1
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
2
|
Ouyang X, Wang X, Li P, Huang Q, Zhou L, Li J, Gao L, Sun Q, Chai F, Guo S, Zhou Z, Liu X, Dai L, Cheng W, Ren H. Bacterial effector restricts liquid-liquid phase separation of ZPR1 to antagonize host UPR ER. Cell Rep 2023; 42:112700. [PMID: 37379216 DOI: 10.1016/j.celrep.2023.112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
How pathogens manipulate host UPRER to mediate immune evasion is largely unknown. Here, we identify the host zinc finger protein ZPR1 as an interacting partner of the enteropathogenic E. coli (EPEC) effector NleE using proximity-enabled protein crosslinking. We show that ZPR1 assembles via liquid-liquid phase separation (LLPS) in vitro and regulates CHOP-mediated UPRER at the transcriptional level. Interestingly, in vitro studies show that the ZPR1 binding ability with K63-ubiquitin chains, which promotes LLPS of ZPR1, is disrupted by NleE. Further analyses indicate that EPEC restricts host UPRER pathways at the transcription level in a NleE-ZPR1 cascade-dependent manner. Together, our study reveals the mechanism by which EPEC interferes with CHOP-UPRER via regulating ZPR1 to help pathogens escape host defense.
Collapse
Affiliation(s)
- Xiaoxiao Ouyang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyun Wang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pan Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qin Huang
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingxiang Li
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Gao
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Qi Sun
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fangni Chai
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shupan Guo
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Zhou
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Liu
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lunzhi Dai
- Department of General Practice and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and Sichuan University, Chengdu 610041, China
| | - Wei Cheng
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Haiyan Ren
- Department of Pulmonary and Critical Care, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Chapagain P, Ali A, Salem M. Dual RNA-Seq of Flavobacterium psychrophilum and Its Outer Membrane Vesicles Distinguishes Genes Associated with Susceptibility to Bacterial Cold-Water Disease in Rainbow Trout ( Oncorhynchus mykiss). Pathogens 2023; 12:436. [PMID: 36986358 PMCID: PMC10057207 DOI: 10.3390/pathogens12030436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Flavobacterium psychrophilum (Fp), the causative agent of Bacterial Cold-Water disease in salmonids, causes substantial losses in aquaculture. Bacterial outer membrane vesicles (OMVs) contain several virulence factors, enzymes, toxins, and nucleic acids and are expected to play an essential role in host-pathogen interactions. In this study, we used transcriptome sequencing, RNA-seq, to investigate the expression abundance of the protein-coding genes in the Fp OMVs versus the Fp whole cell. RNA-seq identified 2190 transcripts expressed in the whole cell and 2046 transcripts in OMVs. Of them, 168 transcripts were uniquely identified in OMVs, 312 transcripts were expressed only in the whole cell, and 1878 transcripts were shared in the two sets. Functional annotation analysis of the OMV-abundant transcripts showed an association with the bacterial translation machinery and histone-like DNA-binding proteins. RNA-Seq of the pathogen transcriptome on day 5 post-infection of Fp-resistant versus Fp-susceptible rainbow trout genetic lines revealed differential gene expression of OMV-enriched genes, suggesting a role for the OMVs in shaping the host-microbe interaction. Interestingly, a cell wall-associated hydrolase (CWH) gene was the most highly expressed gene in OMVs and among the top upregulated transcripts in susceptible fish. The CWH sequence was conserved in 51 different strains of Fp. The study provides insights into the potential role of OMVs in host-pathogen interactions and explores microbial genes essential for virulence and pathogenesis.
Collapse
Affiliation(s)
- Pratima Chapagain
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
5
|
Xu YR, Lei CQ. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 2021; 11:608976. [PMID: 33469458 PMCID: PMC7813674 DOI: 10.3389/fimmu.2020.608976] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Collapse
Affiliation(s)
- Yan-Ran Xu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
7
|
Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa. J Biol Inorg Chem 2020; 25:1153-1165. [DOI: 10.1007/s00775-020-01831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
|
8
|
Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 2020; 16:1043-1051. [PMID: 32943788 DOI: 10.1038/s41589-020-0638-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as 'orthogonal post-translational modification' (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.
Collapse
|
9
|
Fenwick MK, Ealick SE. Towards the structural characterization of the human methyltransferome. Curr Opin Struct Biol 2018; 53:12-21. [DOI: 10.1016/j.sbi.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
|
10
|
Jennings E, Esposito D, Rittinger K, Thurston TLM. Structure-function analyses of the bacterial zinc metalloprotease effector protein GtgA uncover key residues required for deactivating NF-κB. J Biol Chem 2018; 293:15316-15329. [PMID: 30049795 PMCID: PMC6166728 DOI: 10.1074/jbc.ra118.004255] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/23/2018] [Indexed: 12/03/2022] Open
Abstract
The closely related type III secretion system zinc metalloprotease effector proteins GtgA, GogA, and PipA are translocated into host cells during Salmonella infection. They then cleave nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factor subunits, dampening activation of the NF-κB signaling pathway and thereby suppressing host immune responses. We demonstrate here that GtgA, GogA, and PipA cleave a subset of NF-κB subunits, including p65, RelB, and cRel but not NF-κB1 and NF-κB2, whereas the functionally similar type III secretion system effector NleC of enteropathogenic and enterohemorrhagic Escherichia coli cleaved all five NF-κB subunits. Mutational analysis of NF-κB subunits revealed that a single nonconserved residue in NF-κB1 and NF-κB2 that corresponds to the P1' residue Arg-41 in p65 prevents cleavage of these subunits by GtgA, GogA, and PipA, explaining the observed substrate specificity of these enzymes. Crystal structures of GtgA in its apo-form and in complex with the p65 N-terminal domain explained the importance of the P1' residue. Furthermore, the pattern of interactions suggested that GtgA recognizes NF-κB subunits by mimicking the shape and negative charge of the DNA phosphate backbone. Moreover, structure-based mutational analysis of GtgA uncovered amino acids that are required for the interaction of GtgA with p65, as well as those that are required for full activity of GtgA in suppressing NF-κB activation. This study therefore provides detailed and critical insight into the mechanism of substrate recognition by this family of proteins important for bacterial virulence.
Collapse
Affiliation(s)
- Elliott Jennings
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| | - Diego Esposito
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Katrin Rittinger
- the Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Teresa L M Thurston
- From the Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ and
| |
Collapse
|
11
|
de Paiva REF, Du Z, Nakahata DH, Lima FA, Corbi PP, Farrell NP. Gold‐Catalyzed C–S Aryl‐Group Transfer in Zinc Finger Proteins. Angew Chem Int Ed Engl 2018; 57:9305-9309. [DOI: 10.1002/anie.201803082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Raphael E. F. de Paiva
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Zhifeng Du
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| | - Douglas H. Nakahata
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Frederico A. Lima
- Centro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory—LNLS, 13084-971 Campinas SP Brazil
- European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
| | - Pedro P. Corbi
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| |
Collapse
|
12
|
de Paiva REF, Du Z, Nakahata DH, Lima FA, Corbi PP, Farrell NP. Gold‐Catalyzed C–S Aryl‐Group Transfer in Zinc Finger Proteins. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raphael E. F. de Paiva
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Zhifeng Du
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| | - Douglas H. Nakahata
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Frederico A. Lima
- Centro Nacional de Pesquisa em Energia e Materiais Brazilian Synchrotron Light Laboratory—LNLS, 13084-971 Campinas SP Brazil
- European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
| | - Pedro P. Corbi
- Institute of Chemistry University of Campinas—UNICAMP P.O. Box 6154, CEP 13083-970 Campinas, São Paulo Brazil
| | - Nicholas P. Farrell
- Department of Chemistry Virginia Commonwealth University 1001 W. Main Street Richmond VA 23284-2006 USA
| |
Collapse
|
13
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
14
|
Esposito D, Günster RA, Martino L, El Omari K, Wagner A, Thurston TLM, Rittinger K. Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3. J Biol Chem 2018; 293:5064-5078. [PMID: 29449376 PMCID: PMC5892559 DOI: 10.1074/jbc.ra118.001796] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Indexed: 01/03/2023] Open
Abstract
The Salmonella-secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N-acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating DXD motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N-acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N-glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N-glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors.
Collapse
Affiliation(s)
- Diego Esposito
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Regina A Günster
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Luigi Martino
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Kamel El Omari
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Armin Wagner
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Teresa L M Thurston
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Katrin Rittinger
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom,
| |
Collapse
|
15
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
16
|
El Qaidi S, Wu M, Zhu C, Hardwidge PR. Salmonella, E. coli, and Citrobacter Type III Secretion System Effector Proteins that Alter Host Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:205-218. [PMID: 30411307 DOI: 10.1007/5584_2018_289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria deliver virulence proteins termed 'effectors' to counteract host innate immunity. Protein-protein interactions within the host cell ultimately subvert the generation of an inflammatory response to the infecting pathogen. Here we briefly describe a subset of T3SS effectors produced by enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), Citrobacter rodentium, and Salmonella enterica that inhibit innate immune pathways. These effectors are interesting for structural and mechanistic reasons, as well as for their potential utility in being engineered to treat human autoimmune disorders associated with perturbations in NF-κB signaling.
Collapse
Affiliation(s)
- Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Miaomiao Wu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
17
|
Shenoy AR, Furniss RCD, Goddard PJ, Clements A. Modulation of Host Cell Processes by T3SS Effectors. Curr Top Microbiol Immunol 2018; 416:73-115. [PMID: 30178263 DOI: 10.1007/82_2018_106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection.
Collapse
Affiliation(s)
- Avinash R Shenoy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Philippa J Goddard
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK
| | - Abigail Clements
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, SW7 2AZ, London, UK.
| |
Collapse
|
18
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nat Rev Mol Cell Biol 2017; 18:315-330. [PMID: 28327556 DOI: 10.1038/nrm.2016.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Structure-specific endonucleases (SSEs) have key roles in DNA replication, recombination and repair, and emerging roles in transcription. These enzymes have specificity for DNA secondary structure rather than for sequence, and therefore their activity must be precisely controlled to ensure genome stability. In this Review, we discuss how SSEs are controlled as part of genome maintenance pathways in eukaryotes, with an emphasis on the elaborate mechanisms that regulate the members of the major SSE families - including the xeroderma pigmentosum group F-complementing protein (XPF) and MMS and UV-sensitive protein 81 (MUS81)-dependent nucleases, and the flap endonuclease 1 (FEN1), XPG and XPG-like endonuclease 1 (GEN1) enzymes - during processes such as DNA adduct repair, Holliday junction processing and replication stress. We also discuss newly characterized connections between SSEs and other classes of DNA-remodelling enzymes and cell cycle control machineries, which reveal the importance of SSE scaffolds such as the synthetic lethal of unknown function 4 (SLX4) tumour suppressor for the maintenance of genome stability.
Collapse
Affiliation(s)
- Pierre-Marie Dehé
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | - Pierre-Henri L Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, CNRS, Aix Marseille Université, INSERM, Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
20
|
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and Cancer. Annu Rev Immunol 2017; 35:199-228. [PMID: 28142322 DOI: 10.1146/annurev-immunol-051116-052133] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.
Collapse
Affiliation(s)
- Amiran Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Ernesto Perez-Chanona
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Soumen Roy
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
21
|
Pearson JS, Giogha C, Wong Fok Lung T, Hartland EL. The Genetics of EnteropathogenicEscherichia coliVirulence. Annu Rev Genet 2016; 50:493-513. [DOI: 10.1146/annurev-genet-120215-035138] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaclyn S. Pearson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Cristina Giogha
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3010, Australia; , , ,
| |
Collapse
|
22
|
Zhang Y, Mühlen S, Oates CV, Pearson JS, Hartland EL. Identification of a Distinct Substrate-binding Domain in the Bacterial Cysteine Methyltransferase Effectors NleE and OspZ. J Biol Chem 2016; 291:20149-62. [PMID: 27445336 DOI: 10.1074/jbc.m116.734079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Indexed: 02/02/2023] Open
Abstract
The type III secretion system effector protein NleE from enteropathogenic Escherichia coli plays a key role in the inhibition of NF-κB activation during infection. NleE inactivates the ubiquitin chain binding activity of host proteins TAK1-binding proteins 2 and 3 (TAB2 and TAB3) by modifying the Npl4 zinc finger domain through S-adenosyl methionine-dependent cysteine methylation. Using yeast two-hybrid protein interaction studies, we found that a conserved region between amino acids 34 and 52 of NleE, in particular the motif (49)GITR(52), was critical for TAB2 and TAB3 binding. NleE mutants lacking (49)GITR(52) were unable to methylate TAB3, and wild type NleE but not NleE(49AAAA52) where each of GITR was replaced with alanine restored the ability of an nleE mutant to inhibit IL-8 production during infection. Another NleE target, ZRANB3, also associated with NleE through the (49)GITR(52) motif. Ectopic expression of an N-terminal fragment of NleE (NleE(34-52)) in HeLa cells showed competitive inhibition of wild type NleE in the suppression of IL-8 secretion during enteropathogenic E. coli infection. Similar results were observed for the NleE homologue OspZ from Shigella flexneri 6 that also bound TAB3 through the (49)GITR(52) motif and decreased IL-8 transcription through modification of TAB3. In summary, we have identified a unique substrate-binding motif in NleE and OspZ that is required for the ability to inhibit the host inflammatory response.
Collapse
Affiliation(s)
- Ying Zhang
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sabrina Mühlen
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Clare V Oates
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Jaclyn S Pearson
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth L Hartland
- From the Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
23
|
Hodgson A, Wan F. Interference with nuclear factor kappaB signaling pathway by pathogen-encoded proteases: global and selective inhibition. Mol Microbiol 2016; 99:439-52. [PMID: 26449378 PMCID: PMC5003429 DOI: 10.1111/mmi.13245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Pathogens have evolved a myriad of ways to abrogate and manipulate the host response to infections. Of the various mechanisms involved, pathogen-encoded and sometimes host-encoded proteases are an important category of virulence factors that cause robust changes on the host response by targeting key proteins along signaling cascades. The nuclear factor kappaB (NF-κB) signaling pathway is a crucial regulatory mechanism for the cell, controlling the expression of survival, immune and proliferation genes. Proteases from pathogens of almost all types have been demonstrated to target and cleave members of the NF-κB signaling pathway at nearly every level. This review provides discussion of proteases targeting the most abundant NF-κB subunit, p65, and the impact of protease-mediated p65 cleavage on the immune responses and survival of the infected host cell. After examining various examples of protease interference, it becomes evident that the cleavage fragments produced by pathogen-driven proteolytic processing should be further characterized to determine whether they have novel and unique functions within the cell. The selective targeting of p65 and its effect on gene transcription reveals unique mechanisms by which pathogens acutely alter their microenvironment, and further research may open new opportunities for novel therapeutics to combat pathogens.
Collapse
Affiliation(s)
- Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21025, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|