1
|
Zhang Z, Kong H, Ban X, Li C, Gu Z, Li Z. C-terminal domains of β-galactosidase from Paenibacillus macquariensis modulate product distribution by altering substrate binding conformation. Int J Biol Macromol 2025; 310:143412. [PMID: 40274137 DOI: 10.1016/j.ijbiomac.2025.143412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/09/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
GH2 β-galactosidases synthesize galacto-oligosaccharides (GOS) with various degrees of polymerization and linkage types. For some GH2 multidomain β-galactosidases, catalytic efficiency and size of product oligosaccharides can be modified by truncating the C-terminal domains. Yet, the impact of C-terminal truncation on product linkage distribution remains unexplored, and the mechanisms behind this strategy are not entirely understood. Investigating how C-terminal truncation affects GOS synthesis is important for producing desired product structures. Herein, we expressed the GH2 β-galactosidase PmGal and analyzed the product distribution of both the wild-type enzyme and its C-terminally truncated forms. One of these variants showed enhanced specific activity and increased allolactose productivity. Through molecular dynamics analysis, we examined the functional roles of the C-terminal domains. Our findings reveal that truncation increases the flexibility of both the active-site loops in the catalytic domain and the surface loop in the C-terminal domain via dynamic allostery. The enhanced flexibility alters the relative positioning of the C-terminus and catalytic domain, and influences substrate binding conformation, resulting in a shift in product distribution. Overall, our study provides valuable insights into truncation strategies for controlling transgalactosylation efficiency and product distribution. It also enhances our understanding of the structural factors influencing β-galactosidase catalysis.
Collapse
Affiliation(s)
- Ziqian Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Yao G, Xia B, Wei F, Wang J, Yang Y, Ma S, Ke W, Li T, Cheng X, Wen L, Long YT, Gao Z. Glycan Sequencing Based on Glycosidase-Assisted Nanopore Sensing. J Am Chem Soc 2025; 147:1721-1731. [PMID: 39745005 DOI: 10.1021/jacs.4c12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Nanopores are promising sensors for glycan analysis with the accurate identification of complex glycans laying the foundation for nanopore-based sequencing. However, their applicability toward continuous glycan sequencing has not yet been demonstrated. Here, we present a proof-of-concept of glycan sequencing by combining nanopore technology with glycosidase-hydrolyzing reactions. By continuously monitoring the changes in the characteristic current generated by the translocation of glycan hydrolysis products through a nanopore, the glycan sequence can be accurately identified based on the specificity of glycosidases. With machine learning, we improved the sequencing accuracy to over 98%, allowing for the reliable determination of consecutive building blocks and glycosidic linkages of glycan chains while reducing the need for operator expertise. This approach was validated on real glycan samples, with accuracy calibrated using hydrophilic interaction chromatography-high-performance liquid chromatography (HILIC-HPLC) and mass spectrometry (MS). We achieved the sequencing of ten consecutive units in natural glycan chains, which provided the first evidence for the feasibility of a nanopore-glycosidase-compatible system in glycan sequencing. Compared to traditional methods, this strategy enhances sequencing efficiency by over 5-fold. Additionally, we introduced the concept of 'inverse sequencing', which focuses on electrical signal changes rather than monosaccharide identification. This eliminates the reliance on glycan fingerprint libraries typically required in putative 'forward hydrolysis' strategies. When the challenges in both 'forward and inverse hydrolysis sequencing strategies' are addressed, this approach will pave the way for establishing a glycan sequencing technology at a single-molecule level.
Collapse
Affiliation(s)
- Guangda Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Lingang Laboratory, Shanghai 200031, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Wei
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiahong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuting Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengzhou Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiehai Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Liuqing Wen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi-Tao Long
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
3
|
Montgomery MT, Ortigoza M, Loomis C, Weiser JN. Neuraminidase-mediated enhancement of Streptococcus pneumoniae colonization is associated with altered mucus characteristics and distribution. mBio 2025; 16:e0257924. [PMID: 39660923 PMCID: PMC11708046 DOI: 10.1128/mbio.02579-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Upon entry into the upper respiratory tract (URT), Streptococcus pneumoniae (Spn) upregulates neuraminidases (NA) that cleave sialic acid (SA) from host glycans. Because sialylation is thought to contribute to the physical properties that determine mucus function, we posited that Spn directly alters host mucus through NA activity. By directly imaging the colonized URT, we demonstrated NA-mediated alterations to the characteristics and distribution of mucus along the respiratory epithelium, where colonizing bacteria are found. Mucus exposed to NA showed increased localization within goblet cells and lining the glycocalyx. By contrast, NA-naïve mucus was more likely to be observed sloughing away from the epithelial surface. We also visualized Spn in the URT and observed that NA promoted efficient bacterial localization to the firm mucus layer overlying the glycocalyx, whereas NA-deficient Spn was associated more with loose mucus. By facilitating tighter association with the glycocalyx, NA promoted increased Spn colonization density. The magnitude of the NA-mediated effect on colonization was widened during late colonization by increased evasion of host-mediated clearance mechanisms. Thus, Spn-encoded NAs directly modify the host environment by desialylating mucus, which allows close interaction with mucus at the epithelium, and this is associated with enhanced bacterial colonization. IMPORTANCE Although severe illness and death caused by Spn result from secondary invasive diseases including pneumonia, sepsis, and meningitis, stable colonization of the upper respiratory tract (URT) is a prerequisite to invasive disease. Therefore, understanding host-Spn dynamics during asymptomatic colonization of the URT is warranted with respect to the pathogenesis of Spn disease. In this study, we found that Spn NA activity directly alters mucus characteristics that result in increased density and duration of URT colonization. Therefore, targeting Spn NA activity during URT colonization may be a viable strategy to mitigate Spn infection.
Collapse
Affiliation(s)
- Matthew T. Montgomery
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Mila Ortigoza
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, New York, USA
| | - Cynthia Loomis
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Jeffrey N. Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Ren X, Wang M, Du J, Dai Y, Dang L, Li Z, Shu J. Glycans in the oral bacteria and fungi: Shaping host-microbe interactions and human health. Int J Biol Macromol 2024; 282:136932. [PMID: 39490874 DOI: 10.1016/j.ijbiomac.2024.136932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The human oral cavity serves as the natural entry port to both the gastrointestinal and respiratory tracts, and hosts a diverse microbial community essential for maintaining health. Dysbiosis of this microbiome can lead to various diseases. Glycans, as vital carriers of biological information, are indispensable structural components of living organisms and play key roles in numerous biological processes. In the oral microbiome, glycans influence microbial binding to host receptors, promote colonization, and mediate communication among microbial communities, as well as between microbes and the host immune system. Targeting glycans may provide innovative strategies for modulating the composition of the oral microbiome, with broader implications for human health. Additionally, exogenous glycans regulate the oral microbiome by serving as carbon and energy sources for microbes, while certain specific glycans can inhibit microbial growth and activity. This review summarizes glycosylation pathways in oral bacteria and fungi, explores the regulation of host-microbiota interactions by glycans, and discusses the effects of exogenous glycans on oral microbiome. The review aims to highlight the multifaceted role of glycans in shaping the oral microbiome and its impact on the host, while also indicates potential future applications.
Collapse
Affiliation(s)
- Xiameng Ren
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Min Wang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jiabao Du
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Yu Dai
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China; School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Hovorková M, Kaščáková B, Petrásková L, Havlíčková P, Nováček J, Pinkas D, Gardian Z, Křen V, Bojarová P, Smatanová IK. The variable structural flexibility of the Bacillus circulans β-galactosidase isoforms determines their unique functionalities. Structure 2024; 32:2023-2037.e5. [PMID: 39353423 DOI: 10.1016/j.str.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
β-Galactosidase from Bacillus circulans ATCC 31382 (BgaD) is a biotechnologically important enzyme for the synthesis of β-galactooligosaccharides (GOS). Among its four isoforms, isoform A (BgaD-A) has distinct synthetic properties. Here, we present cryoelectron microscopy (cryo-EM) structures of BgaD-A and compare them with the known X-ray crystal structure of isoform D (BgaD-D), revealing substantial structural divergences between the two isoforms. In contrast to BgaD-D, BgaD-A features a flexible Big-4 domain and another enigmatic domain. The newly identified flexible region in BgaD-A is termed as "barrier domain 8," and serves as a barricade, obstructing the access of longer oligosaccharide substrates into the active site of BgaD-A. The transgalactosylation reactions catalyzed by both isoforms revealed that BgaD-A has a higher selectivity than BgaD-D in the earlier stages of the reaction and is prevailingly directed to shorter galactooligosaccharides. This study improves our understanding of the structural determinants governing β-galactosidase catalysis, with implications for tailored GOS production.
Collapse
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, CZ-12843 Praha2, Czech Republic
| | - Barbora Kaščáková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Petra Havlíčková
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Nováček
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Daniel Pinkas
- Cryo-Electron Microscopy Core Facility, CEITEC, CZ-62500 Brno, Czech Republic
| | - Zdenko Gardian
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic; Laboratory of Electron Microscopy, Biology Centre of the Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Praha4, Czech Republic.
| | - Ivana Kutá Smatanová
- Department of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
6
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
7
|
Han R, Baudrexl M, Ludwig C, Berezina OV, Rykov SV, Liebl W. Identification of a novel xanthan-binding module of a multi-modular Cohnella sp. xanthanase. Front Microbiol 2024; 15:1386552. [PMID: 38596379 PMCID: PMC11002231 DOI: 10.3389/fmicb.2024.1386552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the β-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the β-fructan polysaccharides inulin and levan.
Collapse
Affiliation(s)
- Rui Han
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Melanie Baudrexl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Sergey V. Rykov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Wolfgang Liebl
- Chair of Microbiology, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
8
|
Mathew BJ, Gupta P, Naaz T, Rai R, Gupta S, Gupta S, Chaurasiya SK, Purwar S, Biswas D, Vyas AK, Singh AK. Role of Streptococcus pneumoniae extracellular glycosidases in immune evasion. Front Cell Infect Microbiol 2023; 13:1109449. [PMID: 36816580 PMCID: PMC9937060 DOI: 10.3389/fcimb.2023.1109449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) typically colonizes the human upper airway asymptomatically but upon reaching other sites of the host body can cause an array of diseases such as pneumonia, bacteremia, otitis media, and meningitis. Be it colonization or progression to disease state, pneumococcus faces multiple challenges posed by host immunity ranging from complement mediated killing to inflammation driven recruitment of bactericidal cells for the containment of the pathogen. Pneumococcus has evolved several mechanisms to evade the host inflicted immune attack. The major pneumococcal virulence factor, the polysaccharide capsule helps protect the bacteria from complement mediated opsonophagocytic killing. Another important group of pneumococcal proteins which help bacteria to establish and thrive in the host environment is surface associated glycosidases. These enzymes can hydrolyze host glycans on glycoproteins, glycolipids, and glycosaminoglycans and consequently help bacteria acquire carbohydrates for growth. Many of these glycosidases directly or indirectly facilitate bacterial adherence and are known to modulate the function of host defense/immune proteins likely by removing glycans and thereby affecting their stability and/or function. Furthermore, these enzymes are known to contribute the formation of biofilms, the bacterial communities inherently resilient to antimicrobials and host immune attack. In this review, we summarize the role of these enzymes in host immune evasion.
Collapse
Affiliation(s)
- Bijina J. Mathew
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Priyal Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Tabassum Naaz
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Rupal Rai
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Sudheer Gupta
- Research and Development, 3B Blackbio Biotech India Ltd., Bhopal, India
| | - Sudipti Gupta
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Shivendra K. Chaurasiya
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Shashank Purwar
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Ashish Kumar Vyas
- John C Martin Centre for Liver Research and Innovation, Liver Foundation Sonarpur, Kolkata, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, India,*Correspondence: Anirudh K. Singh,
| |
Collapse
|
9
|
Takemura M, Yamaguchi M, Kobayashi M, Sumitomo T, Hirose Y, Okuzaki D, Ono M, Motooka D, Goto K, Nakata M, Uzawa N, Kawabata S. Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Front Cell Infect Microbiol 2022; 12:844000. [PMID: 35846740 PMCID: PMC9284207 DOI: 10.3389/fcimb.2022.844000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of invasive diseases such as pneumonia, meningitis, and sepsis, with high associated mortality. Our previous molecular evolutionary analysis revealed that the S. pneumoniae gene bgaA, encoding the enzyme β-galactosidase (BgaA), had a high proportion of codons under negative selection among the examined pneumococcal genes and that deletion of bgaA significantly reduced host mortality in a mouse intravenous infection assay. BgaA is a multifunctional protein that plays a role in cleaving terminal galactose in N-linked glycans, resistance to human neutrophil-mediated opsonophagocytic killing, and bacterial adherence to human epithelial cells. In this study, we performed in vitro and in vivo assays to evaluate the precise role of bgaA as a virulence factor in sepsis. Our in vitro assays showed that the deletion of bgaA significantly reduced the bacterial association with human lung epithelial and vascular endothelial cells. The deletion of bgaA also reduced pneumococcal survival in human blood by promoting neutrophil-mediated killing, but did not affect pneumococcal survival in mouse blood. In a mouse sepsis model, mice infected with an S. pneumoniae bgaA-deleted mutant strain exhibited upregulated host innate immunity pathways, suppressed tissue damage, and blood coagulation compared with mice infected with the wild-type strain. These results suggest that BgaA functions as a multifunctional virulence factor whereby it induces host tissue damage and blood coagulation. Taken together, our results suggest that BgaA could be an attractive target for drug design and vaccine development to control pneumococcal infection.
Collapse
Affiliation(s)
- Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- *Correspondence: Masaya Yamaguchi,
| | - Momoko Kobayashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kana Goto
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
10
|
Haubrich BA, Nayyab S, Gallati M, Hernandez J, Williams C, Whitman A, Zimmerman T, Li Q, Chen Y, Zhou CZ, Basu A, Reid CW. Inhibition of Streptococcus pneumoniae growth by masarimycin. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467499 DOI: 10.1099/mic.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite renewed interest, development of chemical biology methods to study peptidoglycan metabolism has lagged in comparison to the glycobiology field in general. To address this, a panel of diamides were screened against the Gram-positive bacterium Streptococcus pneumoniae to identify inhibitors of bacterial growth. The screen identified the diamide masarimycin as a bacteriostatic inhibitor of S. pneumoniae growth with an MIC of 8 µM. The diamide inhibited detergent-induced autolysis in a concentration-dependent manner, indicating perturbation of peptidoglycan degradation as the mode-of-action. Cell based screening of masarimycin against a panel of autolysin mutants, identified a higher MIC against a ΔlytB strain lacking an endo-N-acetylglucosaminidase involved in cell division. Subsequent biochemical and phenotypic analyses suggested that the higher MIC was due to an indirect interaction with LytB. Further analysis of changes to the cell surface in masarimycin treated cells identified the overexpression of several moonlighting proteins, including elongation factor Tu which is implicated in regulating cell shape. Checkerboard assays using masarimycin in concert with additional antibiotics identified an antagonistic relationship with the cell wall targeting antibiotic fosfomycin, which further supports a cell wall mode-of-action.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Department of Basic Sciences, Touro University Nevada, College of Osteopathic Medicine, Henderson, NV 89014, USA
| | - Saman Nayyab
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA.,Amherst Department of Molecular and Cellular Biology, University of Massachusetts, 230 Stockbridge Rd Amherst, MA, USA
| | - Mika Gallati
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Jazmeen Hernandez
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Caroline Williams
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Andrew Whitman
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| | - Tahl Zimmerman
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC, USA
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Amit Basu
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Christopher W Reid
- Center for Health and Behavioral Sciences, Department of Science and Technology, Bryant University, 1150 Douglas Pike, Smithfield, RI 02917, USA
| |
Collapse
|
11
|
Stevens EJ, Morse DJ, Bonini D, Duggan S, Brignoli T, Recker M, Lees JA, Croucher NJ, Bentley S, Wilson DJ, Earle SG, Dixon R, Nobbs A, Jenkinson H, van Opijnen T, Thibault D, Wilkinson OJ, Dillingham MS, Carlile S, McLoughlin RM, Massey RC. Targeted control of pneumolysin production by a mobile genetic element in Streptococcus pneumoniae. Microb Genom 2022; 8:000784. [PMID: 35416147 PMCID: PMC9453066 DOI: 10.1099/mgen.0.000784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen that can cause severe invasive diseases such as pneumonia, septicaemia and meningitis. Young children are at a particularly high risk, with an estimated 3-4 million cases of severe disease and between 300 000 and 500 000 deaths attributable to pneumococcal disease each year. The haemolytic toxin pneumolysin (Ply) is a primary virulence factor for this bacterium, yet despite its key role in pathogenesis, immune evasion and transmission, the regulation of Ply production is not well defined. Using a genome-wide association approach, we identified a large number of potential affectors of Ply activity, including a gene acquired horizontally on the antibiotic resistance-conferring Integrative and Conjugative Element (ICE) ICESp23FST81. This gene encodes a novel modular protein, ZomB, which has an N-terminal UvrD-like helicase domain followed by two Cas4-like domains with potent ATP-dependent nuclease activity. We found the regulatory effect of ZomB to be specific for the ply operon, potentially mediated by its high affinity for the BOX repeats encoded therein. Using a murine model of pneumococcal colonization, we further demonstrate that a ZomB mutant strain colonizes both the upper respiratory tract and lungs at higher levels when compared to the wild-type strain. While the antibiotic resistance-conferring aspects of ICESp23FST81 are often credited with contributing to the success of the S. pneumoniae lineages that acquire it, its ability to control the expression of a major virulence factor implicated in bacterial transmission is also likely to have played an important role.
Collapse
Affiliation(s)
- Emily J Stevens
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Daniel J Morse
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Dora Bonini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Exeter, TR10 9FE, UK.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Stephen Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Daniel J Wilson
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Sarah G Earle
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Robert Dixon
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Angela Nobbs
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | - Howard Jenkinson
- Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK
| | | | - Derek Thibault
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Oliver J Wilkinson
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Simon Carlile
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.,Schools of Microbiology and Medicine and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
13
|
Moroz OV, Blagova E, Lebedev AA, Sánchez Rodríguez F, Rigden DJ, Tams JW, Wilting R, Vester JK, Longhin E, Hansen GH, Krogh KBRM, Pache RA, Davies GJ, Wilson KS. Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions. Acta Crystallogr D Struct Biol 2021; 77:1564-1578. [PMID: 34866612 DOI: 10.1107/s2059798321010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules. Here, an analysis of BbgIII, a multidomain β-galactosidase from Bifidobacterium bifidum, is presented. The X-ray structure has been determined of an intact protein corresponding to a gene construct of eight domains. The use of evolutionary covariance-based predictions made sequence docking in low-resolution areas of the model spectacularly easy, confirming the relevance of this rapidly developing deep-learning-based technique for model building. The structure revealed two alternative orientations of the CBM32 carbohydrate-binding module relative to the GH2 catalytic domain in the six crystallographically independent chains. In one orientation the CBM32 domain covers the entrance to the active site of the enzyme, while in the other orientation the active site is open, suggesting a possible mechanism for switching between the two activities of the enzyme, namely lactose hydrolysis and transgalactosylation. The location of the carbohydrate-binding site of the CBM32 domain on the opposite site of the module to where it comes into contact with the catalytic GH2 domain is consistent with its involvement in adherence to host cells. The role of the CBM32 domain in switching between hydrolysis and transglycosylation modes offers protein-engineering opportunities for selective β-galactosidase modification for industrial purposes in the future.
Collapse
Affiliation(s)
- Olga V Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Andrey A Lebedev
- CCP4, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Filomeno Sánchez Rodríguez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | - Elena Longhin
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | | | | | - Roland A Pache
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
14
|
Hovorková M, Kulik N, Konvalinková D, Petrásková L, Křen V, Bojarová P. Mutagenesis of Catalytic Nucleophile of β‐Galactosidase Retains Residual Hydrolytic Activity and Affords a Transgalactosidase. ChemCatChem 2021. [DOI: 10.1002/cctc.202101107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michaela Hovorková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
- Department of Genetics and Microbiology Faculty of Science Charles University Viničná 5 CZ-12843 Prague 2 Czech Republic
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology Institute of Microbiology Czech Academy of Sciences Zámek 136 CZ-37333 Nové Hrady Czech Republic
| | - Dorota Konvalinková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Lucie Petrásková
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 CZ-14220 Prague 4 Czech Republic
| |
Collapse
|
15
|
Gaytán MO, Singh AK, Woodiga SA, Patel SA, An SS, Vera-Ponce de León A, McGrath S, Miller AR, Bush JM, van der Linden M, Magrini V, Wilson RK, Kitten T, King SJ. A novel sialic acid-binding adhesin present in multiple species contributes to the pathogenesis of Infective endocarditis. PLoS Pathog 2021; 17:e1009222. [PMID: 33465168 PMCID: PMC7846122 DOI: 10.1371/journal.ppat.1009222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial binding to platelets is a key step in the development of infective endocarditis (IE). Sialic acid, a common terminal carbohydrate on host glycans, is the major receptor for streptococci on platelets. So far, all defined interactions between streptococci and sialic acid on platelets are mediated by serine-rich repeat proteins (SRRPs). However, we identified Streptococcus oralis subsp. oralis IE-isolates that bind sialic acid but lack SRRPs. In addition to binding sialic acid, some SRRP- isolates also bind the cryptic receptor β-1,4-linked galactose through a yet unknown mechanism. Using comparative genomics, we identified a novel sialic acid-binding adhesin, here named AsaA (associated with sialic acid adhesion A), present in IE-isolates lacking SRRPs. We demonstrated that S. oralis subsp. oralis AsaA is required for binding to platelets in a sialic acid-dependent manner. AsaA comprises a non-repeat region (NRR), consisting of a FIVAR/CBM and two Siglec-like and Unique domains, followed by 31 DUF1542 domains. When recombinantly expressed, Siglec-like and Unique domains competitively inhibited binding of S. oralis subsp. oralis and directly interacted with sialic acid on platelets. We further demonstrated that AsaA impacts the pathogenesis of S. oralis subsp. oralis in a rabbit model of IE. Additionally, we found AsaA orthologues in other IE-causing species and demonstrated that the NRR of AsaA from Gemella haemolysans blocked binding of S. oralis subsp. oralis, suggesting that AsaA contributes to the pathogenesis of multiple IE-causing species. Finally, our findings provide evidence that sialic acid is a key factor for bacterial-platelets interactions in a broader range of species than previously appreciated, highlighting its potential as a therapeutic target. Infective endocarditis (IE) is typically a bacterial infection of the heart valves that causes high mortality. Infective endocarditis can affect people with preexisting lesions on their heart valves (Subacute IE). These lesions contain platelets and other host factors to which bacteria can bind. Growth of bacteria and accumulation of host factors results in heart failure. Therefore, the ability of bacteria to bind platelets is key to the development of IE. Here, we identified a novel bacterial protein, AsaA, which helps bacteria bind to platelets and contributes to the development of disease. Although this virulence factor was characterized in Streptococcus oralis, a leading cause of IE, we demonstrated that AsaA is also present in several other IE-causing bacterial species and is likely relevant to their ability to cause disease. We showed that AsaA binds to sialic acid, a terminal sugar present on platelets, thereby demonstrating that sialic acid serves as a receptor for a wider range of IE-causing bacteria than previously appreciated, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Meztlli O. Gaytán
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anirudh K. Singh
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Shireen A. Woodiga
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Surina A. Patel
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Seon-Sook An
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Arturo Vera-Ponce de León
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Sean McGrath
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Anthony R. Miller
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jocelyn M. Bush
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Mark van der Linden
- Institute of Medical Microbiology, German National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany
| | - Vincent Magrini
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Richard K. Wilson
- Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Samantha J. King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Pinheiro MP, Reis RA, Dupree P, Ward RJ. Plant cell wall architecture guided design of CBM3-GH11 chimeras with enhanced xylanase activity using a tandem repeat left-handed β-3-prism scaffold. Comput Struct Biotechnol J 2021; 19:1108-1118. [PMID: 33680354 PMCID: PMC7890094 DOI: 10.1016/j.csbj.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
Effective use of plant biomass as an abundant and renewable feedstock for biofuel production and biorefinery requires efficient enzymatic mobilization of cell wall polymers. Knowledge of plant cell wall composition and architecture has been exploited to develop novel multifunctional enzymes with improved activity against lignocellulose, where a left-handed β-3-prism synthetic scaffold (BeSS) was designed for insertion of multiple protein domains at the prism vertices. This allowed construction of a series of chimeras fusing variable numbers of a GH11 β-endo-1,4-xylanase and the CipA-CBM3 with defined distances and constrained relative orientations between catalytic domains. The cellulose binding and endoxylanase activities of all chimeras were maintained. Activity against lignocellulose substrates revealed a rapid 1.6- to 3-fold increase in total reducing saccharide release and increased levels of all major oligosaccharides as measured by polysaccharide analysis using carbohydrate gel electrophoresis (PACE). A construct with CBM3 and GH11 domains inserted in the same prism vertex showed highest activity, demonstrating interdomain geometry rather than number of catalytic sites is important for optimized chimera design. These results confirm that the BeSS concept is robust and can be successfully applied to the construction of multifunctional chimeras, which expands the possibilities for knowledge-based protein design.
Collapse
Affiliation(s)
- Matheus P. Pinheiro
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| | - Renata A.G. Reis
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Richard J. Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP CEP 14040-901, Brazil
| |
Collapse
|
17
|
Lower Density and Shorter Duration of Nasopharyngeal Carriage by Pneumococcal Serotype 1 (ST217) May Explain Its Increased Invasiveness over Other Serotypes. mBio 2020; 11:mBio.00814-20. [PMID: 33293378 PMCID: PMC7733939 DOI: 10.1128/mbio.00814-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx and a major cause of life-threating invasive infections such as pneumonia, meningitis and sepsis. Over 1 million people die every year due to invasive pneumococcal disease (IPD), mainly in developing countries. Serotype 1 is a common cause of IPD; however, unlike other serotypes, it is rarely found in the carrier state in the nasopharynx, which is often considered a prerequisite for disease. The aim of this study was to understand this dichotomy. We used murine models of carriage and IPD to characterize the pathogenesis of African serotype 1 (sequence type 217) pneumococcal strains obtained from the Queen Elizabeth Central Hospital in Blantyre, Malawi. We found that ST217 pneumococcal strains were highly virulent in a mouse model of invasive pneumonia, but in contrast to the generally accepted assumption, can also successfully establish nasopharyngeal carriage. Interestingly, we found that cocolonizing serotypes may proliferate in the presence of serotype 1, suggesting that acquisition of serotype 1 carriage could increase the risk of developing IPD by other serotypes. RNA sequencing analysis confirmed that key virulence genes associated with inflammation and tissue invasiveness were upregulated in serotype 1. These data reveal important new insights into serotype 1 pathogenesis, with implications for carriage potential and risk of invasive disease through interactions with other cocolonizing serotypes, an often-overlooked factor in transmission and disease progression.IMPORTANCE The pneumococcus causes serious diseases such as pneumonia, sepsis, and meningitis and is a major cause of morbidity and mortality worldwide. Serotype 1 accounts for the majority of invasive pneumococcal disease cases in sub-Saharan Africa but is rarely found during nasopharyngeal carriage. Understanding the mechanisms leading to nasopharyngeal carriage and invasive disease by this serotype can help reduce its burden on health care systems worldwide. In this study, we also uncovered the potential impact of serotype 1 on disease progression of other coinfecting serotypes, which can have important implications for vaccine efficacy. Understanding the interactions between different serotypes during nasopharyngeal carriage may lead to improved intervention methods and therapies to reduce pneumococcal invasive disease levels.
Collapse
|
18
|
Choi JY, Hong H, Seo H, Pan JG, Kim EJ, Maeng PJ, Yang TH, Kim KJ. High Galacto-Oligosaccharide Production and a Structural Model for Transgalactosylation of β-Galactosidase II from Bacillus circulans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13806-13814. [PMID: 33169609 DOI: 10.1021/acs.jafc.0c05871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transgalactosylase activity of β-galactosidase produces galacto-oligosaccharides (GOSs) with prebiotic effects similar to those of major oligosaccharides in human milk. β-Galactosidases from Bacillus circulans ATCC 31382 are important enzymes in industrial-scale GOS production. Here, we show the high GOS yield of β-galactosidase II from B. circulans (β-Gal-II, Lactazyme-B), compared to other commercial enzymes. We also determine the crystal structure of the five conserved domains of β-Gal-II in an apo-form and complexed with galactose and an acceptor sugar, showing the heterogeneous mode of transgalactosylation by the enzyme. Truncation studies of the five conserved domains reveal that all five domains are essential for enzyme catalysis, while some truncated constructs were still expressed as soluble proteins. Structural comparison of β-Gal-II with other β-galactosidase homologues suggests that the GOS linkage preference of the enzyme might be quite different from other enzymes. The structural information on β-Gal-II might provide molecular insights into the transgalactosylation process of the β-galactosidases in GOS production.
Collapse
Affiliation(s)
- Jae Youl Choi
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hwaseok Hong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Gu Pan
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Eui Joong Kim
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Pil Jae Maeng
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taek Ho Yang
- R&D Center, GenoFocus Inc., 65 Techno 1-ro, Yusung-gu, Daejeon 34014, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Front Microbiol 2020; 11:582437. [PMID: 33072054 PMCID: PMC7541833 DOI: 10.3389/fmicb.2020.582437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, sepsis, and meningitis. Previously, we identified a novel virulence factor by investigating evolutionary selective pressure exerted on pneumococcal choline-binding cell surface proteins. Herein, we focus on another pneumococcal cell surface protein. Cell wall-anchoring proteins containing the LPXTG motif are conserved in Gram-positive bacteria. Our evolutionary analysis showed that among the examined genes, nanA and bgaA had high proportions of codon that were under significant negative selection. Both nanA and bgaA encode a multi-functional glycosidase that aids nutrient acquisition in a glucose-poor environment, pneumococcal adherence to host cells, and evasion from host immunity. However, several studies have shown that the role of BgaA is limited in a mouse pneumonia model, and it remains unclear if BgaA affects pneumococcal pathogenesis in a mouse sepsis model. To evaluate the distribution and pathogenicity of bgaA, we performed phylogenetic analysis and intravenous infection assay. In both Bayesian and maximum likelihood phylogenetic trees, the genetic distances between pneumococcal bgaA was small, and the cluster of pneumococcal bgaA did not contain other bacterial orthologs except for a Streptococcus gwangjuense gene. Evolutionary analysis and BgaA structure indicated BgaA active site was not allowed to change. The mouse infection assay showed that the deletion of bgaA significantly reduced host mortality. These results indicated that both nanA and bgaA encode evolutionally conserved pneumococcal virulence factors and that molecular evolutionary analysis could be a useful alternative strategy for identification of virulence factors.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kotaro Higashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kana Goto
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
20
|
Chaguza C, Senghore M, Bojang E, Gladstone RA, Lo SW, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat Commun 2020; 11:3442. [PMID: 32651390 PMCID: PMC7351774 DOI: 10.1038/s41467-020-17327-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in S. pneumoniae and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Darwin College, University of Cambridge, Silver Street, Cambridge, UK.
| | - Madikay Senghore
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebrima Bojang
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rebecca A Gladstone
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephanie W Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peggy-Estelle Tientcheu
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Rowan E Bancroft
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Archibald Worwui
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Ebenezer Foster-Nyarko
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Fatima Ceesay
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Catherine Okoi
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, USA
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Michael R Barer
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Richard A Adegbola
- RAMBICON Immunisation & Global Health Consulting, 6A Platinum Close, Lekki, Lagos State, Nigeria
| | - Martin Antonio
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Brenda A Kwambana-Adams
- Medical Research Council (MRC) Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
21
|
Soroko M, Kwan DH. Enzymatic Synthesis of a Fluorogenic Reporter Substrate and the Development of a High-Throughput Assay for Fucosyltransferase VIII Provide a Toolkit to Probe and Inhibit Core Fucosylation. Biochemistry 2020; 59:2100-2110. [PMID: 32441090 DOI: 10.1021/acs.biochem.0c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxim Soroko
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - David H. Kwan
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
22
|
Andreassen PR, Trappetti C, Minhas V, Nielsen FD, Pakula K, Paton JC, Jørgensen MG. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae. PLoS Pathog 2020; 16:e1008332. [PMID: 32130269 PMCID: PMC7075642 DOI: 10.1371/journal.ppat.1008332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 03/16/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogens of the Streptococcus genus inhabit many different environmental niches during the course of an infection in a human host and the bacteria must adjust their metabolism according to available nutrients. Despite their lack of the citric-acid cycle, some streptococci proliferate in niches devoid of a readily available carbohydrate source. Instead they rely on carbohydrate scavenging for energy acquisition, which are obtained from the host. Here we discover a two-component system (TCS07) of Streptococcus pneumoniae that responds to glycoconjugated structures on proteins present on the host cells. Using next-generation RNA sequencing we find that the uncharacterized TCS07 regulon encodes proteins important for host-glycan processing and transporters of the released glycans, as well as intracellular carbohydrate catabolizing enzymes. We find that a functional TCS07 allele is required for growth on the glycoconjugated model protein fetuin. Consistently, we see a TCS07-dependent activation of the glycan degradation pathway. Thus, we pinpoint the molecular constituents responsible for sensing host derived glycans and link this to the induction of the proteins necessary for glycan degradation. Furthermore, we connect the TCS07 regulon to virulence in a mouse model, thereby establishing that host-derived glycan-metabolism is important for infection in vivo. Finally, a comparative phylogenomic analysis of strains from the Streptococcus genus reveal that TCS07 and most of its regulon is specifically conserved in species that utilize host-glycans for growth. Worldwide, Streptococcus pneumoniae is the most common cause of community acquired pneumonia with high mortality rates. Interestingly, S. pneumoniae strictly relies on carbohydrate scavenging for energy acquisition, which are obtained from the host. This is a critical step in pathogenesis and a common mechanism among Streptococcal species. In this study, we discover an uncharacterized two-component system that responds to the carbohydrate structures present on the host cells. These are important findings as we describe the molecular mechanism responsible for sensing these host derived glycans, and how this mechanism is linked to virulence, thus highlighting that glycan metabolism is important for infection in vivo, thereby posing a novel target for intervention. Our phylogenetic analysis reveals that the two-component system and the genetic regulon co-occur and are specifically conserved among Streptococcal species capable of degrading host-glycans.
Collapse
Affiliation(s)
| | - Claudia Trappetti
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Vikrant Minhas
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | | | - Kevin Pakula
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - James C. Paton
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
23
|
Liang J, Mantelos A, Toh ZQ, Tortorella SM, Ververis K, Vongsvivut J, Bambery KR, Licciardi PV, Hung A, Karagiannis TC. Investigation of potential anti-pneumococcal effects of l-sulforaphane and metabolites: Insights from synchrotron-FTIR microspectroscopy and molecular docking studies. J Mol Graph Model 2020; 97:107568. [PMID: 32097886 DOI: 10.1016/j.jmgm.2020.107568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
Abstract
Streptococcus pneumoniae infection can lead to pneumococcal disease, a major cause of mortality in children under the age of five years. In low- and middle-income country settings where pneumococcal disease burden is high, vaccine use is low and widespread antibiotic use has led to increased rates of multi-drug resistant pneumococci. l-sulforaphane (LSF), derived from broccoli and other cruciferous vegetables, has established anti-inflammatory, antioxidant, and anti-microbial properties. Hence, we sought to investigate the potential role of LSF against pneumococcal infection. Using a combination of in vitro and computational methods, the results showed that LSF and relevant metabolites had a potential to reduce pneumococcal adherence through modulation of host receptors, regulation of inflammation, or through direct modification of bacterial factors. Treatment with LSF and metabolites reduced pneumococcal adherence to respiratory epithelial cells. Synchrotron-Fourier transform infrared microspectroscopy (S-FTIR) revealed biochemical changes in protein and lipid profiles of lung epithelial cells following treatment with LSF or metabolites. Molecular docking studies of 116 pneumococcal and 89 host factors revealed a potent effect for the metabolite LSF-glutathione (GSH). A comprehensive list of factors involved in interactions between S. pneumoniae and host cells was compiled to construct a bacterium and host interaction network. Network analysis revealed plasminogen, fibronectin, and RrgA as key factors involved in pneumococcal-host interactions. Therefore, we propose that these constitute critical targets for direct inhibition by LSF and/or metabolites, which may disrupt pneumococcal-host adherence. Overall, our findings further enhance understanding of the potential role of LSF to modulate pneumococcal-host dynamics.
Collapse
Affiliation(s)
- Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; School of Science, RMIT University, VIC, 3001, Australia
| | - Anita Mantelos
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; Murdoch Children's Research Institute, Melbourne, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Zheng Quan Toh
- Murdoch Children's Research Institute, Melbourne, Parkville, VIC, 3052, Australia
| | - Stephanie M Tortorella
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katherine Ververis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Keith R Bambery
- ANSTO Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew Hung
- School of Science, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
24
|
Hobbs JK, Meier EPW, Pluvinage B, Mey MA, Boraston AB. Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. J Biol Chem 2019; 294:17197-17208. [PMID: 31591266 PMCID: PMC6873169 DOI: 10.1074/jbc.ra119.010280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/02/2019] [Indexed: 01/07/2023] Open
Abstract
Streptococcus pneumoniae is an opportunistic respiratory pathogen that can spread to other body sites, including the ears, brain, and blood. The ability of this bacterium to break down, import, and metabolize a wide range of glycans is key to its virulence. Intriguingly, S. pneumoniae can utilize several plant oligosaccharides for growth in vitro, including raffinose-family oligosaccharides (RFOs, which are α-(1→6)-galactosyl extensions of sucrose). An RFO utilization locus has been identified in the pneumococcal genome; however, none of the proteins encoded by this locus have been biochemically characterized. The enigmatic ability of S. pneumoniae to utilize RFOs has recently received attention because mutations in two of the RFO locus genes have been linked to the tissue tropism of clinical pneumococcal isolates. Here, we use functional studies combined with X-ray crystallography to show that although the pneumococcal RFO locus encodes for all the machinery required for uptake and degradation of RFOs, the individual pathway components are biochemically inefficient. We also demonstrate that the initiating enzyme in this pathway, the α-galactosidase Aga (a family 36 glycoside hydrolase), can cleave α-(1→3)-linked galactose units from a linear blood group antigen. We propose that the pneumococcal RFO pathway is an evolutionary relic that is not utilized in this streptococcal species and, as such, is under no selection pressure to maintain binding affinity and/or catalytic efficiency. We speculate that the apparent contribution of RFO utilization to pneumococcal tissue tropism may, in fact, be due to the essential role the ATPase RafK plays in the transport of other carbohydrates.
Collapse
Affiliation(s)
- Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Edward P. W. Meier
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mackenzie A. Mey
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada, To whom correspondence should be addressed:
Dept. of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada. Tel.:
250-472-4168; Fax:
250-721-8855; E-mail:
| |
Collapse
|
25
|
Streptococcus oralis subsp. dentisani Produces Monolateral Serine-Rich Repeat Protein Fibrils, One of Which Contributes to Saliva Binding via Sialic Acid. Infect Immun 2019; 87:IAI.00406-19. [PMID: 31308084 DOI: 10.1128/iai.00406-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022] Open
Abstract
Our studies reveal that the oral colonizer and cause of infective endocarditis Streptococcus oralis subsp. dentisani displays a striking monolateral distribution of surface fibrils. Furthermore, our data suggest that these fibrils impact the structure of adherent bacterial chains. Mutagenesis studies indicate that these fibrils are dependent on three serine-rich repeat proteins (SRRPs), here named fibril-associated protein A (FapA), FapB, and FapC, and that each SRRP forms a different fibril with a distinct distribution. SRRPs are a family of bacterial adhesins that have diverse roles in adhesion and that can bind to different receptors through modular nonrepeat region domains. Amino acid sequence and predicted structural similarity searches using the nonrepeat regions suggested that FapA may contribute to interspecies interactions, that FapA and FapB may contribute to intraspecies interactions, and that FapC may contribute to sialic acid binding. We demonstrate that a fapC mutant was significantly reduced in binding to saliva. We confirmed a role for FapC in sialic acid binding by demonstrating that the parental strain was significantly reduced in adhesion upon addition of a recombinantly expressed, sialic acid-specific, carbohydrate binding module, while the fapC mutant was not reduced. However, mutation of a residue previously shown to be essential for sialic acid binding did not decrease bacterial adhesion, leaving the precise mechanism of FapC-mediated adhesion to sialic acid to be defined. We also demonstrate that the presence of any one of the SRRPs is sufficient for efficient biofilm formation. Similar structures were observed on all infective endocarditis isolates examined, suggesting that this distribution is a conserved feature of this S. oralis subspecies.
Collapse
|
26
|
Hobbs JK, Pluvinage B, Robb M, Smith SP, Boraston AB. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J Biol Chem 2019; 294:12670-12682. [PMID: 31266803 DOI: 10.1074/jbc.ra119.009368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/24/2019] [Indexed: 12/13/2022] Open
Abstract
An important aspect of the interaction between the opportunistic bacterial pathogen Streptococcus pneumoniae and its human host is its ability to harvest host glycans. The pneumococcus can degrade a variety of complex glycans, including N- and O-linked glycans, glycosaminoglycans, and carbohydrate antigens, an ability that is tightly linked to the virulence of S. pneumoniae Although S. pneumoniae is known to use a sophisticated enzyme machinery to attack the human glycome, how it copes with fucosylated glycans, which are primarily histo-blood group antigens, is largely unknown. Here, we identified two pneumococcal enzymes, SpGH29C and SpGH95C, that target α-(1→3/4) and α-(1→2) fucosidic linkages, respectively. X-ray crystallography studies combined with functional assays revealed that SpGH29C is specific for the LewisA and LewisX antigen motifs and that SpGH95C is specific for the H(O)-antigen motif. Together, these enzymes could defucosylate LewisY and LewisB antigens in a complementary fashion. In vitro reconstruction of glycan degradation cascades disclosed that the individual or combined activities of these enzymes expose the underlying glycan structure, promoting the complete deconstruction of a glycan that would otherwise be resistant to pneumococcal enzymes. These experiments expand our understanding of the extensive capacity of S. pneumoniae to process host glycans and the likely roles of α-fucosidases in this. Overall, given the importance of enzymes that initiate glycan breakdown in pneumococcal virulence, such as the neuraminidase NanA and the mannosidase SpGH92, we anticipate that the α-fucosidases identified here will be important factors in developing more refined models of the S. pneumoniae-host interaction.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Melissa Robb
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
27
|
An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat Microbiol 2019; 4:1475-1485. [DOI: 10.1038/s41564-019-0469-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
|
28
|
Oide S, Tanaka Y, Watanabe A, Inui M. Carbohydrate-binding property of a cell wall integrity and stress response component (WSC) domain of an alcohol oxidase from the rice blast pathogen Pyricularia oryzae. Enzyme Microb Technol 2019; 125:13-20. [DOI: 10.1016/j.enzmictec.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 11/29/2022]
|
29
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|
30
|
Zhang X, Chen F, Petrella A, Chacón-Huete F, Covone J, Tsai TW, Yu CC, Forgione P, Kwan DH. A High-Throughput Glycosyltransferase Inhibition Assay for Identifying Molecules Targeting Fucosylation in Cancer Cell-Surface Modification. ACS Chem Biol 2019; 14:715-724. [PMID: 30831024 DOI: 10.1021/acschembio.8b01123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In cancers, increased fucosylation (attachment of fucose sugar residues) on cell-surface glycans, resulting from the abnormal upregulation of the expression of specific fucosyltransferase enzymes (FUTs), is one of the most important types of glycan modifications associated with malignancy. Fucosylated glycans on cell surfaces are involved in a multitude of cellular interactions and signal regulation in normal biological processes, as well as in disease. For example, sialyl LewisX is a fucosylated cell-surface glycan that is abnormally abundant in some cancers where it has been implicated in facilitating metastasis, allowing circulating tumor cells to bind to the epithelial tissue within blood vessels and invade into secondary sites by taking advantage of glycan-mediated interactions. To identify inhibitors of FUT enzymes as potential cancer therapeutics, we have developed a novel high-throughput assay that makes use of a fluorogenically labeled oligosaccharide as a probe of fucosylation. This probe, which consists of a 4-methylumbelliferyl glycoside, is recognized and hydrolyzed by specific glycoside hydrolase enzymes to release fluorescent 4-methylumbelliferone, yet when the probe is fucosylated prior to treatment with the glycoside hydrolases, hydrolysis does not occur and no fluorescent signal is produced. We have demonstrated that this assay can be used to measure the inhibition of FUT enzymes by small molecules, because blocking fucosylation will allow glycosidase-catalyzed hydrolysis of the labeled oligosaccharide to produce a fluorescent signal. Employing this assay, we have screened a focused library of small molecules for inhibitors of a human FUT enzyme involved in the synthesis of sialyl LewisX and demonstrated that our approach can be used to identify potent FUT inhibitors from compound libraries in microtiter plate format.
Collapse
Affiliation(s)
| | | | | | | | | | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung-Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung-Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | | | | |
Collapse
|
31
|
Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol 2018; 333:19-33. [PMID: 30274839 DOI: 10.1016/j.cellimm.2018.08.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
The mouth is a first critical interface where most potentially harmful substances or pathogens contact the host environment. Adaptive and innate immune defense mechanisms are established there to inactivate or eliminate pathogenic microbes that traverse the oral environment on the way to their target organs and tissues. Protein and glycoprotein components of saliva play a particularly important role in modulating the oral microbiota and helping with the clearance of pathogens. It has long been acknowledged that glycobiological and glycoimmunological aspects play a pivotal role in oral host-microbe, microbe-host, and microbe-microbe interactions in the mouth. In this review, we aim to delineate how glycan-mediated host defense mechanisms in the oral cavity support human health. We will describe the role of glycans attached to large molecular size salivary glycoproteins which act as a first line of primordial host defense in the human mouth. We will further discuss how glycan recognition contributes to both colonization and clearance of oral microbes.
Collapse
Affiliation(s)
- Benjamin W Cross
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
32
|
Role of Neuraminidase-Producing Bacteria in Exposing Cryptic Carbohydrate Receptors for Streptococcus gordonii Adherence. Infect Immun 2018; 86:IAI.00068-18. [PMID: 29661931 DOI: 10.1128/iai.00068-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Streptococcus gordonii is an early colonizer of the oral cavity. Although a variety of S. gordonii adherence mechanisms have been described, current dogma is that the major receptor for S. gordonii is sialic acid. However, as many bacterial species in the oral cavity produce neuraminidase that can cleave terminal sialic acid, it is unclear whether S. gordonii relies on sialic acid for adherence to oral surfaces or if this species has developed alternative binding strategies. Previous studies have examined adherence to immobilized glycoconjugates and identified binding to additional glycans, but no prior studies have defined the contribution of these different glycan structures in adherence to oral epithelial cells. We determined that the majority of S. gordonii strains tested did not rely on sialic acid for efficient adherence. In fact, adherence of some strains was significantly increased following neuraminidase treatment. Further investigation of representative strains that do not rely on sialic acid for adherence revealed binding not only to sialic acid via the serine-rich repeat protein GspB but also to β-1,4-linked galactose. Adherence to this carbohydrate occurs via an unknown adhesin distinct from those utilized by Streptococcus oralis and Streptococcus pneumoniae Demonstrating the potential biological relevance of binding to this cryptic receptor, we established that S. oralis increases S. gordonii adherence in a neuraminidase-dependent manner. These data suggest that S. gordonii has evolved to simultaneously utilize both terminal and cryptic receptors in response to the production of neuraminidase by other species in the oral environment.
Collapse
|
33
|
Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018; 592:3865-3897. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper airways; however, it is also an accomplished pathogen capable of causing life-threatening diseases. To colonize and cause invasive disease, this bacterium relies on a complex array of factors to mediate the host-bacterium interaction. The respiratory tract is rich in functionally important glycoconjugates that display a vast range of glycans, and, thus, a key component of the pneumococcus-host interaction involves an arsenal of bacterial carbohydrate-active enzymes to depolymerize these glycans and carbohydrate transporters to import the products. Through the destruction of host glycans, the glycan-specific metabolic machinery deployed by S. pneumoniae plays a variety of roles in the host-pathogen interaction. Here, we review the processing and metabolism of the major host-derived glycans, including N- and O-linked glycans, Lewis and blood group antigens, proteoglycans, and glycogen, as well as some dietary glycans. We discuss the role of these metabolic pathways in the S. pneumoniae-host interaction, speculate on the potential of key enzymes within these pathways as therapeutic targets, and relate S. pneumoniae as a model system to glycan processing in other microbial pathogens.
Collapse
Affiliation(s)
- Joanne K Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Alisdair B Boraston
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
34
|
Abstract
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Collapse
|
35
|
Unravelling the specificity and mechanism of sialic acid recognition by the gut symbiont Ruminococcus gnavus. Nat Commun 2017; 8:2196. [PMID: 29259165 PMCID: PMC5736709 DOI: 10.1038/s41467-017-02109-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 11/07/2017] [Indexed: 02/08/2023] Open
Abstract
Ruminococcus gnavus is a human gut symbiont wherein the ability to degrade mucins is mediated by an intramolecular trans-sialidase (RgNanH). RgNanH comprises a GH33 catalytic domain and a sialic acid-binding carbohydrate-binding module (CBM40). Here we used glycan arrays, STD NMR, X-ray crystallography, mutagenesis and binding assays to determine the structure and function of RgNanH_CBM40 (RgCBM40). RgCBM40 displays the canonical CBM40 β-sandwich fold and broad specificity towards sialoglycans with millimolar binding affinity towards α2,3- or α2,6-sialyllactose. RgCBM40 binds to mucus produced by goblet cells and to purified mucins, providing direct evidence for a CBM40 as a novel bacterial mucus adhesin. Bioinformatics data show that RgCBM40 canonical type domains are widespread among Firmicutes. Furthermore, binding of R. gnavus ATCC 29149 to intestinal mucus is sialic acid mediated. Together, this study reveals novel features of CBMs which may contribute to the biogeography of symbiotic bacteria in the gut. The mucus layer is an important physical niche within the gut which harbours a distinct microbial community. Here the authors show that specific carbohydrate-binding modules associated with bacterial carbohydrate-active enzymes are mucus adhesins that target regions of the distal colon rich in sialomucins.
Collapse
|
36
|
Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R. Advances in molecular engineering of carbohydrate-binding modules. Proteins 2017; 85:1602-1617. [PMID: 28547780 DOI: 10.1002/prot.25327] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 11/06/2022]
Abstract
Carbohydrate-binding modules (CBMs) are non-catalytic domains that are generally appended to carbohydrate-active enzymes. CBMs have a broadly conserved structure that allows recognition of a notable variety of carbohydrates, in both their soluble and insoluble forms, as well as in their alpha and beta conformations and with different types of bonds or substitutions. This versatility suggests a high functional plasticity that is not yet clearly understood, in spite of the important number of studies relating protein structure and function. Several studies have explored the flexibility of these systems by changing or improving their specificity toward substrates of interest. In this review, we examine the molecular strategies used to identify CBMs with novel or improved characteristics. The impact of the spatial arrangement of the functional amino acids of CBMs is discussed in terms of unexpected new functions that are not related to the original biological roles of the enzymes. Proteins 2017; 85:1602-1617. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Silvia Armenta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Silvia Moreno-Mendieta
- CONACYT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Zaira Sánchez-Cuapio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n Ciudad Universitaria, Ciudad de México, 04510, México
| |
Collapse
|
37
|
Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017; 156:S51-S62. [PMID: 28372529 PMCID: PMC5490388 DOI: 10.1177/0194599816639028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.
Collapse
Affiliation(s)
- Stephen J. Barenkamp
- Department of Pediatrics, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Tasnee Chonmaitree
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Samantha King
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura A. Novotny
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Janak A. Patel
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Melinda Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
38
|
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017; 85:IAI.00774-16. [PMID: 27993975 DOI: 10.1128/iai.00774-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.
Collapse
|
39
|
Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS. Engineering of the Bacillus circulans β-Galactosidase Product Specificity. Biochemistry 2017; 56:704-711. [PMID: 28092444 PMCID: PMC5330655 DOI: 10.1021/acs.biochem.7b00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Indexed: 12/22/2022]
Abstract
Microbial β-galactosidase enzymes are widely used as biocatalysts in industry to produce prebiotic galactooligosaccharides (GOS) from lactose. GOS mixtures are used as beneficial additives in infant formula to mimic the prebiotic effects of human milk oligosaccharides (hMOS). The structural variety in GOS mixtures is significantly lower than in hMOS. Since this structural complexity is considered as the basis for the multiple biological functions of hMOS, it is important to broaden the variety of GOS structures. In this study, residue R484 near +1 subsite of the C-terminally truncated β-galactosidase from Bacillus circulans (BgaD-D) was subjected to site saturation mutagenesis. Especially the R484S and R484H mutant enzymes displayed significantly altered enzyme specificity, leading to a new type of GOS mixture with altered structures and linkage types. The GOS mixtures produced by these mutant enzymes contained 14 structures that were not present in the wild-type enzyme GOS mixture; 10 of these are completely new structures. The GOS produced by these mutant enzymes contained a combination of (β1 → 3) and (β1 → 4) linkages, while the wild-type enzyme has a clear preference toward (β1 → 4) linkages. The yield of the trisaccharide β-d-Galp-(1 → 3)-β-d-Galp-(1 → 4)-d-Glcp produced by mutants R484S and R484H increased 50 times compared to that of the wild-type enzyme. These results indicate that residue R484 is crucial for the linkage specificity of BgaD-D. This is the first study showing that β-galactosidase enzyme engineering results in an altered GOS linkage specificity and product mixture. The more diverse GOS mixtures produced by these engineered enzymes may find industrial applications.
Collapse
Affiliation(s)
- Huifang Yin
- Microbial Physiology and Biophysical Chemistry, Groningen
Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tjaard Pijning
- Microbial Physiology and Biophysical Chemistry, Groningen
Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Xiangfeng Meng
- Microbial Physiology and Biophysical Chemistry, Groningen
Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology and Biophysical Chemistry, Groningen
Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sander S. van Leeuwen
- Microbial Physiology and Biophysical Chemistry, Groningen
Biomolecular Sciences and Biotechnology Institute (GBB), University
of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Grondin JM, Duan D, Kirlin AC, Abe KT, Chitayat S, Spencer HL, Spencer C, Campigotto A, Houliston S, Arrowsmith CH, Allingham JS, Boraston AB, Smith SP. Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens. PLoS One 2017; 12:e0171606. [PMID: 28158290 PMCID: PMC5291390 DOI: 10.1371/journal.pone.0171606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/23/2017] [Indexed: 02/03/2023] Open
Abstract
Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized. NMR-based experiments demonstrated a preference of each module for galacto-configured sugars, including the ability of all three CBM32s to recognize the common mucin monosaccharide GalNAc. X-ray crystal structures of the CpGH31 CBM32s, both in apo form and bound to GalNAc, revealed the finely-tuned molecular strategies employed by these sequentially variable CBM32s in coordinating a common ligand. The data highlight that sequence similarities to previously characterized CBMs alone are insufficient for identifying the molecular mechanism of ligand binding by individual CBMs. Furthermore, the overlapping ligand binding profiles of the three CBMs provide a fail-safe mechanism for the recognition of GalNAc among the dense eukaryotic carbohydrate networks of the colonic mucosa. These findings expand our understanding of ligand targeting by large, multi-modular carbohydrate-active enzymes, and offer unique insights into of the expanding ligand-binding preferences and binding site topologies observed in CBM32s.
Collapse
Affiliation(s)
- Julie M. Grondin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Da Duan
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alyssa C. Kirlin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Kento T. Abe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Seth Chitayat
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Holly L. Spencer
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Craig Spencer
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alisha Campigotto
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Steven P. Smith
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
41
|
Ding H, Zeng Q, Zhou L, Yu Y, Chen B. Biochemical and Structural Insights into a Novel Thermostable β-1,3-Galactosidase from Marinomonas sp. BSi20414. Mar Drugs 2017; 15:md15010013. [PMID: 28075353 PMCID: PMC5295233 DOI: 10.3390/md15010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022] Open
Abstract
A novel β-1,3-galactosidase, designated as MaBGA (β-galactosidase from Marinomonas sp. BSi20414), was successfully purified to homogeneity from Marinomonas sp. BSi20414 isolated from Arctic sea ice by ammonium sulfate precipitation and anion exchange chromatography, resulting in an 8.12-fold increase in specific activity and 9.9% recovery in total activity. MaBGA displayed its maximum activity at pH 6.0 and 60 °C, and maintained at least 90% of its initial activity over the pH range of 5.0-8.0 after incubating for 1 h. It also exhibited considerable thermal stability, which retained 76% of its initial activity after incubating at 50 °C for 6 h. In contrast to other β-galactosidases, MaBGA displayed strict substrate specificity, not only for the glycosyl group, but also for the linkage type. To better understand the structure-function relationship, the encoding gene of MaBGA was obtained and subject to bioinformatics analysis. Multiple alignments and phylogenetic analysis revealed that MaBGA belonged to the glycoside hydrolase family 42 and had closer genetic relationships with thermophilic β-galactosidases of extremophiles. With the aid of homology modeling and molecular docking, we proposed a reasonable explanation for the linkage selectivity of MaBGA from a structural perspective. On account of the robust stability and 1,3-linkage selectivity, MaBGA would be a promising candidate in the biosynthesis of galacto-oligosaccharide with β1-3 linkage.
Collapse
Affiliation(s)
- Haitao Ding
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Qian Zeng
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Lili Zhou
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
42
|
Talens-Perales D, Górska A, Huson DH, Polaina J, Marín-Navarro J. Analysis of Domain Architecture and Phylogenetics of Family 2 Glycoside Hydrolases (GH2). PLoS One 2016; 11:e0168035. [PMID: 27930742 PMCID: PMC5145203 DOI: 10.1371/journal.pone.0168035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022] Open
Abstract
In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2). We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module) with two β-sandwich domains (non-catalytic) at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of β-galactosidases from β-glucuronidases, the diversification of β-galactosidases with different transglycosylation specificities, and the emergence of bicistronic β-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest.
Collapse
Affiliation(s)
- David Talens-Perales
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain
| | - Anna Górska
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Daniel H. Huson
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Julio Polaina
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain
| | - Julia Marín-Navarro
- Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Paterna, Valencia, Spain
| |
Collapse
|
43
|
Fleming E, Camilli A. ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae. Mol Microbiol 2016; 102:467-487. [PMID: 27472033 PMCID: PMC5116393 DOI: 10.1111/mmi.13473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2016] [Indexed: 01/24/2023]
Abstract
Streptococcus pneumoniae is a common colonizer of the human nasopharynx and a leading cause of bacterial pneumonia and otitis media, among other invasive diseases. During both colonization and invasive disease S. pneumoniae ferments host-derived carbohydrates as its primary means of generating energy. This pathogen is adept at transporting and metabolizing a wide variety of carbohydrates. We found the highly conserved PTS ManLMN contributes to growth on glucose and is also essential for growth on a variety of nonpreferred carbohydrates, suggesting it is a multisubstrate transporter. Exploration of this phenotype revealed ManLMN is required for inducing expression of downstream metabolic genes in response to carbohydrate stimuli. We further demonstrate that ManLMN's role as a constitutively expressed transporter is likely unique and integral to pneumococcus's strategy of carbon catabolite repression (CCR). Using a selection for suppressors, we explored how ManLMN is integrated into the CCR regulatory framework in S. pneumoniae. We identified two hypothetical small proteins and the virulence regulator SmrC as potential mediators of CCR in connection with ManLMN. Characterization of these two hypothetical proteins revealed they influence transcriptional regulation of carbohydrate transporters. We propose a model unifying these observations in which ManLMN is a versatile surveyor of available carbohydrates in S. pneumoniae.
Collapse
Affiliation(s)
- Eleanor Fleming
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Howard Hughes Medical Institute, and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Andrew Camilli
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Howard Hughes Medical Institute, and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
44
|
Cell Surface Glycoside Hydrolases of Streptococcus gordonii Promote Growth in Saliva. Appl Environ Microbiol 2016; 82:5278-86. [PMID: 27316967 DOI: 10.1128/aem.01291-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The growth of the oral commensal Streptococcus gordonii in saliva may depend on a number of glycoside hydrolases (GHs), including three cell wall-anchored proteins that are homologs of pneumococcal β-galactosidase (BgaA), β-N-acetylglucosaminidase (StrH), and endo-β-N-acetylglucosaminidase D (EndoD). In the present study, we introduced unmarked in-frame deletions into the corresponding genes of S. gordonii DL1, verified the presence (or absence) of the encoded proteins on the resulting mutant strains, and compared these strains with wild-type strain DL1 for growth and glycan foraging in saliva. The overnight growth of wild-type DL1 was reduced 3- to 10-fold by the deletion of any one or two genes and approximately 20-fold by the deletion of all three genes. The only notable change in the salivary proteome associated with this reduction of growth was a downward shift in the apparent molecular masses of basic proline-rich glycoproteins (PRG), which was accompanied by the loss of lectin binding sites for galactose-specific Erythrina cristagalli agglutinin (ECA) and mannose-specific Galanthus nivalis agglutinin (GNA). The binding of ECA to PRG was also abolished in saliva cultures of mutants that expressed cell surface BgaA alone or together with either StrH or EndoD. However, the subsequent loss of GNA binding was seen only in saliva cocultures of different mutants that together expressed all three cell surface GHs. The findings indicate that the growth of S. gordonii DL1 in saliva depends to a significant extent on the sequential actions of first BgaA and then StrH and EndoD on N-linked glycans of PRG. IMPORTANCE The ability of oral bacteria to grow on salivary glycoproteins is critical for dental plaque biofilm development. Little is known, however, about how specific salivary components are attacked and utilized by different members of the biofilm community, such as Streptococcus gordonii. Streptococcus gordonii DL1 has three cell wall-anchored glycoside hydrolases that are predicted to act on host glycans. In the present study, we introduced unmarked in-frame deletions in the corresponding genes, verified the presence (or absence) of encoded proteins on the resulting mutant strains, and compared these strains with wild-type DL1 for growth and glycan foraging in saliva. The results indicate that the growth of S. gordonii DL1 depends to a significant extent on sequential action of these cell surface GHs on N-linked glycans of basic proline-rich salivary glycoproteins, which appears to be an essential first step in salivary glycan foraging.
Collapse
|
45
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
46
|
Robb M, Robb CS, Higgins MA, Hobbs JK, Paton JC, Boraston AB. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. J Biol Chem 2015; 290:30888-900. [PMID: 26491009 DOI: 10.1074/jbc.m115.688630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/19/2022] Open
Abstract
An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the β-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-D-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-D-glucosamine-thiazoline (NGT), and N-acetyl-D-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter.
Collapse
Affiliation(s)
- Melissa Robb
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 and
| | - Craig S Robb
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 and
| | - Melanie A Higgins
- the Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Joanne K Hobbs
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 and
| | - James C Paton
- the Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Alisdair B Boraston
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6 and
| |
Collapse
|
47
|
Kwan DH, Ernst S, Kötzler MP, Withers SG. Chemoenzymatic Synthesis of a Type 2 Blood Group A Tetrasaccharide and Development of High-throughput Assays Enables a Platform for Screening Blood Group Antigen-cleaving Enzymes. Glycobiology 2015; 25:806-11. [DOI: 10.1093/glycob/cwv031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/06/2015] [Indexed: 12/25/2022] Open
|