1
|
Ding Z, Liu Y, Zhang S, Wang F, Zong Q, Yang Y, Du A, Zheng Y, Zhu J, Jiang L. Investigation of the anti-Huanglongbing effects using antimicrobial lipopeptide and phytohormone complex powder prepared from Bacillus amyloliquefaciens MG-2 fermentation. Front Microbiol 2024; 15:1458051. [PMID: 39749134 PMCID: PMC11694225 DOI: 10.3389/fmicb.2024.1458051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025] Open
Abstract
Global citrus production has been severely affected by citrus Huanglongbing (HLB) disease, caused by Candidatus Liberibacter asiaticus (Clas), and the development of effective control methods are crucial. This study employed antimicrobial lipopeptide and phytohormone complex powder (L1) prepared from the fermentation broth of the endophytic plant growth promoting bacterium (PGPB) of Bacillus amyloliquefaciens strain MG-2 to treat Candidatus Liberibacter asiaticus (CLas)-infected 'Citrus reticulata 'Chun Jian' plants. Real-time fluorescence quantitative polymerase chain reaction (qPCR) and PCR were employed for disease detection. The results revealed that after 15 spray-drench treatments with L1 solution, the HLB infection rate decreased from 100 to 50%, the bacterial titer decreased by 51.9% compared with a 27.9% decrease in the control group. L1 treatment triggered the production of reactive oxygen species, increased lignin content, and increased defense enzyme activities (p < 0.05). Defense-related gene expression significantly increased within 12 h of treatment. In addition, L1 application also promoted plant growth, as evidenced by higher transpiration rates and net photosynthetic rates as well as increased leave or root density. Root flora analysis revealed that the abundances of Burkholderia_thailandensis, unclassified_g_Burkholderia-Caballeronia-Paraburkholderia, unclassified_g__Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and Pseudomonas_mosselii were 1.64, 1.46, 5.84, and 6.93 times greater, respectively, than those in the control group. The levels of phenylpropanoids, polyketides, lipids, lipid-like molecules, organic acids, and derivatives, significantly increased following L1 treatment (FC > 2, p < 0.05). Additionally, salicylic acid, dihydrojasmonic acid, and isopentenyl adenosine levels in leaves markedly increased. High-performance liquid chromatography (HPLC) confirmed that L1 contained surfactin, iturin and fengycin cyclic-lipopeptides (CLPs) as well as indole-3-acetic acid (IAA), 3-indolebutyric acid (IBA), indole-3-carboxylic acid and indole-3-carboxaldehyde auxins, N6-entopentenyladenine and t-zeatin-riboside cytokinins, abscisic acid, 1-aminocyclicpanecarboxylic acid, salicylic acid, and gibberellin A1, A3 and A4 phytohormones. These findings provide insight into multiple mechanisms by which endophytic Bacillus PGPB L1 is able to combat HLB disease, to promote citrus plant growth, and to optimize the root flora for soil health which offering an innovative strategy for sustainable management of this severe disease and improving citrus plant growth and productivity.
Collapse
Affiliation(s)
- Zhicheng Ding
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yang Liu
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Shaoran Zhang
- National Key Laboratory of Agricultural Microbiology, Wuhan, China
| | - Fangkui Wang
- National Key Laboratory of Agricultural Microbiology, Wuhan, China
| | - Qi Zong
- National Key Laboratory of Agricultural Microbiology, Wuhan, China
| | - Yuehua Yang
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Anna Du
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yajie Zheng
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jian Zhu
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Ling Jiang
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, National Fruit Free-Virus Germplasm Resource Indoor Conservation Center, Department of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Yang K, Hu B, Zhang W, Yuan T, Xu Y. Recent progress in the understanding of Citrus Huanglongbing: from the perspective of pathogen and citrus host. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:77. [PMID: 39525404 PMCID: PMC11541981 DOI: 10.1007/s11032-024-01517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Citrus Huanglongbing (HLB) is a devastating disease spread by citrus psyllid, causing severe losses to the global citrus industry. The transmission of HLB is mainly influenced by both the pathogen and the citrus psyllid. The unculturable nature of the HLB bacteria (Candidatus Liberibacter asiaticus, CLas) and the susceptibility of all commercial citrus varieties made it extremely difficult to study the mechanisms of resistance and susceptibility. In recent years, new progress has been made in understanding the virulence factors of CLas as well as the defense strategies of citrus host against the attack of CLas. This paper reviews the recent advances in the pathogenic mechanisms of CLas, the screening of agents targeting the CLas, including antimicrobial peptides, metabolites and chemicals, the citrus host defense response to CLas, and strategies to enhance citrus defense. Future challenges that need to be addressed are also discussed.
Collapse
Affiliation(s)
- Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
3
|
Xuan G, Xun L, Xia Y. MarR family proteins sense sulfane sulfur in bacteria. MLIFE 2024; 3:231-239. [PMID: 38948149 PMCID: PMC11211675 DOI: 10.1002/mlf2.12109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/24/2023] [Indexed: 07/02/2024]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) protein family are ubiquitous in bacteria and play critical roles in regulating cellular metabolism and antibiotic resistance. MarR family proteins function as repressors, and their interactions with modulators induce the expression of controlled genes. The previously characterized modulators are insufficient to explain the activities of certain MarR family proteins. However, recently, several MarR family proteins have been reported to sense sulfane sulfur, including zero-valent sulfur, persulfide (R-SSH), and polysulfide (R-SnH, n ≥ 2). Sulfane sulfur is a common cellular component in bacteria whose levels vary during bacterial growth. The changing levels of sulfane sulfur affect the expression of many MarR-controlled genes. Sulfane sulfur reacts with the cysteine thiols of MarR family proteins, causing the formation of protein thiol persulfide, disulfide bonds, and other modifications. Several MarR family proteins that respond to reactive oxygen species (ROS) also sense sulfane sulfur, as both sulfane sulfur and ROS induce the formation of disulfide bonds. This review focused on MarR family proteins that sense sulfane sulfur. However, the sensing mechanisms reviewed here may also apply to other proteins that detect sulfane sulfur, which is emerging as a modulator of gene regulation.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- State Key Laboratory of Marine Food Processing & Safety ControlOcean University of ChinaQingdaoChina
| | - Luying Xun
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
- School of Molecular BiosciencesWashington State UniversityPullmanWashingtonUSA
| | - Yongzhen Xia
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
4
|
Sobe RC, Scharf BE. The swimming defect caused by the absence of the transcriptional regulator LdtR in Sinorhizobium meliloti is restored by mutations in the motility genes motA and motS. Mol Microbiol 2024; 121:954-970. [PMID: 38458990 DOI: 10.1111/mmi.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved β-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.
Collapse
Affiliation(s)
- Richard C Sobe
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
6
|
Zheng Y, Zhang J, Li Y, Liu Y, Liang J, Wang C, Fang F, Deng X, Zheng Z. Pathogenicity and Transcriptomic Analyses of Two " Candidatus Liberibacter asiaticus" Strains Harboring Different Types of Phages. Microbiol Spectr 2023; 11:e0075423. [PMID: 37071011 PMCID: PMC10269750 DOI: 10.1128/spectrum.00754-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
"Candidatus Liberibacter asiaticus" is one of the putative causal agents of citrus Huanglongbing (HLB), a highly destructive disease threatening the global citrus industry. Several types of phages had been identified in "Ca. Liberibacter asiaticus" strains and found to affect the biology of "Ca. Liberibacter asiaticus." However, little is known about the influence of phages in "Ca. Liberibacter asiaticus" pathogenicity. In this study, two "Ca. Liberibacter asiaticus" strains, PYN and PGD, harboring different types of phages were collected and used for pathogenicity analysis in periwinkle (Catharanthus roseus). Strain PYN carries a type 1 phage (P-YN-1), and PGD harbors a type 2 phage (P-GD-2). Compared to strain PYN, strain PGD exhibited a faster reproduction rate and higher virulence in periwinkle: leaf symptoms appeared earlier, and there was a stronger inhibition in the growth of new flush. Estimation of phage copy numbers by type-specific PCR indicated that there are multiple copies of phage P-YN-1 in strain PYN, while strain PGD carries only a single copy of phage P-GD-2. Genome-wide gene expression profiling revealed the lytic activity of P-YN-1 phage, as evidenced by the unique expression of genes involved in lytic cycle, which may limit the propagation of strain PYN and lead to a delayed infection in periwinkle. However, the activation of genes involved in lysogenic conversion of phage P-GD-1 indicated it could reside within the "Ca. Liberibacter asiaticus" genome as a prophage form in strain PGD. Comparative transcriptome analysis showed that the significant differences in expression of virulence factor genes, including genes associated with pathogenic effectors, transcriptional factors, the Znu transport system, and the heme biosynthesis pathway, could be another major determinant of virulence variation between two "Ca. Liberibacter asiaticus" strains. This study expanded our knowledge of "Ca. Liberibacter asiaticus" pathogenicity and provided new insights into the differences in pathogenicity between "Ca. Liberibacter asiaticus" strains. IMPORTANCE Citrus Huanglongbing (HLB), also called citrus greening disease, is a highly destructive disease threatening citrus production worldwide. "Candidatus Liberibacter asiaticus" is one of the most common putative causal agents of HLB. Phages of "Ca. Liberibacter asiaticus" have recently been identified and found to affect "Ca. Liberibacter asiaticus" biology. Here, we found that "Ca. Liberibacter asiaticus" strains harboring different types of phages (type 1 or type 2) showed different levels of pathogenicity and multiplication patterns in the periwinkle plant (Catharanthus roseus). Transcriptome analysis revealed the possible lytic activity of type 1 phage in a "Ca. Liberibacter asiaticus" strain, which could limit the propagation of "Ca. Liberibacter asiaticus" and lead to the delayed infection in periwinkle. The heterogeneity in the transcriptome profiles, particularly the significant differences in expression of virulence factors genes, could be another major determinant of difference in virulence observed between the two "Ca. Liberibacter asiaticus" strains. These findings improved our understanding of "Ca. Liberibacter asiaticus"-phage interaction and provided insight into "Ca. Liberibacter asiaticus" pathogenicity.
Collapse
Affiliation(s)
- Yongqin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingxue Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yun Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoxin Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiayin Liang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fang Fang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoling Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Aurass P, Kim S, Pinedo V, Cava F, Isberg RR. Identification of Genes Required for Long-Term Survival of Legionella pneumophila in Water. mSphere 2023; 8:e0045422. [PMID: 36988466 PMCID: PMC10117105 DOI: 10.1128/msphere.00454-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
Long-term survival of Legionella pneumophila in aquatic environments is thought to be important for facilitating epidemic outbreaks. Eliminating bacterial colonization in plumbing systems is the primary strategy that depletes this reservoir and prevents disease. To uncover L. pneumophila determinants facilitating survival in water, a Tn-seq strategy was used to identify survival-defective mutants during 50-day starvation in tap water at 42°C. The mutants with the most drastic survival defects carried insertions in electron transport chain genes, indicating that membrane energy charge and/or ATP synthesis requires the generation of a proton gradient by the respiratory chain to maintain survival in the presence of water stress. In addition, periplasmically localized proteins that are known (EnhC) or hypothesized (lpg1697) to stabilize the cell wall against turnover were essential for water survival. To test that the identified mutations disrupted water survival, candidate genes were knocked down by CRISPRi. The vast majority of knockdown strains with verified transcript depletion showed remarkably low viability after 50-day incubations. To demonstrate that maintenance of cell wall integrity was an important survival determinant, a deletion mutation in lpg1697, in a gene encoding a predicted l,d-transpeptidase domain, was analyzed. The loss of this gene resulted in increased osmolar sensitivity and carbenicillin hypersensitivity relative to the wild type, as predicted for loss of an l,d-transpeptidase. These results indicate that the L. pneumophila envelope has been evolutionarily selected to allow survival under conditions in which the bacteria are subjected to long-term exposure to starvation and low osmolar conditions. IMPORTANCE Water is the primary vector for transmission of L. pneumophila to humans, and the pathogen is adapted to persist in this environment for extended periods of time. Preventing survival of L. pneumophila in water is therefore critical for prevention of Legionnaires' disease. We analyzed dense transposon mutation pools for strains with severe survival defects during a 50-day water incubation at 42°C. By tracking the associated transposon insertion sites in the genome, we defined a distinct essential gene set for water survival and demonstrate that a predicted peptidoglycan cross-linking enzyme, lpg1697, and components of the electron transport chain are required to ensure survival of the pathogen. Our results indicate that select characteristics of the cell wall and components of the respiratory chain of L. pneumophila are primary evolutionary targets being shaped to promote its survival in water.
Collapse
Affiliation(s)
- Philipp Aurass
- Department of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Seongok Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Victor Pinedo
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
9
|
Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in " Candidatus Liberibacter asiaticus". Int J Mol Sci 2022; 23:ijms231710024. [PMID: 36077424 PMCID: PMC9456138 DOI: 10.3390/ijms231710024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/27/2022] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas) is the causal agent of citrus Huanglongbing (HLB, also called citrus greening disease), a highly destructive disease threatening citrus production worldwide. A novel Microviridae phage (named CLasMV1) has been found to infect CLas, providing a potential therapeutic strategy for CLas/HLB control. However, little is known about the CLasMV1 biology. In this study, we analyzed the population dynamics of CLasMV1 between the insect vector of CLas, the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and the holoparasitic dodder plant (Cuscuta campestris Yunck.); both acquired CLasMV1-infected CLas from an HLB citrus. All CLas-positive dodder samples were CLasMV1-positive, whereas only 32% of CLas-positive ACP samples were identified as CLasMV1-positive. Quantitative analyses showed a similar distribution pattern of CLasMV1 phage and CLas among eight citrus cultivars by presenting at highest abundance in the fruit pith and/or the center axis of the fruit. Transcriptome analyses revealed the possible lytic activity of CLasMV1 on CLas in fruit pith as evidenced by high-level expressions of CLasMV1 genes, and CLas genes related to cell wall biogenesis and remodeling to maintain the CLas cell envelope integrity. The up-regulation of CLas genes were involved in restriction–modification system that could involve possible phage resistance for CLas during CLasMV1 infection. In addition, the regulation of CLas genes involved in cell surface components and Sec pathway by CLasMV1 phage could be beneficial for phage infection. This study expanded our knowledge of CLasMV1 phage that will benefit further CLas phage research and HLB control.
Collapse
|
10
|
Yang C, Ancona V. An Overview of the Mechanisms Against " Candidatus Liberibacter asiaticus": Virulence Targets, Citrus Defenses, and Microbiome. Front Microbiol 2022; 13:850588. [PMID: 35391740 PMCID: PMC8982080 DOI: 10.3389/fmicb.2022.850588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/18/2022] [Indexed: 12/01/2022] Open
Abstract
Citrus Huanglongbing (HLB) or citrus greening, is the most destructive disease for citrus worldwide. It is caused by the psyllid-transmitted, phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas). To date, there are still no effective practical strategies for curing citrus HLB. Understanding the mechanisms against CLas can contribute to the development of effective approaches for combatting HLB. However, the unculturable nature of CLas has hindered elucidating mechanisms against CLas. In this review, we summarize the main aspects that contribute to the understanding about the mechanisms against CLas, including (1) CLas virulence targets, focusing on inhibition of virulence genes; (2) activation of citrus host defense genes and metabolites of HLB-tolerant citrus triggered by CLas, and by agents; and (3) we also review the role of citrus microbiome in combatting CLas. Finally, we discuss novel strategies to continue studying mechanisms against CLas and the relationship of above aspects.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| | - Veronica Ancona
- Department of Agriculture, Agribusiness, and Environmental Sciences, Citrus Center, Texas A&M University-Kingsville, Weslaco, TX, United States
| |
Collapse
|
11
|
Padgett-Pagliai KA, Pagliai FA, da Silva DR, Gardner CL, Lorca GL, Gonzalez CF. Osmotic stress induces long-term biofilm survival in Liberibacter crescens. BMC Microbiol 2022; 22:52. [PMID: 35148684 PMCID: PMC8832773 DOI: 10.1186/s12866-022-02453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Citrus greening, also known as Huanglongbing (HLB), is a devastating citrus plant disease caused predominantly by Liberibacter asiaticus. While nearly all Liberibacter species remain uncultured, here we used the culturable L. crescens BT-1 as a model to examine physiological changes in response to the variable osmotic conditions and nutrient availability encountered within the citrus host. Similarly, physiological responses to changes in growth temperature and dimethyl sulfoxide concentrations were also examined, due to their use in many of the currently employed therapies to control the spread of HLB. Sublethal heat stress was found to induce the expression of genes related to tryptophan biosynthesis, while repressing the expression of ribosomal proteins. Osmotic stress induces expression of transcriptional regulators involved in expression of extracellular structures, while repressing the biosynthesis of fatty acids and aromatic amino acids. The effects of osmotic stress were further evaluated by quantifying biofilm formation of L. crescens in presence of increasing sucrose concentrations at different stages of biofilm formation, where sucrose-induced osmotic stress delayed initial cell attachment while enhancing long-term biofilm viability. Our findings revealed that exposure to osmotic stress is a significant contributing factor to the long term survival of L. crescens and, possibly, to the pathogenicity of other Liberibacter species.
Collapse
Affiliation(s)
- Kaylie A Padgett-Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Danilo R da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA.
| |
Collapse
|
12
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
13
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Aliashkevich A, Cava F. LD-transpeptidases: the great unknown among the peptidoglycan cross-linkers. FEBS J 2021; 289:4718-4730. [PMID: 34109739 DOI: 10.1111/febs.16066] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
The peptidoglycan (PG) cell wall is an essential polymer for the shape and viability of bacteria. Its protective role is in great part provided by its mesh-like character. Therefore, PG-cross-linking enzymes like the penicillin-binding proteins (PBPs) are among the best targets for antibiotics. However, while PBPs have been in the spotlight for more than 50 years, another class of PG-cross-linking enzymes called LD-transpeptidases (LDTs) seemed to contribute less to PG synthesis and, thus, has kept an aura of mystery. In the last years, a number of studies have associated LDTs with cell wall adaptation to stress including β-lactam antibiotics, outer membrane stability, and toxin delivery, which has shed light onto the biological meaning of these proteins. Furthermore, as some species display a great abundance of LD-cross-links in their cell wall, it has been hypothesized that LDTs could also be the main synthetic PG-transpeptidases in some bacteria. In this review, we introduce these enzymes and their role in PG biosynthesis and we highlight the most recent advances in understanding their biological role in diverse species.
Collapse
Affiliation(s)
- Alena Aliashkevich
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Sweden
| |
Collapse
|
15
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
16
|
Gardner CL, da Silva DR, Pagliai FA, Pan L, Padgett-Pagliai KA, Blaustein RA, Merli ML, Zhang D, Pereira C, Teplitski M, Chaparro JX, Folimonova SY, Conesa A, Gezan S, Lorca GL, Gonzalez CF. Assessment of unconventional antimicrobial compounds for the control of 'Candidatus Liberibacter asiaticus', the causative agent of citrus greening disease. Sci Rep 2020; 10:5395. [PMID: 32214166 PMCID: PMC7096471 DOI: 10.1038/s41598-020-62246-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, newly identified small molecules were examined for efficacy against ‘Candidatus Liberibacter asiaticus’ in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of ‘Ca. L. asiaticus’ viability. Analyses of the C. sinensis transcriptome indicated that each treatment consistently induced genes associated with normal metabolism and growth, without compromising tree viability or negatively affecting the indigenous citrus-associated microbiota. It was found that treatment-associated reduction in ‘Ca. L. asiaticus’ was positively correlated with the proliferation of several core taxa related with citrus health. No symptoms of phytotoxicity were observed in any of the treated trees. Trials were also performed in commercial groves to examine the effect of each treatment on fruit productivity, juice quality and efficacy against ‘Ca. L. asiaticus’. Increased fruit production (15%) was observed in C. paradisi following twelve months of treatment with benzbromarone and tolfenamic acid. These results were positively correlated with decreased ‘Ca. L. asiaticus’ transcriptional activity in root samples.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Danilo R da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Ryan A Blaustein
- Soil and Water Sciences Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Dan Zhang
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Cécile Pereira
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Max Teplitski
- Soil and Water Sciences Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Jose X Chaparro
- Fruit Tree Breeding and Genetics, Horticultural Sciences Department, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Svetlana Y Folimonova
- Plant Pathology Department, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, 32611, USA
| | - Ana Conesa
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Salvador Gezan
- School of Forest Resources and Conservation, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, United States of America.
| |
Collapse
|
17
|
Zhang D, da Silva DR, Garrett TJ, Gonzalez CF, Lorca GL. Method Optimization: Analysis of Benzbromarone and Tolfenamic Acid in Citrus Tissues and Soil Using Liquid Chromatography Coupled With Triple-Quadrupole Mass Spectrometry. FRONTIERS IN PLANT SCIENCE 2020; 11:222. [PMID: 32210995 PMCID: PMC7068813 DOI: 10.3389/fpls.2020.00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Herein, an analytical method was developed for extraction and quantification of benzbromarone and tolfenamic acid in citrus and soil matrices using liquid-liquid extraction followed by liquid chromatography-triple quadrupole-tandem mass spectrometry analysis. The compounds were extracted using 0.1% formic acid in 6:4 ethyl acetate and n-hexane solution, and the analytes were separated using a mixture of 0.1% formic acid in ultrapure water and 0.1% formic acid in acetonitrile as mobile phase. A six-point in-matrix calibration curve was constructed providing good linearity with coefficients of determination R 2 ≥ 0.98. The limits of detection and quantification for benzbromarone and tolfenamic acid were 3.0 and 10.0 μg/kg in roots, peel, juice, and soil, and 4.0 and 12.0 μg/kg for leaves samples, respectively. The method yielded excellent recoveries between 81.3 and 101.2%, with relative standard deviation ≤9.5% in the matrices. The developed technique provides a simple and sensitive method for the determination of the chemicals and can be applied to agricultural practices.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Danilo R. da Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
Jain M, Cai L, Fleites LA, Munoz-Bodnar A, Davis MJ, Gabriel DW. Liberibacter crescens Is a Cultured Surrogate for Functional Genomics of Uncultured Pathogenic ' Candidatus Liberibacter' spp. and Is Naturally Competent for Transformation. PHYTOPATHOLOGY 2019; 109:1811-1819. [PMID: 31090497 DOI: 10.1094/phyto-04-19-0129-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter' spp. are uncultured insect endosymbionts and phloem-limited bacterial plant pathogens associated with diseases ranging from severe to nearly asymptomatic. 'Ca. L. asiaticus', causal agent of Huanglongbing or citrus "greening," and 'Ca. L. solanacearum', causal agent of potato zebra chip disease, respectively threaten citrus and potato production worldwide. Research on both pathogens has been stymied by the inability to culture these agents and to reinoculate into any host. Only a single isolate of a single species of Liberibacter, Liberibacter crescens, has been axenically cultured. L. crescens strain BT-1 is genetically tractable to standard molecular manipulation techniques and has been developed as a surrogate model for functional studies of genes, regulatory elements, promoters, and secreted effectors derived from the uncultured pathogenic Liberibacters. Detailed, step-by-step, and highly reproducible protocols for axenic culture, transformation, and targeted gene knockouts of L. crescens are described. In the course of developing these protocols, we found that L. crescens is also naturally competent for direct uptake and homology-guided chromosomal integration of both linear and circular plasmid DNA. The efficiency of natural transformation was about an order of magnitude higher using circular plasmid DNA compared with linearized fragments. Natural transformation using a replicative plasmid was obtained at a rate of approximately 900 transformants per microgram of plasmid, whereas electroporation using the same plasmid resulted in 6 × 104 transformants. Homology-guided marker interruptions using either natural uptake or electroporation of nonreplicative plasmids yielded 10 to 12 transformation events per microgram of DNA, whereas similar interruptions using linear fragments via natural uptake yielded up to 34 transformation events per microgram of DNA.
Collapse
Affiliation(s)
- M Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L Cai
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L A Fleites
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - A Munoz-Bodnar
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - M J Davis
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - D W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
19
|
Andrade M, Wang N. The Tad Pilus Apparatus of ' Candidatus Liberibacter asiaticus' and Its Regulation by VisNR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1175-1187. [PMID: 30925227 DOI: 10.1094/mpmi-02-19-0052-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Citrus huanglongbing (HLB) is one of the most destructive diseases affecting citrus plants. 'Candidatus Liberibacter asiaticus', an uncultivated α-proteobacteria, is the most widely spread causal agent of HLB and is transmitted by the Asian citrus psyllid Diaphorina citri. 'Ca. L. asiaticus' attachment to the psyllid midgut is believed to be critical to further infect other organs, including the salivary gland. In this study, the type IVc tight adherence (Tad) pilus locus encoded by 'Ca. L. asiaticus' was characterized. The Tad loci are conserved among members of Rhizobiaceae, including 'Ca. L. asiaticus' and Agrobacterium spp. Ectopic expression of the 'Ca. L. asiaticus' cpaF gene, an ATPase essential for the biogenesis and secretion of the Tad pilus, restored the adherence phenotype in cpaF mutant of A. tumefaciens, indicating CpaF of 'Ca. L. asiaticus' was functional and critical for bacterial adherence mediated by Tad pilus. Quantitative reverse transcription PCR (qRT-PCR) analysis revealed that 'Ca. L. asiaticus' Tad pilus-encoding genes and 'Ca. L. asiaticus' pilin gene flp3 were upregulated in psyllids compared with in planta. A bacterial one-hybrid assay showed that 'Ca. L. asiaticus' VisN and VisR, members of the LuxR transcriptional factor family, were bound to the flp3 promoter. VisNR regulate flp3. Negative regulation of the flp3 promoter by both VisN and VisR was demonstrated using a shuttle strategy, with analysis of the phenotypes and immunoblotting together with quantification of the expression of the flp3 promoter fused to the β-galactosidase reporter gene. Comparative expression analysis confirmed that 'Ca. L. asiaticus' visNR was less expressed in the psyllid than in the plant host. Further, motility and biofilm phenotypes of the visNR mutant of A. tumefaciens were fully complemented by expressing 'Ca. L. asiaticus' visNR together. The physical interaction between VisN and VisR was confirmed by pull-down and stability assays. The interaction of the flp3 promoter with VisR was verified by electrophoretic mobility shift assay. Taken together, the results revealed the contribution of the Tad pilus apparatus in the colonization of the insect vector by 'Ca. L. asiaticus' and shed light on the involvement of VisNR in regulation of the Tad locus.
Collapse
Affiliation(s)
- Maxuel Andrade
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of the University of Florida Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
20
|
A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proc Natl Acad Sci U S A 2019; 116:18009-18014. [PMID: 31427509 DOI: 10.1073/pnas.1905149116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citri Ca L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.
Collapse
|
21
|
Liu X, Fan Y, Zhang C, Dai M, Wang X, Li W. Nuclear Import of a Secreted " Candidatus Liberibacter asiaticus" Protein is Temperature Dependent and Contributes to Pathogenicity in Nicotiana benthamiana. Front Microbiol 2019; 10:1684. [PMID: 31396191 PMCID: PMC6668550 DOI: 10.3389/fmicb.2019.01684] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 01/14/2023] Open
Abstract
“Candidatus Liberibacter asiaticus” (CLas), one of the causal agents of citrus Huanglongbing (HLB), secretes proteins with functions that are largely unknown. In this study, we demonstrated that CLIBASIA_00460, one of the CLas-encoded Sec-dependent presecretory proteins, might contribute to the phytopathogenicity of CLas. CLIBASIA_00460 was conserved in CLas strains and expressed at a significantly higher level in citrus than in Asian citrus psyllid. Agrobacteria-mediated transient expression in Nicotiana benthamiana epidermal cells showed that the mature CLIBASIA_00460 (m460) without the putative Sec-dependent signal peptide was localized in multiple cellular compartments including nucleus at 25°C, but that nuclear accumulation was greatly decreased as the temperature rose to 32°C. When overexpressed via a Potato virus X (PVX)-based expression vector in N. benthamiana, m460 induced no local symptoms, but tiny necrotic spots were scattered on the systemic leaves. However, NLS-m460, which contains the SV40 nuclear localization sequence (NLS) at the N-terminus to promote nuclear import of m460, caused chlorosis and necrosis in the local leaves and severe necrosis in the systemic leaves. Taken together, these data suggest that CLIBASIA_00460 represented a novel virulence factor of CLas, and that nuclear localization of this protein was temperature dependent and positively correlated with its pathogenicity in planta.
Collapse
Affiliation(s)
- Xuelu Liu
- Citrus Research Institute, Southwest University, Chongqing, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Shandong Normal University, Jinan, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, China
| | - Xuefeng Wang
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De La Fuente L. Progress and Obstacles in Culturing ' Candidatus Liberibacter asiaticus', the Bacterium Associated with Huanglongbing. PHYTOPATHOLOGY 2019; 109:1092-1101. [PMID: 30998129 DOI: 10.1094/phyto-02-19-0051-rvw] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, 'Candidatus Liberibacter spp.' have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is 'Candidatus Liberibacter asiaticus' (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch's postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.
Collapse
Affiliation(s)
- Marcus V Merfa
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Edel Pérez-López
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Eber Naranjo
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Mukesh Jain
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Dean W Gabriel
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
23
|
The Ferredoxin-Like Protein FerR Regulates PrbP Activity in Liberibacter asiaticus. Appl Environ Microbiol 2019; 85:AEM.02605-18. [PMID: 30552192 DOI: 10.1128/aem.02605-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that regulates gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. The constitutive expression of prbP observed upon chemical inactivation of PrbP-DNA interactions in vivo indicated that the expression of prbP was not autoregulated at the level of transcription. This observation suggested that a modulatory mechanism via protein-protein interactions may be involved. In silico genome association analysis identified FerR (CLIBASIA_01505), a putative ferredoxin-like protein, as a PrbP-interacting protein. Using a bacterial two-hybrid system and immunoprecipitation assays, interactions between PrbP and FerR were confirmed. In vitro transcription assays were used to show that FerR can increase the activity of PrbP by 16-fold when present in the PrbP-RNA polymerase reaction mixture. The FerR protein-protein interaction surface was predicted by structural modeling and followed by site-directed mutagenesis. Amino acids V20, V23, and C40 were identified as the most important residues in FerR involved in the modulation of PrbP activity in vitro The regulatory mechanism of FerR abundance was examined at the transcription level. In contrast to prbP of L. asiaticus (prbP Las), mRNA levels of ferR of L. asiaticus (ferR Las) are induced by an increase in osmotic pressure. The results of this study revealed that the activity of the transcriptional activator PrbPLas is modulated via interactions with FerRLas The induction of ferR Las expression by osmolarity provides insight into the mechanisms of adjusting gene expression in response to host environmental signals in L. asiaticus IMPORTANCE The rapid spread and aggressive progression of huanglongbing (HLB) in the major citrus-producing areas have raised global recognition of and vigilance to this disease. As a result, the causative agent, Liberibacter asiaticus, has been investigated from various perspectives. However, gene expression regulatory mechanisms that are important for the survival and persistence of this intracellular pathogen remain largely unexplored. PrbP is a transcriptional accessory protein important for L. asiaticus survival in the plant host. In this study, we investigated the interactions between PrbP in L. asiaticus (PrbPLas) and a ferredoxin-like protein (FerR) in L. asiaticus, FerRLas We show that the presence of FerR stabilizes and augments the activity of PrbPLas In addition, we demonstrate that the expression of ferR is induced by increases in osmolarity in Liberibacter crescens Altogether, these results suggest that FerRLas and PrbPLas may play important roles in the regulation of gene expression in response to changing environmental signals during L. asiaticus infection in the citrus host.
Collapse
|
24
|
Coyle JF, Pagliai FA, Zhang D, Lorca GL, Gonzalez CF. Purification and partial characterization of LdtP, a cell envelope modifying enzyme in Liberibacter asiaticus. BMC Microbiol 2018; 18:201. [PMID: 30497377 PMCID: PMC6267092 DOI: 10.1186/s12866-018-1348-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background The aggressive spread of Liberibacter asiaticus, a bacterium closely associated with citrus greening, has given rise to an acute crisis in the citrus industry, making it imperative to expand the scientific knowledge base regarding L. asiaticus. Despite several endeavors to culture L. asiaticus, this bacterium has yet to be maintained in axenic culture, rendering identification and analysis of potential treatment targets challenging. Accordingly, a thorough understanding of biological mechanisms involved in the citrus host-microbe relationship is critical as a means of directing the search for future treatment targets. In this study, we evaluate the biochemical characteristics of CLIBASIA_01175, renamed LdtP (L,D-transpeptidase). Surrogate strains were used to evaluate its potential biological significance in gram-negative bacteria. A strain of E. coli carrying quintuple knock-outs of all genes encoding L,D-transpeptidases was utilized to demonstrate the activity of L. asiaticus LdtP. Results This complementation study demonstrated the periplasmic localization of mature LdtP and provided evidence for the biological role of LdtP in peptidoglycan modification. Further investigation highlighted the role of LdtP as a periplasmic esterase involved in modification of the lipid A moiety of the lipopolysaccharide. This work described, for the first time, an enzyme of the L,D-transpeptidase family with moonlighting enzyme activity directed to the modification of the bacterial cell wall and LPS. Conclusions Taken together, the data indicates that LdtP is a novel protein involved in an alternative pathway for modification of the bacterial cell, potentially affording L. asiaticus a means to survive within the host. Electronic supplementary material The online version of this article (10.1186/s12866-018-1348-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Dan Zhang
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T. Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. Int J Mol Sci 2018; 19:ijms19123755. [PMID: 30486299 PMCID: PMC6321045 DOI: 10.3390/ijms19123755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR), Avenida las Palmeras 4, 18100 Armilla, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
26
|
Pagliai FA, Pan L, Silva D, Gonzalez CF, Lorca GL. Zinc is an inhibitor of the LdtR transcriptional activator. PLoS One 2018; 13:e0195746. [PMID: 29634775 PMCID: PMC5892913 DOI: 10.1371/journal.pone.0195746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023] Open
Abstract
LdtR is a master regulator of gene expression in Liberibacter asiaticus, one of the causative agents of citrus greening disease. LdtR belongs to the MarR-family of transcriptional regulators and it has been linked to the regulation of more than 180 genes in Liberibacter species, most of them gathered in the following Clusters of Orthologous Groups: cell motility, cell wall envelope, energy production, and transcription. Our previous transcriptomic evidence suggested that LdtR is directly involved in the modulation of the zinc uptake system genes (znu) in the closely related L. crescens. In this report, we show that LdtR is involved in the regulation of one of the two encoded zinc uptake mechanisms in L. asiaticus, named znu2. We also show that LdtR binds zinc with higher affinity than benzbromarone, a synthetic effector inhibitory molecule, resulting in the disruption of the LdtR:promoter interactions. Using site-directed mutagenesis, electrophoretic mobility shift assays (EMSAs), and isothermal titration calorimetry, we identified that residues C28 and T43 in LdtR, located in close proximity to the Benz1 pocket, are involved in the interaction with zinc. These results provided new evidence of a high-affinity effector molecule targeting a key player in L. asiaticus' physiology and complemented our previous findings about the mechanisms of signal transduction in members of the MarR-family.
Collapse
Affiliation(s)
- Fernando A. Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Lei Pan
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Danilo Silva
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
27
|
Cruz-Munoz M, Petrone JR, Cohn AR, Munoz-Beristain A, Killiny N, Drew JC, Triplett EW. Development of Chemically Defined Media Reveals Citrate as Preferred Carbon Source for Liberibacter Growth. Front Microbiol 2018; 9:668. [PMID: 29675013 PMCID: PMC5895721 DOI: 10.3389/fmicb.2018.00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Liberibacter crescens is the closest cultured relative of four important uncultured crop pathogens. Candidatus L. asiaticus, L. americanus, and L. africanus are causal agents of citrus greening disease, otherwise known as huanglongling (HLB). Candidatus L. solanacearum is responsible for potato Zebra chip disease. Cultures of L. crescens grow slowly on BM-7 complex medium, while attempts to culture the Ca. Liberibacter pathogens in BM-7 have failed. Developing a defined medium for the growth of L. crescens will be useful in the study of Liberibacter metabolism and will improve the prospects for culturing the Ca. Liberibacter pathogens. Here, M15 medium is presented and described as the first chemically defined medium for the growth of L. crescens cultures that approaches the growth rates obtained with BM-7. The development of M15 was a four step process including: (1) the identification of Hi-Graces Insect medium (Hi-GI) as an essential, yet undefined component in BM-7, for the growth of L. crescens, (2) metabolomic reconstruction of Hi-GI to create a defined medium for the growth of L. crescens cultures, and (3) the discovery of citrate as the preferred carbon and energy source for L. crescens growth. The composition of M15 medium includes inorganic salts as in the Hi-GI formula, amino acids derived from the metabolomic analyses of Hi-GI, and a 10-fold increase in vitamins compared to the Hi-GI formula, with exception choline chloride, which was increased 5000-fold in M15. Since genome comparisons of L. crescens and the Ca. Liberibacter pathogens show that they are very similar metabolically. Thus, these results imply citrate and other TCA cycle intermediates are main energy sources for these pathogens in their insect and plant hosts. Thus, strategies to reduce citrate levels in the habitats of these pathogens may be effective in reducing Ca. Liberibacter pathogen populations thereby reducing symptoms in the plant host.
Collapse
Affiliation(s)
- Maritsa Cruz-Munoz
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R Petrone
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Alexa R Cohn
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Alam Munoz-Beristain
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Nabil Killiny
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer C Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Blaustein RA, Lorca GL, Teplitski M. Challenges for Managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions. PHYTOPATHOLOGY 2018; 108:424-435. [PMID: 28990481 DOI: 10.1094/phyto-07-17-0260-rvw] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Huanglongbing (HLB; "citrus greening" disease) has caused significant damages to the global citrus industry as it has become well established in leading citrus-producing regions and continues to spread worldwide. Insecticidal control has been a critical component of HLB disease management, as there is a direct relationship between vector control and Candidatus Liberibacter spp. (i.e., the HLB pathogen) titer in HLB-infected citrus trees. In recent years, there have been substantial efforts to develop practical strategies for specifically managing Ca. Liberibacter spp.; however, a literature review on the outcomes of such attempts is still lacking. This work summarizes the greenhouse and field studies that have documented the effects and implications of chemical-based treatments (i.e., applications of broad-spectrum antibiotics, small molecule compounds) and nonchemical measures (i.e., applications of plant-beneficial compounds, applications of inorganic fertilizers, biological control, thermotherapy) for phytopathogen control. The ongoing challenges associated with mitigating Ca. Liberibacter spp. populations at the field-scale, such as the seasonality of the phytopathogen and associated HLB disease symptoms, limitations for therapeutics to contact the phytopathogen in planta, adverse impacts of broad-spectrum treatments on plant-beneficial microbiota, and potential implications on public and ecosystem health, are also discussed.
Collapse
Affiliation(s)
- Ryan A Blaustein
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Graciela L Lorca
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Max Teplitski
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| |
Collapse
|
29
|
Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti. J Bacteriol 2018; 200:JB.00501-17. [PMID: 29158240 DOI: 10.1128/jb.00501-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
Sinorhizobium meliloti is a soil-dwelling alphaproteobacterium that engages in a nitrogen-fixing root nodule symbiosis with leguminous plants. Cell surface polysaccharides are important both for adapting to stresses in the soil and for the development of an effective symbiotic interaction. Among the polysaccharides characterized to date, the acidic exopolysaccharides I (EPS-I; succinoglycan) and II (EPS-II; galactoglucan) are particularly important for protection from abiotic stresses, biofilm formation, root colonization, and infection of plant roots. Previous genetic screens discovered mutants with impaired EPS production, allowing the delineation of EPS biosynthetic pathways. Here we report on a genetic screen to isolate mutants with mucoid colonial morphologies that suggest EPS overproduction. Screening with Tn5-110, which allows the recovery of both null and upregulation mutants, yielded 47 mucoid mutants, most of which overproduce EPS-I; among the 30 unique genes and intergenic regions identified, 14 have not been associated with EPS production previously. We identified a new protein-coding gene, emmD, which may be involved in the regulation of EPS-I production as part of the EmmABC three-component regulatory circuit. We also identified a mutant defective in EPS-I production, motility, and symbiosis, where Tn5-110 was not responsible for the mutant phenotypes; these phenotypes result from a missense mutation in rpoA corresponding to the domain of the RNA polymerase alpha subunit known to interact with transcription regulators.IMPORTANCE The alphaproteobacterium Sinorhizobium meliloti converts dinitrogen to ammonium while inhabiting specialized plant organs termed root nodules. The transformation of S. meliloti from a free-living soil bacterium to a nitrogen-fixing plant symbiont is a complex developmental process requiring close interaction between the two partners. As the interface between the bacterium and its environment, the S. meliloti cell surface plays a critical role in adaptation to varied soil environments and in interaction with plant hosts. We isolated and characterized S. meliloti mutants with increased production of exopolysaccharides, key cell surface components. Our diverse set of mutants suggests roles for exopolysaccharide production in growth, metabolism, cell division, envelope homeostasis, biofilm formation, stress response, motility, and symbiosis.
Collapse
|
30
|
Pan L, Gardner CL, Pagliai FA, Gonzalez CF, Lorca GL. Identification of the Tolfenamic Acid Binding Pocket in PrbP from Liberibacter asiaticus. Front Microbiol 2017; 8:1591. [PMID: 28878750 PMCID: PMC5572369 DOI: 10.3389/fmicb.2017.01591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that was found to regulate gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. It was found that inactivation of PrbP, using the inhibitor tolfenamic acid, resulted in a significant decrease in the overall transcriptional activity of L. asiaticus, and the suppression of L. asiaticus infection in HLB symptomatic citrus seedlings. The molecular interactions between PrbP and tolfenamic acid, however, were yet to be elucidated. In this study, we modeled the structure of PrbP and identified a ligand binding pocket, TaP, located at the interface of the predicted RNA polymerase interaction domain (N-terminus) and the DNA binding domain (C-terminus). The molecular interactions of PrbP with tolfenamic acid were predicted using in silico docking. Site-directed mutagenesis of specific amino acids was followed by electrophoresis mobility shift assays and in vitro transcription assays, where residues N107, G109, and E148 were identified as the primary amino acids involved in interactions with tolfenamic acid. These results provide insight into the binding mechanism of PrbP to a small inhibitory molecule, and a starting scaffold for the identification and development of therapeutics targeting PrbP and other homologs in the CarD_CdnL_TRCF family.
Collapse
Affiliation(s)
| | | | | | | | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Science, University of FloridaGainesville, FL, United States
| |
Collapse
|
31
|
Li J, Pang Z, Trivedi P, Zhou X, Ying X, Jia H, Wang N. 'Candidatus Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:620-630. [PMID: 28488467 DOI: 10.1094/mpmi-12-16-0257-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogens from the fastidious, phloem-restricted 'Candidatus Liberibacter' species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding 'Ca. Liberibacter' species. Here, we report that the citrus HLB pathogen 'Ca. L. asiaticus' uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, 'Ca. L. asiaticus' not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing 'Ca. L. asiaticus' population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaofeng Zhou
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaobao Ying
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
32
|
Pagliai FA, Coyle JF, Kapoor S, Gonzalez CF, Lorca GL. LdtR is a master regulator of gene expression in Liberibacter asiaticus. Microb Biotechnol 2017; 10:896-909. [PMID: 28503858 PMCID: PMC5481520 DOI: 10.1111/1751-7915.12728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/02/2023] Open
Abstract
Huanglongbing or citrus greening disease is causing devastation to the citrus industry. Liberibacter asiaticus, an obligate intracellular pathogen of citrus, is one the causative agents of the disease. Most of the knowledge about this bacterium has been deduced from the in silico exploration of its genomic sequence. L. asiaticus differentially expresses genes during its transmission from the psyllid vector, Diaphorina citri, to the plant. However, the regulatory mechanisms for the adaptation of the bacterium into either hosts remain unknown. Here we show that LdtR, a MarR family transcriptional regulator, activates or represses transcription genome-wide. We performed a double approach to identify the components of the LdtR regulon: a transcriptome analysis in both the related bacterium Liberibacter crescens and citrus-infected leaves, strengthened with an in silico prediction of LdtR regulatory sites. Our results demonstrated that LdtR controls the expression of nearly 180 genes in L. asiaticus, distributed in processes such as cell motility, cell wall biogenesis, energy production, and transcription. These results provide new evidence about the regulatory network of L. asiaticus, where the differential expression of genes from these functional categories could be of great importance during the adaptation of the bacterium to either hosts.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Sharan Kapoor
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry Road, PO Box 103610, Gainesville, FL, 32610-3610, USA
| |
Collapse
|
33
|
Loto F, Coyle JF, Padgett KA, Pagliai FA, Gardner CL, Lorca GL, Gonzalez CF. Functional characterization of LotP from Liberibacter asiaticus. Microb Biotechnol 2017; 10:642-656. [PMID: 28378385 PMCID: PMC5404198 DOI: 10.1111/1751-7915.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 01/08/2023] Open
Abstract
Liberibacter asiaticus is an unculturable parasitic bacterium of the alphaproteobacteria group hosted by both citrus plants and a psyllid insect vector (Diaphorina citri). In the citrus tree, the bacteria thrive only inside the phloem, causing a systemically incurable and deadly plant disease named citrus greening or Huanglongbing. Currently, all commercial citrus cultivars in production are susceptible to L. asiaticus, representing a serious threat to the citrus industry worldwide. The technical inability to isolate and culture L. asiaticus has hindered progress in understanding the biology of this bacterium directly. Consequently, a deep understanding of the biological pathways involved in the regulation of host–pathogen interactions becomes critical to rationally design future and necessary strategies of control. In this work, we used surrogate strains to evaluate the biochemical characteristics and biological significance of CLIBASIA_03135. This gene, highly induced during early stages of plant infection, encodes a 23 kDa protein and was renamed in this work as LotP. This protein belongs to an uncharacterized family of proteins with an overall structure resembling the LON protease N‐terminus. Co‐immunoprecipitation assays allowed us to identify the Liberibacter chaperonin GroEL as the main LotP‐interacting protein. The specific interaction between LotP and GroEL was reconstructed and confirmed using a two‐hybrid system in Escherichia coli. Furthermore, it was demonstrated that LotP has a native molecular weight of 44 kDa, corresponding to a dimer in solution with ATPase activity in vitro. In Liberibacter crescens, LotP is strongly induced in response to conditions with high osmolarity but repressed at high temperatures. Electrophoretic mobility shift assay (EMSA) results suggest that LotP is a member of the LdtR regulon and could play an important role in tolerance to osmotic stress.
Collapse
Affiliation(s)
- Flavia Loto
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, Tucumán, Argentina
| | - Janelle F Coyle
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Kaylie A Padgett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA.,Department of Microbiology and Cell Science, Undergraduate Research Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Christopher L Gardner
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, 2033 Mowry road, PO Box 103610, Gainesville, FL 32610-3610, USA
| |
Collapse
|
34
|
Gardner CL, Pagliai FA, Pan L, Bojilova L, Torino MI, Lorca GL, Gonzalez CF. Drug Repurposing: Tolfenamic Acid Inactivates PrbP, a Transcriptional Accessory Protein in Liberibacter asiaticus. Front Microbiol 2016; 7:1630. [PMID: 27803694 PMCID: PMC5067538 DOI: 10.3389/fmicb.2016.01630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
CLIBASIA_01510, PrbP, is a predicted RNA polymerase binding protein in Liberibacter asiaticus. PrbP was found to regulate expression of a small subset of ribosomal genes through interactions with the β-subunit of the RNA polymerase and a short, specific sequence on the promoter region. Molecular screening assays were performed to identify small molecules that interact with PrbP in vitro. Chemical hits were analyzed for therapeutic efficacy against L. asiaticus via an infected leaf assay, where the transcriptional activity of L. asiaticus was found to decrease significantly after exposure to tolfenamic acid. Similarly, tolfenamic acid was found to inhibit L. asiaticus infection in highly symptomatic citrus seedlings. Our results indicate that PrbP is an important transcriptional regulator for survival of L. asiaticus in planta, and the chemicals identified by molecular screening assays could be used as a therapeutic treatment for huanglongbing disease.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Maria I Torino
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
35
|
Sundin GW, Wang N, Charkowski AO, Castiblanco LF, Jia H, Zhao Y. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. PHYTOPATHOLOGY 2016; 106:1071-1082. [PMID: 27183301 DOI: 10.1094/phyto-03-16-0117-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Collapse
Affiliation(s)
- George W Sundin
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Nian Wang
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Amy O Charkowski
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Luisa F Castiblanco
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Hongge Jia
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Youfu Zhao
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
36
|
Li J, Trivedi P, Wang N. Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. PHYTOPATHOLOGY 2016; 106:37-46. [PMID: 26390185 DOI: 10.1094/phyto-08-15-0196-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Huanglongbing (HLB) is currently the most economically devastating disease of citrus worldwide and no established cure is available. Defense inducing compounds are able to induce plant resistance effective against various pathogens. In this study the effects of various chemical inducers on HLB diseased citrus were evaluated in four groves (three with sweet orange and one with mandarin) in Florida (United States) for two to four consecutive growing seasons. Results have demonstrated that plant defense inducers including β-aminobutyric acid (BABA), 2,1,3-benzothiadiazole (BTH), and 2,6-dichloroisonicotinic acid (INA), individually or in combination, were effective in suppressing progress of HLB disease. Ascorbic acid (AA) and the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DDG) also exhibited positive control effects on HLB. After three or four applications for each season, the treatments AA (60 to 600 µM), BABA (0.2 to 1.0 mM), BTH (1.0 mM), INA (0.1 mM), 2-DDG (100 µM), BABA (1.0 mM) plus BTH (1.0 mM), BTH (1.0 mM) plus AA (600 µM), and BTH (1.0 mM) plus 2-DDG (100 µM) slowed down the population growth in planta of 'Candidatus Liberibacter asiaticus', the putative pathogen of HLB and reduced HLB disease severity by approximately 15 to 30% compared with the nontreated control, depending on the age and initial HLB severity of infected trees. These treatments also conferred positive effect on fruit yield and quality. Altogether, these findings indicate that plant defense inducers may be a useful strategy for the management of citrus HLB.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| | - Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred 33850
| |
Collapse
|
37
|
Pagliai FA, Gonzalez CF, Lorca GL. Identification of a Ligand Binding Pocket in LdtR from Liberibacter asiaticus. Front Microbiol 2015; 6:1314. [PMID: 26635775 PMCID: PMC4658428 DOI: 10.3389/fmicb.2015.01314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
LdtR is a transcriptional activator involved in the regulation of a putative L,D transpeptidase in Liberibacter asiaticus, an unculturable pathogen and one of the causative agents of Huanglongbing disease. Using small molecule screens we identified benzbromarone as an inhibitor of LdtR activity, which was confirmed using in vivo and in vitro assays. Based on these previous results, the objective of this work was to identify the LdtR ligand binding pocket and characterize its interactions with benzbromarone. A structural model of LdtR was constructed and the molecular interactions with the ligand were predicted using the SwissDock interface. Using site-directed mutagenesis, these residues were changed to alanine. Electrophoretic mobility shift assays, thermal denaturation, isothermal titration calorimetry experiments, and in vivo assays were used to identify residues T43, L61, and F64 in the Benz1 pocket of LdtR as the amino acids most likely involved in the binding to benzbromarone. These results provide new information on the binding mechanism of LdtR to a modulatory molecule and provide a blue print for the design of therapeutics for other members of the MarR family of transcriptional regulators involved in pathogenicity.
Collapse
Affiliation(s)
- Fernando A Pagliai
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| | - Graciela L Lorca
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville FL, USA
| |
Collapse
|
38
|
Ding F, Duan Y, Paul C, Brlansky RH, Hartung JS. Localization and Distribution of 'Candidatus Liberibacter asiaticus' in Citrus and Periwinkle by Direct Tissue Blot Immuno Assay with an Anti-OmpA Polyclonal Antibody. PLoS One 2015; 10:e0123939. [PMID: 25946013 PMCID: PMC4422590 DOI: 10.1371/journal.pone.0123939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' (CaLas), a non-cultured member of the α-proteobacteria, is the causal agent of citrus Huanglongbing (HLB). Due to the difficulties of in vitro culture, antibodies against CaLas have not been widely used in studies of this pathogen. We have used an anti-OmpA polyclonal antibody based direct tissue blot immunoassay to localize CaLas in different citrus tissues and in periwinkle leaves. In citrus petioles, CaLas was unevenly distributed in the phloem sieve tubes, and tended to colonize in phloem sieve tubes on the underside of petioles in preference to the upper side of petioles. Both the leaf abscission zone and the junction of the petiole and leaf midrib had fewer CaLas bacteria compared to the main portions of the petiole and the midribs. Colonies of CaLas in phloem sieve tubes were more frequently found in stems with symptomatic leaves than in stems with asymptomatic leaves with an uneven distribution pattern. In serial sections taken from the receptacle to the peduncle, more CaLas were observed in the peduncle sections adjacent to the stem. In seed, CaLas was located in the seed coat. Many fewer CaLas were found in the roots, as compared to the seeds and petioles when samples were collected from trees with obvious foliar symptoms. The direct tissue blot immuno assay was adapted to whole periwinkle leaves infected by CaLas. The pathogen was distributed throughout the lateral veins and the results were correlated with results of qPCR. Our data provide direct spatial and anatomical information for CaLas in planta. This simple and scalable method may facilitate the future research on the interaction of CaLas and host plant.
Collapse
Affiliation(s)
- Fang Ding
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yongping Duan
- USDA ARS Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Cristina Paul
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Ronald H. Brlansky
- University of Florida, citrus Research and Education Center, Lake Alfred, Florida, United States of America
| | - John S. Hartung
- USDA ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|