1
|
Mamudu CO, Polidoro R, Gallego-Delgado J. Animal Models of Malaria-Associated Acute Kidney Injury. Semin Nephrol 2025:151616. [PMID: 40374463 DOI: 10.1016/j.semnephrol.2025.151616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Malaria-associated acute kidney injury (MAKI) is a critical complication of severe malaria, particularly in infections caused by Plasmodium falciparum, which is responsible for most malaria-related deaths. MAKI affects 40-60% ofs severe malaria cases, significantly increasing mortality, especially in pediatric patients. Its pathogenesis remains unclear, though mechanisms such as hemodynamic disturbances, oxidative stress, and immune responses are implicated. Animal models, particularly murine and nonhuman primates, provide valuable insights into MAKI's underlying processes. Murine models, though not fully replicative of human malaria, allow for the exploration of immune responses, kidney injury biomarkers, and therapeutic approaches. Nonhuman primate models, closer to human physiology, offer additional complexity for studying malaria's renal manifestations. This review critically examines the existing animal models, addressing their strengths and limitations in replicating human MAKI and highlighting the importance of advancing research in this field to develop targeted treatments. Semin Nephrol 36:x-xx © 20XX Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biological Sciences, Lehman College, City University of New York. Bronx, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, USA
| | - Rafael Polidoro
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julio Gallego-Delgado
- Department of Biological Sciences, Lehman College, City University of New York. Bronx, New York, NY, USA; PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY, USA; PhD Program in Biology, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
2
|
McDonnell S, MacCormick IJ, Harkin K, Medina RJ, Rodriguez A, Stitt AW. From Bench to Bedside: Unraveling Cerebral Malaria and Malarial Retinopathy by Combining Clinical and Pre-Clinical Perspectives. Curr Eye Res 2025; 50:512-526. [PMID: 39976257 DOI: 10.1080/02713683.2025.2463142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Infection with Plasmodium falciparum carries a significant risk of cerebral malaria (CM). Children are particularly susceptible to human CM (HCM) which manifests as an acute neurovascular encephalopathy leading to high levels of mortality. Occurring in parallel with CM, malarial retinopathy (MR) is readily detected on ophthalmoscopy as one or more of: white-centered retinal hemorrhage, retinal whitening, and vessel discoloration. It leads to several distinct types of blood retinal barrier (BRB) breakdown. The precise molecular mechanisms underpinning CM and MR remain ill-defined, but parasitemia is known to drive progressive neurovascular obstruction and inflammation leading to cerebral and retinal edema and ischemia. Extensive clinical studies in patients with CM have shown that retinal examination is a useful approach for understanding pathology and an indicator for risk of mortality and morbidity. Fully understanding the cellular and molecular mechanisms that underpin CM and MR is important for developing new therapeutic approaches and in this regard the murine model of experimental CM (ECM) has proved to offer considerable value. Much is known about brain pathology in this model although much less is understood about the retina. In this review, we seek to evaluate MR in clinical scenarios and make comparisons with the retina from mice with ECM. Through detailed in vivo and post-mortem studies in the mouse and human retina, this review highlights the links between CM and MR and how this will aid our understanding of the disease progression and pathogenesis.
Collapse
Affiliation(s)
- Shannon McDonnell
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - Kevin Harkin
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Department of Eye and Vision Sciences Institute for Life Course and Medical Science, University of Liverpool, Liverpool, UK
| | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Alan W Stitt
- The Wellcome Wolfson Institute For Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
3
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies against severe malaria virulence proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577124. [PMID: 38328068 PMCID: PMC10849712 DOI: 10.1101/2024.01.25.577124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sai Sundar Rajan Raghavan
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viola Introini
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Ikhlaq Hussain Kana
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W. Jensen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Gestal-Mato
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thor G. Theander
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
5
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
6
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
7
|
Hempel C, Milner D, Seydel K, Taylor T. Specific components associated with the endothelial glycocalyx are lost from brain capillaries in cerebral malaria. J Infect Dis 2022; 226:1470-1479. [PMID: 35556124 DOI: 10.1093/infdis/jiac200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a rare, but severe and frequently fatal outcome of infections with Plasmodium falciparum. Pathogenetic mechanisms include endothelial activation and sequestration of parasitized erythrocytes in the cerebral microvessels. Increased concentrations of glycosaminoglycans in urine and plasma of malaria patients have been described, suggesting involvement of endothelial glycocalyx. METHODS We used lectin histochemistry on postmortem samples to compare the distribution of multiple sugar epitopes on cerebral capillaries in children who died from CM and from non-malarial comas. RESULTS N-acetyl glucosamine residues detected by tomato lectin are generally reduced in children with CM compared to controls. We used the vascular expression of intercellular adhesion molecule-1 and mannose residues on brain capillaries of CM as evidence of local vascular inflammation, and both were expressed more highly in CM patients than controls. Sialic acid residues were found to be significantly reduced in patients with CM. By contrast, the levels of other sugar epitopes regularly detected on the cerebral vasculature were unchanged, and this suggests specific remodeling of cerebral microvessels in CM patients. CONCLUSIONS Our findings support and expand upon earlier reports of disruptions of the endothelial glycocalyx in children with severe malaria.
Collapse
Affiliation(s)
- Casper Hempel
- Department Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Dan Milner
- American Society for Clinical Pathology, Chicago, IL, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, US
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, US.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, US.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
8
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
9
|
Mandala WL. Expression of CD11a, CD11b, CD11c, and CD18 on Neutrophils from Different Clinical Types of Malaria in Malawian Children. J Blood Med 2022; 13:1-10. [PMID: 35018127 PMCID: PMC8742601 DOI: 10.2147/jbm.s343109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Malaria in individuals who have never had an infection before is usually characterized by an inflammatory response that is linked to the expression of specific activation markers on cells of the innate immune system. METHODS This study investigated absolute white blood cell (WBC) and neutrophil counts and expression of several adhesion markers on neutrophils from HIV-uninfected children who were suffering from cerebral malaria (n=35), severe malarial anemia (SMA, n=39), and uncomplicated malaria (n=49) and healthy aparasitemic children (n=33) in Blantyre, Malawi. RESULTS All clinical malaria groups had higher WBC and neutrophil counts compared to healthy controls, with the acute SMA group having significantly (p<0.0001) higher WBC counts than the controls. These elevated counts normalized during recovery. Surprisingly, in all clinical malaria groups, the surface expression of CD11b, CD11c, and CD18 on neutrophils was lower than in healthy controls, again normalizing during convalescence. CONCLUSION In areas where Plasmodium falciparum malaria is hyperendemic, such as where this study was conducted, neutrophils have reduced expression of adhesion molecules and activation markers during acute stages of the infection, regardless of the clinical type of malaria. This reduced expression could be due to an individual's past exposure to P. falciparum or other parasite-related factors that manifest during active malaria that still need to be investigated.
Collapse
Affiliation(s)
- Wilson Lewis Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology (MUST), Thyolo, Malawi
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Basic Sciences Department, College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
10
|
Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246:111425. [PMID: 34666102 PMCID: PMC8655617 DOI: 10.1016/j.molbiopara.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Plasmodium falciparum malaria still remains a major global public health challenge with over 220 million new cases and well over 400,000 deaths annually. Most of the deaths occur in sub-Saharan Africa which bears 90 % of the malaria cases. Such high P. falciparum malaria-related morbidity and mortality rates pose a huge burden on the health and economic wellbeing of the countries affected. Lately, substantial gains have been made in reducing malaria morbidity and mortality through intense malaria control initiatives such as use of effective antimalarials, intensive distribution and use of insecticide-treated nets (ITNs), and implementation of massive indoor residual spraying (IRS) campaigns. However, these gains are being threatened by widespread resistance of the parasite to antimalarials, and the vector to insecticides. Over the years the use of vaccines has proven to be the most reliable, cost-effective and efficient method for controlling the burden and spread of many infectious diseases, especially in resource poor settings with limited public health infrastructure. Nonetheless, this had not been the case with malaria until the most promising malaria vaccine candidate, RTS,S/AS01, was approved for pilot implementation programme in three African countries in 2015. This was regarded as the most important breakthrough in the fight against malaria. However, RTS,S/AS01 has been found to have some limitations, the main ones being low efficacy in certain age groups, poor immunogenicity and need for almost three boosters to attain a reasonable efficacy. Thus, the search for a more robust and effective malaria vaccine still continues and a better understanding of naturally acquired immune responses to the various stages, including the transmissible stages of the parasite, could be crucial in rational vaccine design. This review therefore compiles what is currently known about the basic biology of P. falciparum and the natural malaria immune response against malaria and progress made towards vaccine development.
Collapse
Affiliation(s)
- Wilson L Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi; Malawi Liverpool Wellcome Trust, Blantyre, Malawi.
| | | | - Fraction Dzinjalamala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | |
Collapse
|
11
|
Sirisabhabhorn K, Chai่jaroenkul W, Muhamad P, Na-Bangchang K. Genetic diversity and distribution patterns of PfEMP1 in Plasmodium falciparum isolates along the Thai-Myanmar border. Parasitol Int 2021; 84:102397. [PMID: 34033864 DOI: 10.1016/j.parint.2021.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Duffy binding-like domain (DBL) and cysteine-rich interdomain region (CIDR) domain genes of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) encode malaria virulence proteins. The variants of these genes have been reported to be associated with severe/complicated malaria. The present study investigated the prevalence and distribution patterns of DBLα0.6/9, DBLα1.1, DBLα1 not var3 genes, DBLα2/α1.1/2/4/7, DBLβ12 & DBLβ3/5, DBLε8, CIDRα1.4, and CIDRα1.6 of P. falciparum isolates along the Thai-Myanmar border. The association between PfEMP1 variants and parasite density was also investigated. Two hundred and thirteen finger-prick dried blood spot (DBS) or whole blood samples were collected in 2007 and 2015, from patients with acute uncomplicated P. falciparum in Tak, Kanchanaburi, and Ranong provinces. Analysis of the variant genes was performed using polymerase chain reaction (PCR). The DBLs variant which was found at the highest and lowest frequencies in the three provinces were DBLα1 not var3 (72.77%), and DBLε8 (17.37%). The two CIDR domain variants were found at relatively lower frequencies compared with DBL domain variants (9.9% and 30.1%). P. falciparum isolates carrying the four PfEMP1 variants, i.e., DBLα0.6/9, DBLα1.1, DBLα2/α.1.1/2/4/7, and DBLε8 were found to be significantly associated with low parasitemia. Both DBLα0.6/9 and DBLα2/α1.1/2/4/7 variant genes which were present at high frequencies in this border area could be potential candidate markers for predicting P. falciparum hyperparasitemia and in this border area. Furthermore, the information could be exploited as candidate proteins for the development of an effective malaria vaccine in specific malaria-endemic areas.
Collapse
Affiliation(s)
- Kridsada Sirisabhabhorn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanna Chai่jaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Phunuch Muhamad
- Drug Discovery and Development Center, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
12
|
Bewley MC, Gautam L, Jagadeeshaprasad MG, Gowda DC, Flanagan JM. Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding. J Biol Chem 2020; 295:18589-18603. [PMID: 33122198 PMCID: PMC7939466 DOI: 10.1074/jbc.ra120.014676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
VAR2CSA is the placental-malaria-specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria.
Collapse
Affiliation(s)
- Maria C Bewley
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Lovely Gautam
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mashanipalya G Jagadeeshaprasad
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| |
Collapse
|
13
|
Bhandari S, Krishna S, Patel PP, Singh MP, Singh N, Sharma A, Bharti PK. Diversity and expression of Plasmodium falciparum var gene in severe and mild malaria cases from Central India. Int J Infect Dis 2020; 103:552-559. [PMID: 33326872 DOI: 10.1016/j.ijid.2020.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein is encoded by a highly variable multicopy var gene family known to play a key role in malaria pathogenicity. Therefore, we investigated sequence variation, expression profile and immune response of the Duffy binding-like domain (DBLα) region of the var gene. METHODS Blood samples were collected from patients with cerebral, severe and mild malaria in Chhattisgarh, India, a region with endemic malaria. Polymerase chain reaction amplicons were cloned and sequenced to determine sequence variation. The expression level was analyzed targeting the upstream region of var gene using the Delta-Delta-Ct method. Immunoglobulin G (IgG) level was determined against the 6 synthetic peptides of the DBLα region. RESULTS The study identified that group 1 and group 5 sequences (cysteine/position of limited variability (cys/PoLV) classification) along with cys2/cys4 and MFK*/REY motifs and short amino acid length were significantly associated with malaria severity. The specific PoLV (MFKS, LREA, PTNL) were restricted to cerebral malaria. The expression level of var group A was higher than var groups B and C, demonstrating its prognostic characteristic. All peptides showed high-quality IgG response, while VAR P5 appeared to be a good marker for severity. CONCLUSIONS The present study illustrates the presence of specific sequences of DBLα tags involved in severe malaria that could be targeted in future interventions for malaria control and elimination.
Collapse
Affiliation(s)
- Sneha Bhandari
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| | - Sri Krishna
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| | - Priyanka P Patel
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| | - Mrigendra P Singh
- ICMR-National Institute of Malaria Research, Field Unit, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| | - Neeru Singh
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| | - Anjana Sharma
- Department of Post Graduate Studies and Research in Biological Sciences, Rani Durgavati Vishwavidyalaya, Jabalpur, Madhya Pradesh, India.
| | - Praveen K Bharti
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Garha, Jabalpur, 482003, Madhya Pradesh, India.
| |
Collapse
|
14
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
15
|
Schlüter D, Barragan A. Advances and Challenges in Understanding Cerebral Toxoplasmosis. Front Immunol 2019; 10:242. [PMID: 30873157 PMCID: PMC6401564 DOI: 10.3389/fimmu.2019.00242] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over one third of the global human population. The parasite invades and chronically persists in the central nervous system (CNS) of the infected host. Parasite spread and persistence is intimately linked to an ensuing immune response, which does not only limit parasite-induced damage but also may facilitate dissemination and induce parasite-associated immunopathology. Here, we discuss various aspects of toxoplasmosis where knowledge is scarce or controversial and, the recent advances in the understanding of the delicate interplay of T. gondii with the immune system in experimental and clinical settings. This includes mechanisms for parasite passage from the circulation into the brain parenchyma across the blood-brain barrier during primary acute infection. Later, as chronic latent infection sets in with control of the parasite in the brain parenchyma, the roles of the inflammatory response and of immune cell responses in this phase of the disease are discussed. Additionally, the function of brain resident cell populations is delineated, i.e., how neurons, astrocytes and microglia serve both as target cells for the parasite but also actively contribute to the immune response. As the infection can reactivate in the CNS of immune-compromised individuals, we bring up the immunopathogenesis of reactivated toxoplasmosis, including the special case of congenital CNS manifestations. The relevance, advantages and limitations of rodent infection models for the understanding of human cerebral toxoplasmosis are discussed. Finally, this review pinpoints questions that may represent challenges to experimental and clinical science with respect to improved diagnostics, pharmacological treatments and immunotherapies.
Collapse
Affiliation(s)
- Dirk Schlüter
- Hannover Medical School, Institute of Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
16
|
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, Billker O, Berriman M, Lawniczak MK. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 2018; 7:33105. [PMID: 29580379 PMCID: PMC5871331 DOI: 10.7554/elife.33105] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/04/2018] [Indexed: 12/18/2022] Open
Abstract
Single-cell RNA-sequencing is revolutionising our understanding of seemingly homogeneous cell populations but has not yet been widely applied to single-celled organisms. Transcriptional variation in unicellular malaria parasites from the Plasmodium genus is associated with critical phenotypes including red blood cell invasion and immune evasion, yet transcriptional variation at an individual parasite level has not been examined in depth. Here, we describe the adaptation of a single-cell RNA-sequencing (scRNA-seq) protocol to deconvolute transcriptional variation for more than 500 individual parasites of both rodent and human malaria comprising asexual and sexual life-cycle stages. We uncover previously hidden discrete transcriptional signatures during the pathogenic part of the life cycle, suggesting that expression over development is not as continuous as commonly thought. In transmission stages, we find novel, sex-specific roles for differential expression of contingency gene families that are usually associated with immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Adam J Reid
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Arthur M Talman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Hayley M Bennett
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Ana R Gomes
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mandy J Sanders
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Matthew Berriman
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mara Kn Lawniczak
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
17
|
Sampaio NG, Emery SJ, Garnham AL, Tan QY, Sisquella X, Pimentel MA, Jex AR, Regev-Rudzki N, Schofield L, Eriksson EM. Extracellular vesicles from early stage Plasmodium falciparum-infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes. Cell Microbiol 2018; 20:e12822. [PMID: 29349926 DOI: 10.1111/cmi.12822] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Pathogens can release extracellular vesicles (EVs) for cell-cell communication and host modulation. EVs from Plasmodium falciparum, the deadliest malaria parasite species, can transfer drug resistance genes between parasites. EVs from late-stage parasite-infected RBC (iRBC-EVs) are immunostimulatory and affect endothelial cell permeability, but little is known about EVs from early stage iRBC. We detected the parasite virulence factor PfEMP1, which is responsible for iRBC adherence and a major contributor to disease severity, in EVs, only up to 12-hr post-RBC invasion. Furthermore, using PfEMP1 transport knockout parasites, we determined that EVs originated from inside the iRBC rather than the iRBC surface. Proteomic analysis detected 101 parasite and 178 human proteins in iRBC-EVs. Primary human monocytes stimulated with iRBC-EVs released low levels of inflammatory cytokines and showed transcriptomic changes. Stimulation with iRBC-EVs from PfEMP1 knockout parasites induced more gene expression changes and affected pathways involved in defence response, stress response, and response to cytokines, suggesting a novel function of PfEMP1 when present in EVs. We show for the first time the presence of PfEMP1 in early stage P. falciparum iRBC-EVs and the effects of these EVs on primary human monocytes, uncovering a new mechanism of potential parasite pathogenesis and host interaction.
Collapse
Affiliation(s)
- Natália G Sampaio
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Samantha J Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Qiao Y Tan
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Xavier Sisquella
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew A Pimentel
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neta Regev-Rudzki
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Louis Schofield
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Emily M Eriksson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Plasmodium falciparum PfEMP1 Modulates Monocyte/Macrophage Transcription Factor Activation and Cytokine and Chemokine Responses. Infect Immun 2017; 86:IAI.00447-17. [PMID: 29038124 PMCID: PMC5736827 DOI: 10.1128/iai.00447-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Immunity to Plasmodium falciparum malaria is slow to develop, and it is often asserted that malaria suppresses host immunity, although this is poorly understood and the molecular basis for such activity remains unknown. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a virulence factor that plays a key role in parasite-host interactions. We investigated the immunosuppressive effect of PfEMP1 on monocytes/macrophages, which are central to the antiparasitic innate response. RAW macrophages and human primary monocytes were stimulated with wild-type 3D7 or CS2 parasites or transgenic PfEMP1-null parasites. To study the immunomodulatory effect of PfEMP1, transcription factor activation and cytokine and chemokine responses were measured. The level of activation of NF-κB was significantly lower in macrophages stimulated with parasites that express PfEMP1 at the red blood cell surface membrane than in macrophages stimulated with PfEMP1-null parasites. Modulation of additional transcription factors, including CREB, also occurred, resulting in reduced immune gene expression and decreased tumor necrosis factor (TNF) and interleukin-10 (IL-10) release. Similarly, human monocytes released less IL-1β, IL-6, IL-10, monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and TNF specifically in response to VAR2CSA PfEMP1-containing parasites than in response to PfEMP1-null parasites, suggesting that this immune regulation by PfEMP1 is important in naturally occurring infections. These results indicate that PfEMP1 is an immunomodulatory molecule that affects the activation of a range of transcription factors, dampening cytokine and chemokine responses. Therefore, these findings describe a potential molecular basis for immune suppression by P. falciparum.
Collapse
|
19
|
Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger SA, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick IJC, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K. Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 2017; 22:601-614.e5. [PMID: 29107642 DOI: 10.1016/j.chom.2017.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.
Collapse
Affiliation(s)
- Anne Kessler
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Selasi Dankwa
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi
| | | | - Fergal Duffy
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | - Brian G Oliver
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Sarah E Hochman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wenzhu B Mowrey
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ian J C MacCormick
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Department of Eye and Vision Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi; Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo BT3, Malawi
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Abstract
Malaria is a significant threat throughout the developing world. Among the most fascinating aspects of the protozoan parasites responsible for this disease are the methods they employ to avoid the immune system and perpetuate chronic infections. Key among these is antigenic variation: By systematically altering antigens that are displayed to the host's immune system, the parasite renders the adaptive immune response ineffective. For Plasmodium falciparum, the species responsible for the most severe form of human malaria, this process involves a complicated molecular mechanism that results in continuously changing patterns of variant-antigen-encoding gene expression. Although many features of this process remain obscure, significant progress has been made in recent years to decipher various molecular aspects of the regulatory cascade that causes chronic infection.
Collapse
Affiliation(s)
- Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065;
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel;
| |
Collapse
|
21
|
The Severity of Plasmodium falciparum Infection Is Associated with Transcript Levels of var Genes Encoding Endothelial Protein C Receptor-Binding P. falciparum Erythrocyte Membrane Protein 1. Infect Immun 2017; 85:IAI.00841-16. [PMID: 28138022 DOI: 10.1128/iai.00841-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediating binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins with so-called CIDRα1 domains capable of binding endothelial protein C receptor (EPCR) constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the relative importance of different subtypes of CIDRα1 domains, we compared Pfemp1 transcript levels in children with severe malaria (including 9 fatal and 114 surviving cases), children hospitalized with uncomplicated malaria (n = 42), children with mild malaria not requiring hospitalization (n = 10), and children with parasitemia and no ongoing fever (n = 12). High levels of transcripts encoding EPCR-binding PfEMP1 were found in patients with symptomatic infections, and the abundance of these transcripts increased with disease severity. The compositions of CIDRα1 subtype transcripts varied markedly between patients, and none of the subtypes were dominant. Transcript-level analyses targeting other domain types indicated that subtypes of DBLβ or DBLζ domains might mediate binding phenomena that, in conjunction with EPCR binding, could contribute to pathogenesis. These observations strengthen the rationale for targeting the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should target EPCR binding of all CIDRα1 subtypes.
Collapse
|
22
|
Abstract
Following anti-malarial drug treatment asexual malaria parasite killing and clearance appear to be first order processes. Damaged malaria parasites in circulating erythrocytes are removed from the circulation mainly by the spleen. Splenic clearance functions increase markedly in acute malaria. Either the entire infected erythrocytes are removed because of their reduced deformability or increased antibody binding or, for the artemisinins which act on young ring stage parasites, splenic pitting of drug-damaged parasites is an important mechanism of clearance. The once-infected erythrocytes returned to the circulation have shortened survival. This contributes to post-artesunate haemolysis that may follow recovery in non-immune hyperparasitaemic patients. As the parasites mature Plasmodium vivax-infected erythrocytes become more deformable, whereas Plasmodium falciparum-infected erythrocytes become less deformable, but they escape splenic filtration by sequestering in venules and capillaries. Sequestered parasites are killed in situ by anti-malarial drugs and then disintegrate to be cleared by phagocytic leukocytes. After treatment with artemisinin derivatives some asexual parasites become temporarily dormant within their infected erythrocytes, and these may regrow after anti-malarial drug concentrations decline. Artemisinin resistance in P. falciparum reflects reduced ring stage susceptibility and manifests as slow parasite clearance. This is best assessed from the slope of the log-linear phase of parasitaemia reduction and is commonly measured as a parasite clearance half-life. Pharmacokinetic-pharmacodynamic modelling of anti-malarial drug effects on parasite clearance has proved useful in predicting therapeutic responses and in dose-optimization.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Mbale EW, Moxon CA, Mukaka M, Chagomerana M, Glover S, Chisala N, Omar S, Molyneux M, Seydel K, Craig AG, Taylor T, Heyderman RS, Mallewa M. HIV coinfection influences the inflammatory response but not the outcome of cerebral malaria in Malawian children. J Infect 2016; 73:189-99. [PMID: 27311750 PMCID: PMC4990000 DOI: 10.1016/j.jinf.2016.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/23/2016] [Accepted: 05/28/2016] [Indexed: 11/21/2022]
Abstract
Objectives Study of the effect of HIV on disease progression in heterogeneous severe malaria syndromes with imprecise diagnostic criteria has led to varying results. Characteristic retinopathy refines cerebral malaria (CM) diagnosis, enabling more precise exploration of the hypothesis that HIV decreases the cytokine response in CM, leading to higher parasite density and a poor outcome. Methods We retrospectively reviewed data on clinical progression and laboratory parameters in 877 retinopathy-positive CM cases admitted 1996–2011 (14.4% HIV-infected) to a large hospital in Malawi. Admission plasma levels of TNF, interleukin-10, and soluble intercellular adhesion molecule (sICAM-1) were measured by ELISA in 135 retinopathy-positive CM cases. Results HIV-infected CM cases had lower median plasma levels of TNF (p = 0.008), interleukin-10 (p = 0.045) and sICAM-1 (p = 0.04) than HIV-uninfected cases. Although HIV-infected children were older and more likely to have co-morbidities, HIV-status did not significantly affect parasite density (p = 0.90) or outcome (24.8% infected, vs. 18.5% uninfected; p = 0.13). Conclusion In this well-characterised CM cohort, HIV-coinfection was associated with marked blunting of the inflammatory response but did not affect parasite density or outcome. These data highlight the complex influence of HIV on severe malaria and bring into question systemic inflammation as a primary driver of pathogenesis in human CM. Characteristic malaria retinopathy refined the diagnosis of cerebral malaria. HIV-infected cases had markedly lower TNF, IL10 and ICAM-1 than uninfected cases. HIV-infected children were older and more likely to have comorbidities. Peripheral parasite count, HRP2 and mortality were unaffected by HIV status.
Collapse
Affiliation(s)
- Emmie W Mbale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi; Department of Paediatrics, University of Malawi College of Medicine, Malawi
| | - Christopher A Moxon
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi; Institute of Infection and Global Health, University of Liverpool, UK.
| | - Mavuto Mukaka
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi
| | | | - Simon Glover
- School of Medicine, University of St. Andrews, UK
| | - Ngawina Chisala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi
| | - Sofia Omar
- Department of Paediatrics, University of Malawi College of Medicine, Malawi
| | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi; Liverpool School of Tropical Medicine, UK
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Malawi; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | | | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Malawi; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi; Liverpool School of Tropical Medicine, UK; University College London, UK
| | - Macpherson Mallewa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Malawi; Department of Paediatrics, University of Malawi College of Medicine, Malawi
| |
Collapse
|
24
|
Bertin GI, Sabbagh A, Argy N, Salnot V, Ezinmegnon S, Agbota G, Ladipo Y, Alao JM, Sagbo G, Guillonneau F, Deloron P. Proteomic analysis of Plasmodium falciparum parasites from patients with cerebral and uncomplicated malaria. Sci Rep 2016; 6:26773. [PMID: 27245217 PMCID: PMC4887788 DOI: 10.1038/srep26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/05/2016] [Indexed: 01/31/2023] Open
Abstract
Plasmodium falciparum is responsible of severe malaria, including cerebral malaria (CM). During its intra-erythrocytic maturation, parasite-derived proteins are expressed, exported and presented at the infected erythrocyte membrane. To identify new CM-specific parasite membrane proteins, we conducted a mass spectrometry-based proteomic study and compared the protein expression profiles between 9 CM and 10 uncomplicated malaria (UM) samples. Among the 1097 Plasmodium proteins identified, we focused on the 499 membrane-associated and hypothetical proteins for comparative analysis. Filter-based feature selection methods combined with supervised data analysis identified a subset of 29 proteins distinguishing CM and UM samples with high classification accuracy. A hierarchical clustering analysis of these 29 proteins based on the similarity of their expression profiles revealed two clusters of 15 and 14 proteins, respectively under- and over-expressed in CM. Among the over-expressed proteins, the MESA protein is expressed at the erythrocyte membrane, involved in proteins trafficking and in the export of variant surface antigens (VSAs), but without antigenic function. Antigen 332 protein is exported at the erythrocyte, also involved in protein trafficking and in VSAs export, and exposed to the immune system. Our proteomics data demonstrate an association of selected proteins in the pathophysiology of CM.
Collapse
Affiliation(s)
- Gwladys I Bertin
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| | - Audrey Sabbagh
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| | - Nicolas Argy
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,Parasitology laboratory, Bichat-Claude Bernard hospital, Paris 75018, France.,French national reference center of malaria laboratory, Bichat-Claude Bernard hospital, Paris 75018, France
| | - Virginie Salnot
- COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,3P5 Proteomics facility, Université Paris Descartes, Paris, France
| | - Sem Ezinmegnon
- Centre d'Étude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Benin
| | - Gino Agbota
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,Centre d'Étude et de Recherche sur le Paludisme Associé à la Grossesse et l'Enfance (CERPAGE), Cotonou, Benin
| | - Yélé Ladipo
- Paediatric Department, Mother and child hospital (HOMEL), Cotonou, Benin
| | - Jules M Alao
- Paediatric Department, Mother and child hospital (HOMEL), Cotonou, Benin
| | - Gratien Sagbo
- Paediatric Department, Centre National Hospitalo-Universitaire (CNHU), Cotonou, Benin
| | - François Guillonneau
- COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France.,3P5 Proteomics facility, Université Paris Descartes, Paris, France
| | - Philippe Deloron
- Institut de Recherche pour le Développement (IRD), UMR216 - MERIT, Paris, France.,COMUE Sorbonne Paris Cité, Faculté de Pharmacie de Paris, Paris Descartes University, Paris 75006, France
| |
Collapse
|
25
|
Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children. mBio 2016; 7:e01300-15. [PMID: 26884431 PMCID: PMC4791846 DOI: 10.1128/mbio.01300-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. There were approximately 198 million cases of malaria worldwide in 2013, with an estimated 584,000 deaths occurring mostly in sub-Saharan African children. CM is a severe and rare form of Plasmodium falciparum infection and is associated with high rates of mortality and neurological morbidity, despite antimalarial treatment. A greater understanding of the pathophysiology of CM would allow the development of adjunctive therapies to improve clinical outcomes. A hallmark of CM is cerebral microvasculature sequestration of P. falciparum-infected red blood cells (iRBCs), which results in vasculopathy in some patients. Our data provide a global analysis of the host pathways associated with CM and newly identify an association of activated neutrophils with brain iRBC sequestration. Products of activated neutrophils could alter endothelial cell receptors and coagulation to facilitate iRBC adherence. Future studies can now examine the role of neutrophils in CM pathogenesis to improve health outcomes.
Collapse
|
26
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
27
|
Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy. Sci Rep 2015; 5:18034. [PMID: 26657042 PMCID: PMC4677286 DOI: 10.1038/srep18034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 11/08/2022] Open
Abstract
Retinopathy provides a window into the underlying pathology of life-threatening malarial coma ("cerebral malaria"), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called "DC8" and "DC13" have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called "group A" was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology.
Collapse
|
28
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Sampath S, Brazier AJ, Avril M, Bernabeu M, Vigdorovich V, Mascarenhas A, Gomes E, Sather DN, Esmon CT, Smith JD. Plasmodium falciparum adhesion domains linked to severe malaria differ in blockade of endothelial protein C receptor. Cell Microbiol 2015; 17:1868-82. [PMID: 26118955 PMCID: PMC4661071 DOI: 10.1111/cmi.12478] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022]
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to endothelial protein C receptor (EPCR) is associated with severe malaria. It has been postulated that parasite binding could exacerbate microvascular coagulation and endothelial dysfunction in cerebral malaria by impairing the protein C-EPCR interaction, but the extent of binding inhibition has not been fully determined. Here we expressed the cysteine-rich interdomain region (CIDRα1) domain from a variety of domain cassette (DC) 8 and DC13 P. falciparum erythrocyte membrane protein 1 proteins and show they interact in a distinct manner with EPCR resulting in weak, moderate and strong inhibition of the activated protein C (APC)-EPCR interaction. Overall, there was a positive correlation between CIDRα1-EPCR binding activity and APC blockade activity. In addition, our analysis from a combination of mutagenesis and blocking antibodies finds that an Arg81 (R81) in EPCR plays a pivotal role in CIDRα1 binding, but domains with weak and strong APC blockade activity were distinguished by their sensitivity to inhibition by anti-EPCR mAb 1535, implying subtle differences in their binding footprints. These data reveal a previously unknown functional heterogeneity in the interaction between P. falciparum and EPCR and have major implications for understanding the distinct clinical pathologies of cerebral malaria and developing new treatment strategies.
Collapse
Affiliation(s)
- Sowmya Sampath
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Andrew Jay Brazier
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Marion Avril
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Vladimir Vigdorovich
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Anjali Mascarenhas
- University of Washington, Department of Chemistry, Seattle, Washington, 98195, USA
| | - Edwin Gomes
- Goa Medical College & Hospital, Bambolim, Goa, India
| | - D. Noah Sather
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joseph D. Smith
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), Seattle, Washington, 98109, USA
- Department of Global Health, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
30
|
Gillrie MR, Avril M, Brazier AJ, Davis SP, Stins MF, Smith JD, Ho M. Diverse functional outcomes of Plasmodium falciparum ligation of EPCR: potential implications for malarial pathogenesis. Cell Microbiol 2015; 17:1883-99. [PMID: 26119044 DOI: 10.1111/cmi.12479] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand P. falciparum erythrocyte membrane protein 1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined the adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 cysteine-rich interdomain region (CIDR)α1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, whereas IT4var07 CIDRα1.4 inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion.
Collapse
Affiliation(s)
- Mark R Gillrie
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Marion Avril
- Center for Infectious Disease Research, Seattle, WA, USA
| | | | - Shevaun P Davis
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Monique F Stins
- Department of Molecular Immunology and Microbiology, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - May Ho
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Cox-Singh J, Culleton R. Plasmodium knowlesi: from severe zoonosis to animal model. Trends Parasitol 2015; 31:232-8. [PMID: 25837310 DOI: 10.1016/j.pt.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits.
Collapse
Affiliation(s)
- Janet Cox-Singh
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
32
|
Nacer A, Claes A, Roberts A, Scheidig-Benatar C, Sakamoto H, Ghorbal M, Lopez-Rubio JJ, Mattei D. Discovery of a novel and conserved Plasmodium falciparum exported protein that is important for adhesion of PfEMP1 at the surface of infected erythrocytes. Cell Microbiol 2015; 17:1205-16. [PMID: 25703704 PMCID: PMC4654329 DOI: 10.1111/cmi.12430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum virulence is linked to its ability to sequester in post-capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9-96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence-associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co-exported with PfEMP1 into the host cell via vesicle-like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.
Collapse
Affiliation(s)
- Adéla Nacer
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Aurélie Claes
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Amy Roberts
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Christine Scheidig-Benatar
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Hiroshi Sakamoto
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Mehdi Ghorbal
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Jose-Juan Lopez-Rubio
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France
| | - Denise Mattei
- Biology of Parasite-Host Interactions Unit, Department of Parasites and Insect Vectors, Institut Pasteur, 25, Rue du Dr. Roux, Paris, F-75015, France.,INSERM U1201, 25, Rue du Dr. Roux, Paris, F-75015, France.,CNRS ERL9195, 25, Rue du Dr. Roux, Paris, F-75015, France
| |
Collapse
|
33
|
Van Tyne D, Tan Y, Daily JP, Kamiza S, Seydel K, Taylor T, Mesirov JP, Wirth DF, Milner DA. Plasmodium falciparum gene expression measured directly from tissue during human infection. Genome Med 2014; 6:110. [PMID: 25520756 PMCID: PMC4269068 DOI: 10.1186/s13073-014-0110-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023] Open
Abstract
Background During the latter half of the natural 48-h intraerythrocytic life cycle of human Plasmodium falciparum infection, parasites sequester deep in endothelium of tissues, away from the spleen and inaccessible to peripheral blood. These late-stage parasites may cause tissue damage and likely contribute to clinical disease, and a more complete understanding of their biology is needed. Because these life cycle stages are not easily sampled due to deep tissue sequestration, measuring in vivo gene expression of parasites in the trophozoite and schizont stages has been a challenge. Methods We developed a custom nCounter® gene expression platform and used this platform to measure malaria parasite gene expression profiles in vitro and in vivo. We also used imputation to generate global transcriptional profiles and assessed differential gene expression between parasites growing in vitro and those recovered from malaria-infected patient tissues collected at autopsy. Results We demonstrate, for the first time, global transcriptional expression profiles from in vivo malaria parasites sequestered in human tissues. We found that parasite physiology can be correlated with in vitro data from an existing life cycle data set, and that parasites in sequestered tissues show an expected schizont-like transcriptional profile, which is conserved across tissues from the same patient. Imputation based on 60 landmark genes generated global transcriptional profiles that were highly correlated with genome-wide expression patterns from the same samples measured by microarray. Finally, differential expression revealed a limited set of in vivo upregulated transcripts, which may indicate unique parasite genes involved in human clinical infections. Conclusions Our study highlights the utility of a custom nCounter® P. falciparum probe set, validation of imputation within Plasmodium species, and documentation of in vivo schizont-stage expression patterns from human tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13073-014-0110-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Van Tyne
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA
| | - Yan Tan
- Broad Institute, Cambridge, MA USA ; Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | | | - Steve Kamiza
- University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl Seydel
- Michigan State University, College of Osteopathic Medicine, East Lansing, MI USA ; The Blantyre Malaria Project, Blantyre, Malawi
| | - Terrie Taylor
- Michigan State University, College of Osteopathic Medicine, East Lansing, MI USA ; The Blantyre Malaria Project, Blantyre, Malawi
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA ; Broad Institute, Cambridge, MA USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA USA ; Broad Institute, Cambridge, MA USA ; University of Malawi College of Medicine, Blantyre, Malawi ; The Blantyre Malaria Project, Blantyre, Malawi ; Brigham and Women's Hospital, Boston, MA USA
| |
Collapse
|