de Lyon/BioMérieux, Pierre-Bénite, France
| | - Sophie Trouillet-Assant
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Laboratoire de Recherche Commun (LCR), Hospices Civils de Lyon/BioMérieux, Pierre-Bénite, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- Département des Maladies infectieuses et tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- *Correspondence: Florence Ader,
| |
Collapse
|
7
|
Gutman I, Gutman R, Sidney J, Chihab L, Mishto M, Liepe J, Chiem A, Greenbaum J, Yan Z, Sette A, Koşaloğlu-Yalçın Z, Peters B. Predicting the Success of Fmoc-Based Peptide Synthesis. ACS OMEGA 2022; 7:23771-23781. [PMID: 35847273 PMCID: PMC9280948 DOI: 10.1021/acsomega.2c02425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic peptides are commonly used in biomedical science for many applications in basic and translational research. While peptide synthesis is generally easy and reliable, the chemical nature of some amino acids as well as the many steps and chemical compounds involved can render the synthesis of some peptide sequences difficult. Identification of these problematic sequences and mitigation of issues they may present can be important for the reliable use of peptide reagents in several contexts. Here, we assembled a large dataset of peptides that were synthesized using standard Fmoc chemistry and whose identity was validated using mass spectrometry. We analyzed the mass spectra to identify errors in peptide syntheses and sought to develop a computational tool to predict the likelihood that any given peptide sequence would be synthesized accurately. Our model, named Peptide Synthesis Score (PepSySco), is able to predict the likelihood that a peptide will be successfully synthesized based on its amino acid sequence.
Collapse
Affiliation(s)
- Ilanit Gutman
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Ron Gutman
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - John Sidney
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Leila Chihab
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Michele Mishto
- Centre
for Inflammation Biology and Cancer Immunology (CIBCI) & Peter
Gorer Department of Immunobiology, King’s
College London, London SE1 1UL, U.K.
- Francis
Crick Institute, London NW1 1AT, U.K.
| | - Juliane Liepe
- Max-Planck-Institute
for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Anthony Chiem
- TC
Peptide Lab, San Diego, California 92121-4708, United States
| | - Jason Greenbaum
- Bioinformatics
Core Facility, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Zhen Yan
- Bioinformatics
Core Facility, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Alessandro Sette
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037-1387, United States
| | - Zeynep Koşaloğlu-Yalçın
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Bjoern Peters
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037-1387, United States
| |
Collapse
|
8
|
Sidney J, Peters B, Sette A. Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 2020; 50:101418. [PMID: 33131981 DOI: 10.1016/j.smim.2020.101418] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022]
Abstract
Epitopes, in the context of T cell recognition, are short peptides typically derived by antigen processing, and presented on the cell surface bound to MHC molecules (HLA molecules in humans) for TCR scrutiny. The identification of epitopes is a context-dependent process, with consideration given to, for example, the source pathogen and protein, the host organism, and state of the immune reaction (e.g., following natural infection, vaccination, etc.). In the following review, we consider the various approaches used to define T cell epitopes, including both bioinformatic and experimental approaches, and discuss the concepts of immunodominance and immunoprevalence. We also discuss HLA polymorphism and epitope restriction, and the resulting impact on the identification of, and potential population coverage afforded by, epitopes or epitope-based vaccines. Finally, some examples of the practical application of T cell epitope identification are provided, showing how epitopes have been valuable for deriving novel immunological insights in the context of the immune response to various pathogens and allergens.
Collapse
Affiliation(s)
- John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Coulon PG, Roy S, Prakash S, Srivastava R, Dhanushkodi N, Salazar S, Amezquita C, Nguyen L, Vahed H, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, BenMohamed L. Upregulation of Multiple CD8 + T Cell Exhaustion Pathways Is Associated with Recurrent Ocular Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:454-468. [PMID: 32540992 DOI: 10.4049/jimmunol.2000131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
A large proportion of the world's population harbors latent HSV type 1 (HSV-1). Cross-talk between antiviral CD8+ T cells and HSV-1 appear to control latency/reactivation cycles. We found that compared with healthy asymptomatic individuals, in symptomatic (SYMP) patients, the CD8+ T cells with the same HLA-A*0201-restricted HSV-1 epitope specificities expressed multiple genes and proteins associated to major T cell exhaustion pathways and were dysfunctional. Blockade of immune checkpoints with anti-LAG-3 and anti-PD-1 antagonist mAbs synergistically restored the frequency and function of antiviral CD8+ T cells, both 1) ex vivo, in SYMP individuals and SYMP HLA-A*0201 transgenic mice; and 2) in vivo in HSV-1-infected SYMP HLA-A*0201 transgenic mice. This was associated with a significant reduction in virus reactivation and recurrent ocular herpetic disease. These findings confirm antiviral CD8+ T cell exhaustion during SYMP herpes infection and pave the way to targeting immune checkpoints to combat recurrent ocular herpes.
Collapse
Affiliation(s)
- Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Wasay R Warsi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Edgar A Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697; and.,Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
10
|
Shah JA, Lindestam Arlehamn CS, Horne DJ, Sette A, Hawn TR. Nontuberculous Mycobacteria and Heterologous Immunity to Tuberculosis. J Infect Dis 2020; 220:1091-1098. [PMID: 31165861 DOI: 10.1093/infdis/jiz285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Development of an improved tuberculosis (TB) vaccine is a high worldwide public health priority. Bacillus Calmette-Guerin (BCG), the only licensed TB vaccine, provides variable efficacy against adult pulmonary TB, but why this protection varies is unclear. Humans are regularly exposed to non-tuberculous mycobacteria (NTM) that live in soil and water reservoirs and vary in different geographic regions around the world. Immunologic cross-reactivity may explain disparate outcomes of BCG vaccination and susceptibility to TB disease. Evidence supporting this hypothesis is increasing but challenging to obtain due to a lack of reliable research tools. In this review, we describe the progress and bottlenecks in research on NTM epidemiology, immunology and heterologous immunity to Mtb. With ongoing efforts to develop new vaccines for TB, understanding the effect of NTM on vaccine efficacy may be a critical determinant of success.
Collapse
Affiliation(s)
- Javeed A Shah
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle.,Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | | | - David J Horne
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, California.,University of California San Diego, La Jolla
| | - Thomas R Hawn
- Tuberculosis Research and Training Center, Department of Medicine, University of Washington, Seattle
| |
Collapse
|
11
|
Dropulic LK, Oestreich MC, Pietz HL, Laing KJ, Hunsberger S, Lumbard K, Garabedian D, Turk SP, Chen A, Hornung RL, Seshadri C, Smith MT, Hosken NA, Phogat S, Chang LJ, Koelle DM, Wang K, Cohen JI. A Randomized, Double-Blinded, Placebo-Controlled, Phase 1 Study of a Replication-Defective Herpes Simplex Virus (HSV) Type 2 Vaccine, HSV529, in Adults With or Without HSV Infection. J Infect Dis 2019; 220:990-1000. [PMID: 31058977 PMCID: PMC6688060 DOI: 10.1093/infdis/jiz225] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Herpes simplex virus 2 (HSV2) causes genital herpes in >400 million persons worldwide. METHODS We conducted a randomized, double-blinded, placebo-controlled trial of a replication-defective HSV2 vaccine, HSV529. Twenty adults were enrolled in each of 3 serogroups of individuals: those negative for both HSV1 and HSV2 (HSV1-/HSV2-), those positive or negative for HSV1 and positive for HSV2 (HSV1±/HSV2+), and those positive for HSV1 and negative for HSV2 (HSV1+/HSV2-). Sixty participants received vaccine or placebo at 0, 1, and 6 months. The primary end point was the frequency of solicited local and systemic reactions to vaccination. RESULTS Eighty-nine percent of vaccinees experienced mild-to-moderate solicited injection site reactions, compared with 47% of placebo recipients (95% confidence interval [CI], 12.9%-67.6%; P = .006). Sixty-four percent of vaccinees experienced systemic reactions, compared with 53% of placebo recipients (95% CI, -17.9% to 40.2%; P = .44). Seventy-eight percent of HSV1-/HSV2- vaccine recipients had a ≥4-fold increase in neutralizing antibody titer after 3 doses of vaccine, whereas none of the participants in the other serogroups had such responses. HSV2-specific CD4+ T-cell responses were detected in 36%, 46%, and 27% of HSV1-/HSV2-, HSV1±/HSV2+, and HSV1+/HSV2- participants, respectively, 1 month after the third dose of vaccine, and CD8+ T-cell responses were detected in 14%, 8%, and 18% of participants, respectively. CONCLUSIONS HSV529 vaccine was safe and elicited neutralizing antibody and modest CD4+ T-cell responses in HSV-seronegative vaccinees. CLINICAL TRIALS REGISTRATION NCT01915212.
Collapse
Affiliation(s)
- Lesia K Dropulic
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| | - Makinna C Oestreich
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| | - Harlan L Pietz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| | - Kerry J Laing
- Department of Medicine, School of Medicine, University of Washington
| | | | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, NIH, Frederick, Maryland
| | - Doreen Garabedian
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, NIH, Frederick, Maryland
| | - Siu Ping Turk
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| | - Aiying Chen
- Global Biostatistics and Programming, Pennsylvania
| | - Ronald L Hornung
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, NIH, Frederick, Maryland
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington
| | - Malisa T Smith
- Department of Medicine, School of Medicine, University of Washington
| | - Nancy A Hosken
- Department of Medicine, School of Medicine, University of Washington
| | - Sanjay Phogat
- New Vaccines Portfolio Strategy and Execution, Pennsylvania
| | - Lee-Jah Chang
- Global Clinical Sciences, Sanofi Pasteur, Swiftwater, Pennsylvania
| | - David M Koelle
- Department of Medicine, School of Medicine, University of Washington
- Department of Laboratory Medicine, School of Medicine, University of Washington
- Department of Global Health, School of Medicine, University of Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Washington
- Benaroya Research Institute, Seattle, Washington
| | - Kening Wang
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda
| |
Collapse
|
12
|
Sullivan NL, Eberhardt CS, Wieland A, Akondy RS, Yi J, McElroy AK, Ahmed R. Characterization of Virus-specific Immune Response During Varicella Zoster Virus Encephalitis in a Young Adult. Clin Infect Dis 2019; 69:348-351. [PMID: 30668661 PMCID: PMC7322817 DOI: 10.1093/cid/ciy984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
An immunocompetent adult received corticosteroids for chest pain, which later was clinically found to be herpes zoster (HZ). She developed severe disease and rapid viral dissemination that elicited an exceptionally strong varicella zoster virus-specific B-cell and CD8 T-cell response. Clinicians should consider atypical HZ presentation prior to corticosteroid administration.
Collapse
Affiliation(s)
- Nicole L Sullivan
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
- Department of Pediatrics and Pathology-Immunology, Center for Vaccinology and Neonatal Immunology, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Switzerland
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Rama S Akondy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Jumi Yi
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Georgia
| | - Anita K McElroy
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Georgia
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
13
|
Sullivan NL, Eberhardt CS, Wieland A, Vora KA, Pulendran B, Ahmed R. Understanding the immunology of the Zostavax shingles vaccine. Curr Opin Immunol 2019; 59:25-30. [PMID: 30970291 DOI: 10.1016/j.coi.2019.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022]
Abstract
Zostavax is a live-attenuated varicella zoster virus (VZV) vaccine recommended for use in adults >50 years of age to prevent shingles. The main risk factor for the development of shingles is age, which correlates with decreasing cell-mediated immunity. These data suggest a predominant role of T cell immunity in controlling VZV latency. However, other components of the immune system may also contribute. In this review, we will discuss how the immune system responds to Zostavax, focusing on recent studies examining innate immunity, transcriptomics, metabolomics, cellular, and humoral immunity.
Collapse
Affiliation(s)
- Nicole L Sullivan
- MRL, Department of Infectious Diseases and Vaccines, Merck & Co., Inc., Kenilworth, New Jersey, USA.
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Center for Vaccinology and Neonatal Immunology, Department of Pediatrics and Pathology-Immunology, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Switzerland
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kalpit A Vora
- MRL, Department of Infectious Diseases and Vaccines, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Cruz MS, Diamond A, Russell A, Jameson JM. Human αβ and γδ T Cells in Skin Immunity and Disease. Front Immunol 2018; 9:1304. [PMID: 29928283 PMCID: PMC5997830 DOI: 10.3389/fimmu.2018.01304] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
γδ T lymphocytes maintain skin homeostasis by balancing keratinocyte differentiation and proliferation with the destruction of infected or malignant cells. An imbalance in skin-resident T cell function can aggravate skin-related autoimmune diseases, impede tumor eradication, or disrupt proper wound healing. Much of the published work on human skin T cells attributes T cell function in the skin to αβ T cells, while γδ T cells are an often overlooked participant. This review details the roles played by both αβ and γδ T cells in healthy human skin and then focuses on their roles in skin diseases, such as psoriasis and alopecia areata. Understanding the contribution of skin-resident and skin-infiltrating T cell populations and cross-talk with other immune cells is leading to the development of novel therapeutics for patients. However, there is still much to be learned in order to effectively modulate T cell function and maintain healthy skin homeostasis.
Collapse
Affiliation(s)
| | | | | | - Julie Marie Jameson
- Department of Biological Sciences, California State University of San Marcos, San Marcos, CA, United States
| |
Collapse
|
16
|
Microbiota epitope similarity either dampens or enhances the immunogenicity of disease-associated antigenic epitopes. PLoS One 2018; 13:e0196551. [PMID: 29734356 PMCID: PMC5937769 DOI: 10.1371/journal.pone.0196551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens) were retrieved from the Immune Epitope Database (IEDB). Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens) or increased (inflammatory; e.g. Dengue and West Nile viruses) likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen epitopes, and lack of these sequences might conversely be associated with increased likelihood of T cell reactivity against the cockroach epitopes. Taken together this study suggests that microbiome sequence similarity influences immune reactivity to homologous epitopes encoded by pathogens, allergens and auto-antigens.
Collapse
|
17
|
Wei L, Zhao J, Wu W, Zhang Y, Fu X, Chen L, Wang X. Decreased absolute numbers of CD3 + T cells and CD8 + T cells during aging in herpes zoster patients. Sci Rep 2017; 7:15039. [PMID: 29118328 PMCID: PMC5678144 DOI: 10.1038/s41598-017-15390-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/26/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes zoster (HZ) is an infectious dermatosis with high incidence worldwide. Age is a key risk factor for HZ, and postherpetic neuralgia (PHN) is the main sequelae. Until now, no index has been available to predict the pathogenesis of PHN, and rare reports have focused on the immune response during aging and PHN. In this study, we selected immunoglobulin and complement proteins as markers for humoral immunity, while T lymphocyte subsets and natural killer (NK) cells were selected as markers for cell immunity, to systematically study the characteristics of immune responses in the peripheral blood of HZ patients. Our data showed that the absolute number of CD3+ T cells and CD8+ T cells decreased during aging and PHN. This implies that more attention should be paid to prevent the occurrence of PHN, especially in the aged population.
Collapse
Affiliation(s)
- Li Wei
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguang Zhao
- Department of Dermatology, The Dermatovenereology Hospital, Quzhou, China
| | - Wei Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuyan Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory of Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Chen
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Wang
- Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
18
|
Fløe A, Løppke C, Hilberg O, Wejse C, Brix L, Jacobsen K. Development of an epitope panel for consistent identification of antigen-specific T-cells in humans. Immunology 2017; 152:298-307. [PMID: 28564390 DOI: 10.1111/imm.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/27/2022] Open
Abstract
We aimed to establish a panel of MHC-peptide multimers suitable as a positive control in the detection of HLA A*0201 restricted antigen specific T cells (ASTC) by flow cytometry. MHC Dextramers were loaded with HLA A*0201 binding peptides from viral antigens and melanoma targets identified from a literature search and in silico prediction. Peripheral blood mononuclear cells (PBMC) from healthy donors were analysed with the MHC Dextramers using flow cytometry. The best performing epitopes were tested on PBMC from patients undergoing testing for Mycobacterium tuberculosis infection to assess the coverage of this epitope panel. Of 21 candidate epitopes, ASTC could be detected against 12 (57·1%) in at least one of 18 healthy blood donors. Reactivity to two or more epitopes was seen in 17 of the 18 donors (94·4%). We selected the six best-performing epitopes and demonstrated a positive response in 42 (97·7%) of 43 patient samples (healthy, latent and active M. tuberculosis infection). The selected panel of six antigenic epitopes sufficed as a positive control in the detection of ASTC in HLA A*0201. Performance was robust in different stages of latent and active M. tuberculosis infection, indicating reliability also during infection.
Collapse
Affiliation(s)
- Andreas Fløe
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark.,Immudex ApS, Copenhagen, Denmark
| | | | - Ole Hilberg
- University of Southern Denmark, Odense, Denmark.,Department of Respiratory Medicine, Sygehus Lillabaelt, Vejle, Denmark
| | - Christian Wejse
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,GloHAU Centre for Global Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
19
|
Weinberg A, Canniff J, Rouphael N, Mehta A, Mulligan M, Whitaker JA, Levin MJ. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults. THE JOURNAL OF IMMUNOLOGY 2017; 199:604-612. [PMID: 28607114 DOI: 10.4049/jimmunol.1700290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4+ and CD8+ T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8+CD57+ senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4+CD69+CD57+PD1+ and CD8+CD69+CD57+PD1+ T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8+ effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4+ and CD8+ proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ.
Collapse
Affiliation(s)
- Adriana Weinberg
- Section of Pediatric Infectious Diseases, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer Canniff
- Section of Pediatric Infectious Diseases, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center and Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030; and
| | - Aneesh Mehta
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30307
| | - Mark Mulligan
- Hope Clinic of the Emory Vaccine Center and Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030; and
| | - Jennifer A Whitaker
- Hope Clinic of the Emory Vaccine Center and Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA 30030; and
| | - Myron J Levin
- Section of Pediatric Infectious Diseases, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
20
|
Khan AA, Srivastava R, Chentoufi AA, Kritzer E, Chilukuri S, Garg S, Yu DC, Vahed H, Huang L, Syed SA, Furness JN, Tran TT, Anthony NB, McLaren CE, Sidney J, Sette A, Noelle RJ, BenMohamed L. Bolstering the Number and Function of HSV-1-Specific CD8 + Effector Memory T Cells and Tissue-Resident Memory T Cells in Latently Infected Trigeminal Ganglia Reduces Recurrent Ocular Herpes Infection and Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:186-203. [PMID: 28539429 DOI: 10.4049/jimmunol.1700145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
HSV type 1 (HSV-1) is a prevalent human pathogen that infects >3.72 billion individuals worldwide and can cause potentially blinding recurrent corneal herpetic disease. HSV-1 establishes latency within sensory neurons of trigeminal ganglia (TG), and TG-resident CD8+ T cells play a critical role in preventing its reactivation. The repertoire, phenotype, and function of protective CD8+ T cells are unknown. Bolstering the apparent feeble numbers of CD8+ T cells in TG remains a challenge for immunotherapeutic strategies. In this study, a comprehensive panel of 467 HLA-A*0201-restricted CD8+ T cell epitopes was predicted from the entire HSV-1 genome. CD8+ T cell responses to these genome-wide epitopes were compared in HSV-1-seropositive symptomatic individuals (with a history of numerous episodes of recurrent herpetic disease) and asymptomatic (ASYMP) individuals (who are infected but never experienced any recurrent herpetic disease). Frequent polyfunctional HSV-specific IFN-γ+CD107a/b+CD44highCD62LlowCD8+ effector memory T cells were detected in ASYMP individuals and were primarily directed against three "ASYMP" epitopes. In contrast, symptomatic individuals have more monofunctional CD44highCD62LhighCD8+ central memory T cells. Furthermore, therapeutic immunization with an innovative prime/pull vaccine, based on priming with multiple ASYMP epitopes (prime) and neurotropic TG delivery of the T cell-attracting chemokine CXCL10 (pull), boosted the number and function of CD44highCD62LlowCD8+ effector memory T cells and CD103highCD8+ tissue-resident T cells in TG of latently infected HLA-A*0201-transgenic mice and reduced recurrent ocular herpes following UV-B-induced reactivation. These findings have profound implications in the development of T cell-based immunotherapeutic strategies to treat blinding recurrent herpes infection and disease.
Collapse
Affiliation(s)
- Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Elizabeth Kritzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sumit Garg
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - David C Yu
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Lei Huang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Sabrina A Syed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Julie N Furness
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Tien T Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Nesburn B Anthony
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697
| | - Christine E McLaren
- Department of Epidemiology, University of California, Irvine, Irvine, CA 92697
| | - John Sidney
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA 92697; and.,Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
21
|
Li S, Sullivan NL, Rouphael N, Yu T, Banton S, Maddur MS, McCausland M, Chiu C, Canniff J, Dubey S, Liu K, Tran V, Hagan T, Duraisingham S, Wieland A, Mehta AK, Whitaker JA, Subramaniam S, Jones DP, Sette A, Vora K, Weinberg A, Mulligan MJ, Nakaya HI, Levin M, Ahmed R, Pulendran B. Metabolic Phenotypes of Response to Vaccination in Humans. Cell 2017; 169:862-877.e17. [PMID: 28502771 DOI: 10.1016/j.cell.2017.04.026] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Abstract
Herpes zoster (shingles) causes significant morbidity in immune compromised hosts and older adults. Whereas a vaccine is available for prevention of shingles, its efficacy declines with age. To help to understand the mechanisms driving vaccinal responses, we constructed a multiscale, multifactorial response network (MMRN) of immunity in healthy young and older adults immunized with the live attenuated shingles vaccine Zostavax. Vaccination induces robust antigen-specific antibody, plasmablasts, and CD4+ T cells yet limited CD8+ T cell and antiviral responses. The MMRN reveals striking associations between orthogonal datasets, such as transcriptomic and metabolomics signatures, cell populations, and cytokine levels, and identifies immune and metabolic correlates of vaccine immunity. Networks associated with inositol phosphate, glycerophospholipids, and sterol metabolism are tightly coupled with immunity. Critically, the sterol regulatory binding protein 1 and its targets are key integrators of antibody and T follicular cell responses. Our approach is broadly applicable to study human immunity and can help to identify predictors of efficacy as well as mechanisms controlling immunity to vaccination.
Collapse
Affiliation(s)
- Shuzhao Li
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Nicole L Sullivan
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Nadine Rouphael
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA; Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Tianwei Yu
- Department of Bioinformatics and Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30030, USA
| | - Sophia Banton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Mohan S Maddur
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Megan McCausland
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Christopher Chiu
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Jennifer Canniff
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sheri Dubey
- Department of Infectious Diseases and Vaccines-West Point, PA, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - ViLinh Tran
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Thomas Hagan
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Sai Duraisingham
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Andreas Wieland
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Aneesh K Mehta
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Jennifer A Whitaker
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Shankar Subramaniam
- Department of Bioengineering, Department of Chemistry and Biochemistry, Department of Nanoengineering, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute of Immunology, La Jolla, CA 92037, USA
| | - Kalpit Vora
- Department of Infectious Diseases and Vaccines-West Point, PA, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Adriana Weinberg
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark J Mulligan
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, USA; Hope Clinic of the Emory Vaccine Center, Decatur, GA 30030, USA
| | - Helder I Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508, Brazil; Department of Pathology, School of Medicine, Emory University, Atlanta, GA 30329, USA
| | - Myron Levin
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Bali Pulendran
- Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Pathology, School of Medicine, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
22
|
Pichler WJ, Srinoulprasert Y, Yun J, Hausmann O. Multiple Drug Hypersensitivity. Int Arch Allergy Immunol 2017; 172:129-138. [PMID: 28315874 PMCID: PMC5472211 DOI: 10.1159/000458725] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple drug hypersensitivity (MDH) is a syndrome that develops as a consequence of massive T-cell stimulations and is characterized by long-lasting drug hypersensitivity reactions (DHR) to different drugs. The initial symptoms are mostly severe exanthems or drug rash with eosinophilia and systemic symptoms (DRESS). Subsequent symptoms due to another drug often appear in the following weeks, overlapping with the first DHR, or months to years later after resolution of the initial presentation. The second DHR includes exanthema, erythroderma, DRESS, Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), hepatitis, and agranulocytosis. The eliciting drugs can be identified by positive skin or in vitro tests. The drugs involved in starting the MDH are the same as for DRESS, and they are usually given in rather high doses. Fixed drug combination therapies like sulfamethoxazole/trimethoprim or piperacillin/tazobactam are frequently involved in MDH, and 30-40% of patients with severe DHR to combination therapy show T-cell reactions to both components. The drug-induced T-cell stimulation appears to be due to the p-i mechanism. Importantly, a permanent T-cell activation characterized by PD-1+/CD38+ expression on CD4+/CD25low T cells can be found in the circulation of patients with MDH for many years. In conclusion, MDH is a drug-elicited syndrome characterized by a long-lasting hyperresponsiveness to multiple, structurally unrelated drugs with clinically diverse symptoms.
Collapse
Affiliation(s)
- Werner J. Pichler
- Department of Immunology, ADR-AC, Bern, Siriraj Hospital, Mahidol University, NSW, Australia
| | - Yuttana Srinoulprasert
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - James Yun
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Oliver Hausmann
- Department of Immunology, ADR-AC, Bern, Siriraj Hospital, Mahidol University, NSW, Australia
- Department of Immunology, Löwenpraxis, Luzern, Switzerland, NSW, Australia
| |
Collapse
|
23
|
Qi Q, Cavanagh MM, Le Saux S, NamKoong H, Kim C, Turgano E, Liu Y, Wang C, Mackey S, Swan GE, Dekker CL, Olshen RA, Boyd SD, Weyand CM, Tian L, Goronzy JJ. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Sci Transl Med 2016; 8:332ra46. [PMID: 27030598 DOI: 10.1126/scitranslmed.aaf1725] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Diversity and size of the antigen-specific T cell receptor (TCR) repertoire are two critical determinants for successful control of chronic infection. Varicella zoster virus (VZV) that establishes latency during childhood can escape control mechanisms, in particular with increasing age. We examined the TCR diversity of VZV-reactive CD4 T cells in individuals older than 50 years by studying three identical twin pairs and three unrelated individuals before and after vaccination with live attenuated VZV. Although all individuals had a small number of dominant T cell clones, the breadth of the VZV-specific repertoire differed markedly. A genetic influence was seen for the sharing of individual TCR sequences from antigen-reactive cells but not for repertoire richness or the selection of dominant clones. VZV vaccination favored the expansion of infrequent VZV antigen-reactive TCRs, including those from naïve T cells with lesser boosting of dominant T cell clones. Thus, vaccination does not reinforce the in vivo selection that occurred during chronic infection but leads to a diversification of the VZV-reactive T cell repertoire. However, a single-booster immunization seems insufficient to establish new clonal dominance. Our results suggest that repertoire analysis of antigen-specific TCRs can be an important readout to assess whether a vaccination was able to generate memory cells in clonal sizes that are necessary for immune protection.
Collapse
Affiliation(s)
- Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Sabine Le Saux
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Hong NamKoong
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Emerson Turgano
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Yi Liu
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Chen Wang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Sally Mackey
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gary E Swan
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA 94305, USA
| | - Cornelia L Dekker
- Division of Infectious Diseases, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Richard A Olshen
- Department of Statistics, Stanford University, Stanford, CA 94305, USA. Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA. Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
24
|
Westernberg L, Schulten V, Greenbaum JA, Natali S, Tripple V, McKinney DM, Frazier A, Hofer H, Wallner M, Sallusto F, Sette A, Peters B. T-cell epitope conservation across allergen species is a major determinant of immunogenicity. J Allergy Clin Immunol 2016; 138:571-578.e7. [PMID: 26883464 PMCID: PMC4975972 DOI: 10.1016/j.jaci.2015.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Patients with pollen allergies are frequently polysensitized. Pollens contain epitopes that are conserved across multiple species. OBJECTIVE We sought to demonstrate that cross-reactive T cells that recognize conserved epitopes show higher levels of expansion than T cells recognizing monospecific epitopes because of more frequent stimulation. METHOD RNA was sequenced from 9 pollens, and the reads were assembled de novo into more than 50,000 transcripts. T-cell epitopes from timothy grass (Phleum pratense) were examined for conservation in these transcripts, and this was correlated to their ability to induce T-cell responses. T cells were expanded in vitro with P pratense-derived peptides and tested for cross-reactivity to pollen extracts in ELISpot assays. RESULTS We found that antigenic proteins are more conserved than nonimmunogenic proteins in P pratense pollen. Additionally, P pratense epitopes that were highly conserved across pollens elicited more T-cell responses in donors with grass allergy than less conserved epitopes. Moreover, conservation of a P pratense peptide at the transcriptomic level correlated with the ability of that peptide to trigger T cells that were cross-reactive with other non-P pratense pollen extracts. CONCLUSION We found a correlation between conservation of peptides in plant pollens and their T-cell immunogenicity within P pratense, as well as their ability to induce cross-reactive T-cell responses. T cells recognizing conserved epitopes might be more prominent because they can be stimulated by a broader range of pollens and thereby drive polysensitization in allergic donors. We propose that conserved peptides could potentially be used in diagnostic or immunomodulatory approaches that address the issue of polysensitization and target multiple pollen allergies.
Collapse
Affiliation(s)
| | | | | | - Sara Natali
- Laboratory of Cellular Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | | | | | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Heidi Hofer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Michael Wallner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Federica Sallusto
- Laboratory of Cellular Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland; Center of Medical Immunology, Institute for Research in Biomedicine, University of Italian Switzerland, Bellinzona, Switzerland
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, Calif.
| |
Collapse
|
25
|
Understanding natural herpes simplex virus immunity to inform next-generation vaccine design. Clin Transl Immunology 2016; 5:e94. [PMID: 27525067 PMCID: PMC4973325 DOI: 10.1038/cti.2016.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Incremental advances in our knowledge of how natural immune control of herpes simplex virus (HSV) develops have yielded insight as to why previous vaccine attempts have only been partially successful, however, our understanding of these pathways, particularly in humans, is still incomplete. Further elucidation of the innate immune events that are responsible for stimulating these effector responses is required to accurately inform vaccine design. An enhanced understanding of the mechanism of action of novel adjuvants will also facilitate the rational choice of adjuvant to optimise such responses. Here we review the reasons for the hitherto partial HSV vaccine success and align these with our current knowledge of how natural HSV immunity develops. In particular, we focus on the innate immune response and the role of dendritic cells in inducing protective T-cell responses and how these pathways might be recapitulated in a vaccine setting.
Collapse
|
26
|
Pham J, Oseroff C, Hinz D, Sidney J, Paul S, Greenbaum J, Vita R, Phillips E, Mallal S, Peters B, Sette A. Sequence conservation predicts T cell reactivity against ragweed allergens. Clin Exp Allergy 2016; 46:1194-205. [PMID: 27359111 DOI: 10.1111/cea.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ragweed is a major cause of seasonal allergy, affecting millions of people worldwide. Several allergens have been defined based on IgE reactivity, but their relative immunogenicity in terms of T cell responses has not been studied. OBJECTIVE We comprehensively characterized T cell responses from atopic, ragweed-allergic subjects to Amb a 1, Amb a 3, Amb a 4, Amb a 5, Amb a 6, Amb a 8, Amb a 9, Amb a 10, Amb a 11, and Amb p 5 and examined their correlation with serological reactivity and sequence conservation in other allergens. METHODS Peripheral blood mononuclear cells (PBMCs) from donors positive for IgE towards ragweed extracts after in vitro expansion for secretion of IL-5 (a representative Th2 cytokine) and IFN-γ (Th1) in response to a panel of overlapping peptides spanning the above-listed allergens were assessed. RESULTS Three previously identified dominant T cell epitopes (Amb a 1 176-191, 200-215, and 344-359) were confirmed, and three novel dominant epitopes (Amb a 1 280-295, 304-319, and 320-335) were identified. Amb a 1, the dominant IgE allergen, was also the dominant T cell allergen, but dominance patterns for T cell and IgE responses for the other ragweed allergens did not correlate. Dominance for T cell responses correlated with conservation of ragweed epitopes with sequences of other well-known allergens. CONCLUSIONS AND CLINICAL RELEVANCE These results provide the first assessment of the hierarchy of T cell reactivity in ragweed allergens, which is distinct from that observed for IgE reactivity and influenced by T cell epitope sequence conservation. The results suggest that ragweed allergens associated with lesser IgE reactivity and significant T cell reactivity may be targeted for T cell immunotherapy, and further support the development of immunotherapies against epitopes conserved across species to generate broad reactivity against many common allergens.
Collapse
Affiliation(s)
- J Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - C Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - D Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - S Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - J Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - R Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - E Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - B Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - A Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
27
|
Jing L, Laing KJ, Dong L, Russell RM, Barlow RS, Haas JG, Ramchandani MS, Johnston C, Buus S, Redwood AJ, White KD, Mallal SA, Phillips EJ, Posavad CM, Wald A, Koelle DM. Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2205-2218. [PMID: 26810224 DOI: 10.4049/jimmunol.1502366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/15/2015] [Indexed: 12/18/2022]
Abstract
The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, USA
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, USA
| | | | - Russell S Barlow
- Department of Global Health, University of Washington, Seattle, USA
| | - Juergen G Haas
- Max von Pettenkofer-Institute, Munich, Germany.,Division of Pathway Medicine, University of Edinburgh, United Kingdom
| | | | | | - Soren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | - Katie D White
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA
| | - Christine M Posavad
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, USA.,Department of Epidemiology, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, USA.,Department of Global Health, University of Washington, Seattle, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, USA.,Department of Laboratory Medicine, University of Washington, Seattle, USA.,Benaroya Research Institute, Seattle, USA
| |
Collapse
|
28
|
Trolle T, McMurtrey CP, Sidney J, Bardet W, Osborn SC, Kaever T, Sette A, Hildebrand WH, Nielsen M, Peters B. The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference. THE JOURNAL OF IMMUNOLOGY 2016; 196:1480-7. [PMID: 26783342 DOI: 10.4049/jimmunol.1501721] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/13/2015] [Indexed: 12/11/2022]
Abstract
HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes.
Collapse
Affiliation(s)
- Thomas Trolle
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Sean C Osborn
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Thomas Kaever
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Morten Nielsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, B 1650 HMP Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| |
Collapse
|
29
|
Sei JJ, Cox KS, Dubey SA, Antonello JM, Krah DL, Casimiro DR, Vora KA. Effector and Central Memory Poly-Functional CD4(+) and CD8(+) T Cells are Boosted upon ZOSTAVAX(®) Vaccination. Front Immunol 2015; 6:553. [PMID: 26579128 PMCID: PMC4629102 DOI: 10.3389/fimmu.2015.00553] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/16/2015] [Indexed: 11/13/2022] Open
Abstract
ZOSTAVAX(®) is a live attenuated varicella-zoster virus (VZV) vaccine that is licensed for the protection of individuals ≥50 years against shingles and its most common complication, postherpetic neuralgia. While IFNγ responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4(+) and CD8(+) T cell responses induced 3-4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4(+) T cells were poly-functional CD154(+)IFNγ(+)IL-2(+)TNFα(+) cells, which were boosted upon vaccination. The CD4(+) T cells were broadly reactive to several VZV proteins, with immediate early (IE) 63 ranking the highest among them in the fold rise of poly-functional cells, followed by IE62, gB, open reading frame (ORF) 9, and gE. We identified a novel poly-functional ORF9-specific CD8(+) T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4(+) and CD8(+) T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFNγ by poly-functional IE63- and ORF9-specific CD4(+) T cells and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8(+) T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7(-)CD45RA(-)CD45RO(+)), and central (CCR7(+)CD45RA(-)CD45RO(+)) memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4(+) T cells and ORF9-specific CD8(+) T cells may contribute toward ZOSTAVAX efficacy.
Collapse
Affiliation(s)
- Janet J Sei
- Merck Research Laboratories, Department Vaccine Analytical Development, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - Kara S Cox
- Merck Research Laboratories, Department of Infectious Diseases and Vaccines, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - Sheri A Dubey
- Merck Research Laboratories, Department of Infectious Diseases and Vaccines, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - Joseph M Antonello
- Merck Research Laboratories, Department of Infectious Diseases and Vaccines, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - David L Krah
- Merck Research Laboratories, Department Vaccine Analytical Development, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - Danilo R Casimiro
- Merck Research Laboratories, Department of Infectious Diseases and Vaccines, Merck & Co., Inc. , Kenilworth, NJ , USA
| | - Kalpit A Vora
- Merck Research Laboratories, Department of Infectious Diseases and Vaccines, Merck & Co., Inc. , Kenilworth, NJ , USA
| |
Collapse
|
30
|
Gil A, Kenney LL, Mishra R, Watkin LB, Aslan N, Selin LK. Vaccination and heterologous immunity: educating the immune system. Trans R Soc Trop Med Hyg 2015; 109:62-9. [PMID: 25573110 DOI: 10.1093/trstmh/tru198] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This review discusses three inter-related topics: (1) the immaturity of the neonatal and infant immune response; (2) heterologous immunity, where prior infection history with unrelated pathogens alters disease outcome resulting in either enhanced protective immunity or increased immunopathology to new infections, and (3) epidemiological human vaccine studies that demonstrate vaccines can have beneficial or detrimental effects on subsequent unrelated infections. The results from the epidemiological and heterologous immunity studies suggest that the immune system has tremendous plasticity and that each new infection or vaccine that an individual is exposed to during a lifetime will potentially alter the dynamics of their immune system. It also suggests that each new infection or vaccine that an infant receives is not only perturbing the immune system but is educating the immune system and laying down the foundation for all subsequent responses. This leads to the question, is there an optimum way to educate the immune system? Should this be taken into consideration in our vaccination protocols?
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie L Kenney
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Levi B Watkin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
31
|
Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci U S A 2014; 112:E147-55. [PMID: 25548174 DOI: 10.1073/pnas.1416537112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A previous unbiased genome-wide analysis of CD4 Mycobacterium tuberculosis (MTB) recognition using peripheral blood mononuclear cells from individuals with latent MTB infection (LTBI) or nonexposed healthy controls (HCs) revealed that certain MTB sequences were unexpectedly recognized by HCs. In the present study, it was found that, based on their pattern of reactivity, epitopes could be divided into LTBI-specific, mixed reactivity, and HC-specific categories. This pattern corresponded to sequence conservation in nontuberculous mycobacteria (NTMs), suggesting environmental exposure as an underlying cause of differential reactivity. LTBI-specific epitopes were found to be hyperconserved, as previously reported, whereas the opposite was true for NTM conserved epitopes, suggesting that intragenus conservation also influences host pathogen adaptation. The biological relevance of this observation was demonstrated further by several observations. First, the T cells elicited by MTB/NTM cross-reactive epitopes in HCs were found mainly in a CCR6(+)CXCR3(+) memory subset, similar to findings in LTBI individuals. Thus, both MTB and NTM appear to elicit a phenotypically similar T-cell response. Second, T cells reactive to MTB/NTM-conserved epitopes responded to naturally processed epitopes from MTB and NTMs, whereas T cells reactive to MTB-specific epitopes responded only to MTB. Third, cross-reactivity could be translated to antigen recognition. Several MTB candidate vaccine antigens were cross-reactive, but others were MTB-specific. Finally, NTM-specific epitopes that elicit T cells that recognize NTMs but not MTB were identified. These epitopes can be used to characterize T-cell responses to NTMs, eliminating the confounding factor of MTB cross-recognition and providing insights into vaccine design and evaluation.
Collapse
|
32
|
Varicella-zoster virus-derived major histocompatibility complex class I-restricted peptide affinity is a determining factor in the HLA risk profile for the development of postherpetic neuralgia. J Virol 2014; 89:962-9. [PMID: 25355886 DOI: 10.1128/jvi.02500-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Postherpetic neuralgia (PHN) is the most common complication of herpes zoster and is typified by a lingering pain that can last months or years after the characteristic herpes zoster rash disappears. It is well known that there are risk factors for the development of PHN, such as its association with certain HLA alleles. In this study, previous HLA genotyping results were collected and subjected to a meta-analysis with increased statistical power. This work shows that the alleles HLA-A*33 and HLA-B*44 are significantly enriched in PHN patients, while HLA-A*02 and HLA-B*40 are significantly depleted. Prediction of the varicella-zoster virus (VZV) peptide affinity for these four HLA variants by using one in-house-developed and two existing state-of-the-art major histocompatibility complex (MHC) class I ligand prediction methods reveals that there is a great difference in their absolute and relative peptide binding repertoires. It was observed that HLA-A*02 displays a high affinity for an ∼7-fold-higher number of VZV peptides than HLA-B*44. Furthermore, after correction for HLA allele-specific limitations, the relative affinity of HLA-A*33 and HLA-B*44 for VZV peptides was found to be significantly lower than those of HLA-A*02 and HLA-B*40. In addition, HLA peptide affinity calculations indicate strong trends for VZV to avoid high-affinity peptides in some of its proteins, independent of the studied HLA allele. IMPORTANCE Varicella-zoster virus can cause two distinct diseases: chickenpox (varicella) and shingles (herpes zoster). Varicella is a common disease in young children, while herpes zoster is more frequent in older individuals. A common complication of herpes zoster is postherpetic neuralgia, a persistent and debilitating pain that can remain months up to years after the resolution of the rash. In this study, we show that the relative affinity of HLA variants associated with higher postherpetic neuralgia risk for varicella-zoster virus peptides is lower than that of variants with a lower risk. These results provide new insight into the development of postherpetic neuralgia and strongly support the hypothesis that one of its possible underlying causes is a suboptimal anti-VZV immune response due to weak HLA binding peptide affinity.
Collapse
|
33
|
Ogunjimi B, Buntinx F, Bartholomeeusen S, Terpstra I, De Haes I, Willem L, Elli S, Bilcke J, Van Damme P, Coenen S, Beutels P. Herpes zoster is associated with herpes simplex and other infections in under 60 year-olds. J Infect 2014; 70:171-7. [PMID: 25218425 DOI: 10.1016/j.jinf.2014.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVES We assessed the association between herpes zoster (HZ) and herpes simplex (HS) occurrence whilst controlling for risk factors of HZ. METHODS Using a Belgian general practitioner network, a retrospective cohort study with 3736 HZ patients and 14,076 age-gender-practice matched controls was performed, covering over 1.5 million patient-years. Multiple logistic regression was used with HZ as outcome and several diagnoses (malignancy, depression, diabetes mellitus, auto-immune diseases, asthma, multiple sclerosis, HIV, fractures), medications (systemic corticosteroids, biologicals, vaccination), HS and other infections as variables. RESULTS HS was significantly associated with HZ for all analysed time intervals (up to five years) post HZ (OR of 3.51 [2.09 5.88] 95%CI one year post HZ) and to a lesser extent for time ranges pre HZ. Registration of other infections was significantly associated with HZ in all time intervals pre and post HZ (OR up to 1.37). Malignancy up to five years pre HZ, depression up to one year pre or post HZ, fractures up to two years pre HZ, asthma, auto-immune diseases, and immunosuppressive medication one year pre or post HZ were also associated with HZ. CONCLUSIONS HZ and HS occurrences are significantly associated and potentially share a common susceptibility beyond the known risk factors.
Collapse
Affiliation(s)
- Benson Ogunjimi
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BIOSTAT), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Frank Buntinx
- Department of General Practice and Intego Registry, Catholic University of Leuven, Kapucijnenvoer 33, Blok J, Bus 7001, 3000 Leuven, Belgium; Research Institute Caphri, University of Maastricht, Universiteitssingel 40, 6229 Maastricht, The Netherlands.
| | - Stephaan Bartholomeeusen
- Department of General Practice and Intego Registry, Catholic University of Leuven, Kapucijnenvoer 33, Blok J, Bus 7001, 3000 Leuven, Belgium.
| | - Ita Terpstra
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Inke De Haes
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lander Willem
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Steven Elli
- Department of General Practice and Intego Registry, Catholic University of Leuven, Kapucijnenvoer 33, Blok J, Bus 7001, 3000 Leuven, Belgium.
| | - Joke Bilcke
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Centre for General Practice, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Philippe Beutels
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; School of Public Health and Community Medicine, The University of New South Wales, Level 3, Samuels Building Gate 11, Botany Street, 2052 Sydney, Australia.
| |
Collapse
|
34
|
Long D, Skoberne M, Gierahn TM, Larson S, Price JA, Clemens V, Baccari AE, Cohane KP, Garvie D, Siber GR, Flechtner JB. Identification of novel virus-specific antigens by CD4⁺ and CD8⁺ T cells from asymptomatic HSV-2 seropositive and seronegative donors. Virology 2014; 464-465:296-311. [PMID: 25108380 DOI: 10.1016/j.virol.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/12/2014] [Accepted: 07/11/2014] [Indexed: 10/24/2022]
Abstract
Reactivation of latent herpes simplex virus 2 (HSV-2) infections can be characterized by episodic recurrent genital lesions and/or viral shedding. We hypothesize that infected (HSV-2(pos)) asymptomatic individuals have acquired T cell responses to specific HSV-2 antigen(s) that may be an important factor in controlling their recurrent disease symptoms. Our proteomic screening technology, ATLAS, was used to characterize the antigenic repertoire of T cell responses in infected (HSV-2(pos)) and virus-exposed seronegative (HSV-2(neg)) subjects. T cell responses, determined by IFN-γ secretion, were generated to gL, UL2, UL11, UL21, ICP4, ICP0, ICP47 and UL40 with greater magnitude and/or frequency among cohorts of exposed HSV-2(neg) or asymptomatic HSV-2(pos) individuals, compared to symptomatic recurrent HSV-2(pos) subjects. T cell antigens recognized preferentially among individuals who are resistant to infection or who are infected and have mild or no clinical disease may provide new targets for the design of vaccines aimed at treating and/or preventing HSV-2 infection.
Collapse
|