1
|
Torelli F, Butterworth S, Lockyer E, Matias AN, Hildebrandt F, Song OR, Pearson-Farr J, Treeck M. GRA12 is a common virulence factor across Toxoplasma gondii strains and mouse subspecies. Nat Commun 2025; 16:3570. [PMID: 40240328 PMCID: PMC12003902 DOI: 10.1038/s41467-025-58876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Toxoplasma gondii parasites exhibit extraordinary host promiscuity owing to over 250 putative secreted proteins that disrupt host cell functions, enabling parasite persistence. However, most of the known effector proteins are specific to Toxoplasma genotypes or hosts. To identify virulence factors that function across different parasite isolates and mouse strains that differ in susceptibility to infection, we performed systematic pooled in vivo CRISPR-Cas9 screens targeting the Toxoplasma secretome. We identified several proteins required for infection across parasite strains and mouse species, of which the dense granule protein 12 (GRA12) emerged as the most important effector protein during acute infection. GRA12 deletion in IFNγ-activated macrophages results in collapsed parasitophorous vacuoles and increased host cell necrosis, which is partially rescued by inhibiting early parasite egress. GRA12 orthologues from related coccidian parasites, including Neospora caninum and Hammondia hammondi, complement TgΔGRA12 in vitro, suggesting a common mechanism of protection from immune clearance by their hosts.
Collapse
Affiliation(s)
- Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Eloise Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK
| | - Ana N Matias
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Franziska Hildebrandt
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Ok-Ryul Song
- High-Throughput Screening Technology Platform, The Francis Crick Institute, London, UK
| | - Jennifer Pearson-Farr
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, UK.
- The Cell Biology of Host-Pathogen Interactions Lab, Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
2
|
Hansakon A, Ngamphiw C, Tongsima S, Angkasekwinai P. Arginase 1 Expression by Macrophages Promotes Cryptococcus neoformans Proliferation and Invasion into Brain Microvascular Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:408-419. [PMID: 36548474 DOI: 10.4049/jimmunol.2200592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
3
|
Lažetić V, Blanchard MJ, Bui T, Troemel ER. Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524171. [PMID: 36711775 PMCID: PMC9882112 DOI: 10.1101/2023.01.15.524171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The immune system continually battles against pathogen-induced pressures, which often leads to the evolutionary expansion of immune gene families in a species-specific manner. For example, the pals gene family expanded to 39 members in the Caenorhabditis elegans genome, in comparison to a single mammalian pals ortholog. Our previous studies have revealed that two members of this family, pals-22 and pals-25 , act as antagonistic paralogs to control the Intracellular Pathogen Response (IPR). The IPR is a protective transcriptional response, which is activated upon infection by two molecularly distinct natural intracellular pathogens of C. elegans - the Orsay virus and the fungus Nematocida parisii from the microsporidia phylum. In this study, we identify a previously uncharacterized member of the pals family, pals-17 , as a newly described negative regulator of the IPR. pals-17 mutants show constitutive upregulation of IPR gene expression, increased immunity against intracellular pathogens, as well as impaired development and reproduction. We also find that two other previously uncharacterized pals genes, pals-20 and pals-16 , are positive regulators of the IPR, acting downstream of pals-17 . These positive regulators reverse the effects caused by the loss of pals-17 on IPR gene expression, immunity and development. We show that the negative IPR regulator protein PALS-17 and the positive IPR regulator protein PALS-20 colocalize inside intestinal epithelial cells, which are the sites of infection for IPR-inducing pathogens. In summary, our study demonstrates that several pals genes from the expanded pals gene family act as ON/OFF switch modules to regulate a balance between organismal development and immunity against natural intracellular pathogens in C. elegans . AUTHOR SUMMARY Immune responses to pathogens induce extensive rewiring of host physiology. In the short term, these changes are generally beneficial as they can promote resistance against infection. However, prolonged activation of immune responses can have serious negative consequences on host health, including impaired organismal development and fitness. Therefore, the balance between activating the immune system and promoting development must be precisely regulated. In this study, we used genetics to identify a gene in the roundworm Caenorhabditis elegans called pals-17 that acts as a repressor of the Intracellular Pathogen Response (IPR), a defense response against viral and microsporidian infections. We also found that pals-17 is required for the normal development of these animals. Furthermore, we identified two other pals genes, pals-20 and pals-16 , as suppressors of pals-17 mutant phenotypes. Finally, we found that PALS-17 and PALS-20 proteins colocalize inside intestinal cells, where viruses and microsporidia invade and replicate in the host. Taken together, our study demonstrates a balance between organismal development and immunity that is regulated by several genetic ON/OFF switch 'modules' in C. elegans .
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Michael J. Blanchard
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Theresa Bui
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R. Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States,Corresponding author
| |
Collapse
|
4
|
Lažetić V, Troemel ER. Conservation lost: host-pathogen battles drive diversification and expansion of gene families. FEBS J 2021; 288:5289-5299. [PMID: 33190369 PMCID: PMC10901648 DOI: 10.1111/febs.15627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
One of the strongest drivers in evolution is the struggle to survive a host-pathogen battle. This pressure selects for diversity among the factors directly involved in this battle, including virulence factors deployed by pathogens, their corresponding host targets, and host immune factors. A logical outcome of this diversification is that over time, the sequence of many immune factors will not be evolutionarily conserved across a broad range of species. Thus, while universal sequence conservation is often hailed as the hallmark of the importance of a particular gene, the immune system does not necessarily play by these rules when defending against co-evolving pathogens. This loss of sequence conservation is in contrast to many signaling pathways in development and basic cell biology that are not targeted by pathogens. In addition to diversification, another consequence of host-pathogen battles can be an amplification in gene number, thus leading to large gene families that have sequence relatively specific to a particular strain, species, or clade. Here we highlight this general theme across a variety of pathogen virulence factors and host immune factors. We summarize the wide range and number across species of these expanded, lineage-specific host-pathogen factors including ubiquitin ligases, nucleotide-binding leucine-rich repeat receptors, GTPases, and proteins without obvious biochemical function but that nonetheless play key roles in immunity.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Interferon-Inducible GTPase 1 Impedes the Dimerization of Rabies Virus Phosphoprotein and Restricts Viral Replication. J Virol 2020; 94:JVI.01203-20. [PMID: 32796066 DOI: 10.1128/jvi.01203-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is an ancient zoonosis and still a major public health problem for humans, especially in developing countries. RABV can be recognized by specific innate recognition receptors, resulting in the production of hundreds of interferon-stimulated genes (ISGs), which can inhibit viral replication at different stages. Interferon-inducible GTPase 1 (IIGP1) is a mouse-specific ISG and belongs to the immunity-related GTPases (IRGs) family. IIGP is reported to constrain intracellular parasite infection by disrupting the parasitophorous vacuole membrane. However, the role of IIGP1 in restricting viral replication has not been reported. In this present study, we found that IIGP1 was upregulated in cells and mouse brains upon RABV infection. Overexpression of IIGP1 limited RABV replication in cell lines and reduced viral pathogenicity in a mouse model. Consistently, deficiency of IIGP1 enhanced RABV replication in different parts of mouse brains. Furthermore, we found that IIGP1 could interact with RABV phosphoprotein (P protein). Mutation and immunoprecipitation analyses revealed that the Y128 site of P protein is critical for its interaction with IIGP1. Further study demonstrated that this interaction impeded the dimerization of P protein and thus suppressed RABV replication. Collectively, our findings for the first reveal a novel role of IIGP1 in restricting a typical neurotropic virus, RABV, which will provide fresh insight into the function of this mouse-specific ISG.IMPORTANCE Interferon and its downstream products, ISGs, are essential in defending against pathogen invasion. One of the ISGs, IIGP1, has been found to constrain intracellular parasite infection by disrupting their vacuole membranes. However, the role of IIGP1 in limiting viral infection is unclear. In this study, we show that infection with a typical neurotropic virus, RABV, can induce upregulation of IIGP1, which, in turn, suppresses RABV by interacting with its phosphoprotein (P protein) and thus blocking the dimerization of P protein. Our study provides the first evidence that IIGP1 functions in limiting viral infection and provides a basis for comprehensive understanding of this important ISG.
Collapse
|
6
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo BK, Merenda A, Lillestol R, Drumright L, Zilbauer M, Goodfellow I. Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. mBio 2020; 11:e00215-20. [PMID: 32184238 PMCID: PMC7078467 DOI: 10.1128/mbio.00215-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.
Collapse
Affiliation(s)
- Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Alessandra Merenda
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reidun Lillestol
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lydia Drumright
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Lee Y, Yamada H, Pradipta A, Ma JS, Okamoto M, Nagaoka H, Takashima E, Standley DM, Sasai M, Takei K, Yamamoto M. Initial phospholipid-dependent Irgb6 targeting to Toxoplasma gondii vacuoles mediates host defense. Life Sci Alliance 2019; 3:3/1/e201900549. [PMID: 31852733 PMCID: PMC6925386 DOI: 10.26508/lsa.201900549] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite capable of infecting warm-blooded animals by ingestion. The organism enters host cells and resides in the cytoplasm in a membrane-bound parasitophorous vacuole (PV). Inducing an interferon response enables IFN-γ-inducible immunity-related GTPase (IRG protein) to accumulate on the PV and to restrict parasite growth. However, little is known about the mechanisms by which IRG proteins recognize and destroy T. gondii PV. We characterized the role of IRG protein Irgb6 in the cell-autonomous response against T. gondii, which involves vacuole ubiquitination and breakdown. We show that Irgb6 is capable of binding a specific phospholipid on the PV membrane. Furthermore, the absence of Irgb6 causes reduced targeting of other effector IRG proteins to the PV. This suggests that Irgb6 has a role as a pioneer in the process by which multiple IRG proteins access the PV. Irgb6-deficient mice are highly susceptible to infection by a strain of T. gondii avirulent in wild-type mice.
Collapse
Affiliation(s)
- Youngae Lee
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ariel Pradipta
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ji Su Ma
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan .,Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Currey N, Jahan Z, Caldon CE, Tran PN, Benthani F, De Lacavalerie P, Roden DL, Gloss BS, Campos C, Bean EG, Bullman A, Reibe-Pal S, Dinger ME, Febbraio MA, Clarke SJ, Dahlstrom JE, Kohonen-Corish MRJ. Mouse Model of Mutated in Colorectal Cancer Gene Deletion Reveals Novel Pathways in Inflammation and Cancer. Cell Mol Gastroenterol Hepatol 2019; 7:819-839. [PMID: 30831321 PMCID: PMC6476813 DOI: 10.1016/j.jcmgh.2019.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon. METHODS We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts. RESULTS Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn's disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling. CONCLUSIONS Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.
Collapse
Affiliation(s)
- Nicola Currey
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Zeenat Jahan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - C Elizabeth Caldon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Phuong N Tran
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Fahad Benthani
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Penelope De Lacavalerie
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel L Roden
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Elaine G Bean
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Amanda Bullman
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Saskia Reibe-Pal
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark A Febbraio
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Clarke
- Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Jane E Dahlstrom
- ACT Pathology, The Canberra Hospital, Australian National University Medical School, Canberra, Australian Capital Territory, Australia
| | - Maija R J Kohonen-Corish
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia; School of Medicine, Western Sydney University, Sydney, New South Wales, Australia; Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
10
|
Brown HM, Biering SB, Zhu A, Choi J, Hwang S. Demarcation of Viral Shelters Results in Destruction by Membranolytic GTPases: Antiviral Function of Autophagy Proteins and Interferon-Inducible GTPases. Bioessays 2018; 40:e1700231. [PMID: 29603284 PMCID: PMC5986617 DOI: 10.1002/bies.201700231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/02/2018] [Indexed: 12/16/2022]
Abstract
A hallmark of positive-sense RNA viruses is the formation of membranous shelters for safe replication in the cytoplasm. Once considered invisible to the immune system, these viral shelters are now found to be antagonized through the cooperation of autophagy proteins and anti-microbial GTPases. This coordinated effort of autophagy proteins guiding GTPases functions against not only the shelters of viruses but also cytoplasmic vacuoles containing bacteria or protozoa, suggesting a broad immune-defense mechanism against disparate vacuolar pathogens. Fundamental questions regarding this process remain: how the host recognizes these membranous structures as a target, how the autophagy proteins bring the GTPases to the shelters, and how the recruited GTPases disrupt these shelters. In this review, these questions are discussed, the answers to which will significantly advance our understanding of the response to vacuole-like structures of pathogens, thereby paving the way for the development of broadly effective anti-microbial strategies for public health.
Collapse
Affiliation(s)
- Hailey M. Brown
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Scott B. Biering
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Allen Zhu
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jayoung Choi
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Seungmin Hwang
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Coppens I. How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Curr Opin Microbiol 2017; 40:32-39. [DOI: 10.1016/j.mib.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 10/15/2017] [Indexed: 02/07/2023]
|
12
|
Saeij JP, Frickel EM. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Curr Opin Microbiol 2017; 40:72-80. [PMID: 29141239 PMCID: PMC7004510 DOI: 10.1016/j.mib.2017.10.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/28/2022]
Abstract
The intracellular parasite Toxoplasma gondii resides inside a vacuole, which shields it from the host’s intracellular defense mechanisms. The cytokine interferon gamma (IFNγ) upregulates host cell effector pathways that are able to destroy the vacuole, restrict parasite growth and induce host cell death. Interferon-inducible GTPases such as the Guanylate Binding Proteins (GBPs), autophagy proteins and ubiquitin-driven mechanisms play important roles in Toxoplasma control in mice and partly also in humans. The host inflammasome is regulated by GBPs in response to bacterial infection in murine cells and may also respond to Toxoplasma infection. Elucidation of murine Toxoplasma defense mechanisms are guiding studies on human cells, while inevitably leading to the discovery of human-specific pathways that often function in a cell type-dependent manner.
Collapse
Affiliation(s)
- Jeroen P Saeij
- School of Veterinary Medicine, Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA.
| | - Eva-Maria Frickel
- The Francis Crick Institute, Host-Toxoplasma Interaction Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
13
|
Biering SB, Choi J, Halstrom RA, Brown HM, Beatty WL, Lee S, McCune BT, Dominici E, Williams LE, Orchard RC, Wilen CB, Yamamoto M, Coers J, Taylor GA, Hwang S. Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases. Cell Host Microbe 2017; 22:74-85.e7. [PMID: 28669671 PMCID: PMC5591033 DOI: 10.1016/j.chom.2017.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
All viruses with positive-sense RNA genomes replicate on membranous structures in the cytoplasm called replication complexes (RCs). RCs provide an advantageous microenvironment for viral replication, but it is unknown how the host immune system counteracts these structures. Here we show that interferon-gamma (IFNG) disrupts the RC of murine norovirus (MNV) via evolutionarily conserved autophagy proteins and the induction of IFN-inducible GTPases, which are known to destroy the membrane of vacuoles containing bacteria, protists, or fungi. The MNV RC was marked by the microtubule-associated-protein-1-light-chain-3 (LC3) conjugation system of autophagy and then targeted by immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs) upon their induction by IFNG. Further, the LC3 conjugation system and the IFN-inducible GTPases were necessary to inhibit MNV replication in mice and human cells. These data suggest that viral RCs can be marked and antagonized by a universal immune defense mechanism targeting diverse pathogens replicating in cytosolic membrane structures.
Collapse
Affiliation(s)
- Scott B Biering
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Jayoung Choi
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Rachel A Halstrom
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Hailey M Brown
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Wandy L Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Broc T McCune
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erin Dominici
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Lelia E Williams
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL 60637, USA
| | - Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Masahiro Yamamoto
- Laboratory of Immunoparasitology, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Jörn Coers
- Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gregory A Taylor
- Departments of Medicine, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA; GRECC, Durham VA Health Care System, Durham, NC 27705, USA
| | - Seungmin Hwang
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Scutigliani EM, Kikkert M. Interaction of the innate immune system with positive-strand RNA virus replication organelles. Cytokine Growth Factor Rev 2017; 37:17-27. [PMID: 28709747 PMCID: PMC7108334 DOI: 10.1016/j.cytogfr.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023]
Abstract
All +RNA viruses induce replication organelles to shield viral RNA from innate immune surveillance. Recent literature suggests that non-self or aberrant-self membrane structures can be tagged with LC3 or ubiquitin. Interferon-induced GTPases then recognize these tags and destroy the membrane structures, thereby exposing PAMPs. More research will have to indicate whether this is a general antiviral mechanism affecting +RNA virus infections.
The potential health risks associated with (re-)emerging positive-strand RNA (+RNA) viruses emphasizes the need for understanding host-pathogen interactions for these viruses. The innate immune system forms the first line of defense against pathogenic organisms like these and is responsible for detecting pathogen-associated molecular patterns (PAMPs). Viral RNA is a potent inducer of antiviral innate immune signaling, provoking an antiviral state by directing expression of interferons (IFNs) and pro-inflammatory cytokines. However, +RNA viruses developed various methods to avoid detection and downstream signaling, including isolation of viral RNA replication in membranous viral replication organelles (ROs). These structures therefore play a central role in infection, and consequently, loss of RO integrity might simultaneously result in impaired viral replication and enhanced antiviral signaling. This review summarizes the first indications that the innate immune system indeed has tools to disrupt viral ROs and other non- or aberrant-self membrane structures, and may do this by marking these membranes with proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC3) and ubiquitin, resulting in the recruitment of IFN-inducible GTPases. Further studies should evaluate whether this process forms a general effector mechanism in +RNA virus infection, thereby creating the opportunity for development of novel antiviral therapies.
Collapse
Affiliation(s)
- Enzo Maxim Scutigliani
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Pilla-Moffett D, Barber MF, Taylor GA, Coers J. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease. J Mol Biol 2016; 428:3495-513. [PMID: 27181197 PMCID: PMC5010443 DOI: 10.1016/j.jmb.2016.04.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/23/2016] [Accepted: 04/30/2016] [Indexed: 01/18/2023]
Abstract
Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.
Collapse
Affiliation(s)
- Danielle Pilla-Moffett
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew F Barber
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gregory A Taylor
- Department of Medicine, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, and Immunology, Duke University, Durham, NC 27708, USA; Center for the Study of Aging, Duke University, Durham, NC 27708, USA; Geriatric Research and Education and Clinical Center, Veteran Affairs Medical Center, Durham, NC 27710, USA.
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Choi J, Biering SB, Hwang S. Quo vadis? Interferon-inducible GTPases go to their target membranes via the LC3-conjugation system of autophagy. Small GTPases 2016; 8:199-207. [PMID: 27428166 PMCID: PMC5680725 DOI: 10.1080/21541248.2016.1213090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many intracellular pathogens survive and replicate within vacuole-like structures in the cytoplasm. It has been unclear how the host immune system controls such pathogen-containing vacuoles. Interferon-inducible GTPases are dynamin-like GTPases that target the membranes of pathogen-containing vacuoles. Upon their oligomerization on the membrane, the vacuole structure disintegrates and the pathogen gets exposed to the hostile cytoplasm. What has been obscure is how the immune system detects and directs the GTPases to these pathogen shelters. Using a common protist parasite of mice, Toxoplasma gondii, we found that the LC3 conjugation system of autophagy is necessary and sufficient for targeting the interferon-inducible GTPases to membranes. We dubbed this process Targeting by AutophaGy proteins (TAG). In canonical autophagy, the LC3 conjugation system is required to form membrane-bound autophagosomes, which encircle and deliver cytosolic materials to lysosomes for degradation. In TAG, however, the conjugation system is required to mark the membranes of pathogen-containing vacuoles with ubiquitin-like LC3 homologs, which function as molecular beacons to recruit the GTPases to their target membranes. Our data suggest that the LC3 conjugation system of autophagy plays an essential role in detecting and marking pathogen-containing vacuoles for immune effector targeting by the host immune system.
Collapse
Affiliation(s)
- Jayoung Choi
- a Department of Pathology , The University of Chicago , Chicago , IL , USA
| | - Scott B Biering
- b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| | - Seungmin Hwang
- a Department of Pathology , The University of Chicago , Chicago , IL , USA.,b Committee on Microbiology, The University of Chicago , Chicago , IL , USA
| |
Collapse
|
17
|
Müller UB, Howard JC. The impact of Toxoplasma gondii on the mammalian genome. Curr Opin Microbiol 2016; 32:19-25. [PMID: 27128504 DOI: 10.1016/j.mib.2016.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
Abstract
Nobody doubts that infections have imposed specialisations on the mammalian genome. However sufficient information is usually missing to attribute a specific genomic modification to pressure from a specific pathogen. Recent studies on mechanisms of mammalian resistance against the ubiquitous protozoan parasite, Toxoplasma gondii, have shown that the small rodents presumed to be largely responsible for transmission of the parasite to its definitive host, the domestic cat, possess distinctive recognition proteins, and interferon-inducible effector proteins (IRG proteins) that limit the potential virulence of the parasite. The phylogenetic association of the recognition proteins, TLR11 and TLR12, with T. gondii resistance is weak, but there is evidence for reciprocal polymorphism between parasite virulence proteins and host IRG proteins that strongly suggests current or recent coevolution.
Collapse
Affiliation(s)
- Urs B Müller
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Jonathan C Howard
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
18
|
Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biol 2016; 14:33. [PMID: 27098192 PMCID: PMC4837601 DOI: 10.1186/s12915-016-0255-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 01/01/2023] Open
Abstract
Background The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. Results We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3−/− does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. Conclusions The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1−/− mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal membranes and consequent failure of autophagosomal processing. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0255-4) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Meunier E, Broz P. Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 2015; 18:168-80. [DOI: 10.1111/cmi.12546] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Etienne Meunier
- Focal Area Infection Biology, Biozentrum; University of Basel; Basel Switzerland
| | - Petr Broz
- Focal Area Infection Biology, Biozentrum; University of Basel; Basel Switzerland
| |
Collapse
|