1
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
2
|
Manich M, Bochet P, Boquet-Pujadas A, Rose T, Laenen G, Guillén N, Olivo-Marin JC, Labruyère E. Fibronectin induces a transition from amoeboid to a fan morphology and modifies migration in Entamoeba histolytica. PLoS Pathog 2024; 20:e1012392. [PMID: 39052670 PMCID: PMC11302856 DOI: 10.1371/journal.ppat.1012392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/06/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Cell migration modes can vary, depending on a number of environmental and intracellular factors. The high motility of the pathogenic amoeba Entamoeba histolytica is a decisive factor in its ability to cross the human colonic barrier. We used quantitative live imaging techniques to study the migration of this parasite on fibronectin, a key tissue component. Entamoeba histolytica amoebae on fibronectin contain abundant podosome-like structures. By using a laminar flow chamber, we determined that the adhesion forces generated on fibronectin were twice those on non-coated glass. When migrating on fibronectin, elongated amoeboid cells converted into fan-shaped cells characterized by the presence of a dorsal column of F-actin and a broad cytoplasmic extension at the front. The fan shape depended on the Arp2/3 complex, and the amoebae moved laterally and more slowly. Intracellular measurements of physical variables related to fluid dynamics revealed that cytoplasmic pressure gradients were weaker within fan-shaped cells; hence, actomyosin motors might be less involved in driving the cell body forward. We also found that the Rho-associated coiled-coil containing protein kinase regulated podosome dynamics. We conclude that E. histolytica spontaneously changes its migration mode as a function of the substrate composition. This adaptive ability might favour E. histolytica's invasion of human colonic tissue. By combining microfluidic experiments, mechanical modelling, and image analysis, our work also introduces a computational pipeline for the study of cell migration.
Collapse
Affiliation(s)
- Maria Manich
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Pascal Bochet
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Aleix Boquet-Pujadas
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
- École Polytechnique Fédérale de Lausanne, Biomedical Imaging Group, Lausanne, Switzerland
| | - Thierry Rose
- Institut Pasteur, Diagnostic Test Innovation and Development Core Facility Unit, Paris, France
| | - Gertjan Laenen
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| | - Elisabeth Labruyère
- Institut Pasteur, Université de Paris Cité, Biological Image Analysis Unit, Paris, France
- Centre National de la Recherche Scientifique, CNRS-UMR3691, Paris, France
| |
Collapse
|
3
|
Díaz-Valdez J, Javier-Reyna R, Montaño S, Talamás-Lara D, Orozco E. EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of Entamoeba histolytica. FRONTIERS IN PARASITOLOGY 2024; 3:1356601. [PMID: 39817169 PMCID: PMC11732012 DOI: 10.3389/fpara.2024.1356601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/01/2024] [Indexed: 01/18/2025]
Abstract
The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, Entamoeba histolytica, exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved. In this work, we studied the structure of EhVps35 the central member of the CSC retromeric subcomplex as it binds EhVps26 and EhVps29, the other two CSC members, allowing the position of the retromer in the membranes. We also studied the EhVps35 role in the recycling of virulence proteins, particularly those involved in phagocytosis. Confocal microscopy assays revealed that EhVps35 is located in the plasmatic and endosomal membranes and in the phagocytic cups and channels. In addition, it follows the target cell from the moment it is in contact with the trophozoites. Molecular docking analyses, immunoprecipitation assays, and microscopy studies revealed that EhVps35 interacts with the EhADH, Gal/GalNac lectin, and actin proteins. In addition, experimental evidence indicated that it recycles surface proteins, particularly EhADH and Gal/GalNac proteins, two molecules highly involved in virulence. Knockdown of the Ehvps35 gene induced a decrease in protein recycling, as well as impairments in the efficiency of adhesion and the rate of phagocytosis. The actin cytoskeleton was deeply affected by the Ehvps35 gene knockdown. In summary, our results revealed the participation of EhVps35 in protein recycling and phagocytosis. Furthermore, altogether, our results demonstrated the concert of finely regulated molecules, including EhVps35, EhADH, Gal/GalNac lectin, and actin, in the phagocytosis of E. histolytica.
Collapse
Affiliation(s)
- Joselin Díaz-Valdez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Bilógicas, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales de Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico
| |
Collapse
|
4
|
Pacheco-Sánchez M, Martínez-Hernández SL, Muñoz-Ortega MH, Reyes-Martínez JA, Ávila-Blanco ME, Ventura-Juárez J. The Gal/GalNac lectin as a possible acetylcholine receptor in Entamoeba histolytica. Front Cell Infect Microbiol 2023; 13:1110600. [PMID: 37260701 PMCID: PMC10228505 DOI: 10.3389/fcimb.2023.1110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Entamoeba histolytica (E. histolytica) is a protozoan responsible for intestinal amebiasis in at least 500 million people per year, although only 10% of those infected show severe symptoms. It is known that E. histolytica captures molecules released during the host immune response through membrane receptors that favor its pathogenetic mechanisms for the establishment of amebic invasion. It has been suggested that E. histolytica interacts with acetylcholine (ACh) through its membrane. This promotes the increase of virulence factors and diverse mechanisms carried out by the amoeba to produce damage. The aim of this study is to identify a membrane receptor in E. histolytica trophozoites for ACh. Methods included identification by colocalization for the ACh and Gal/GalNAc lectin binding site by immunofluorescence, western blot, bioinformatic analysis, and quantification of the relative expression of Ras 5 and Rab 7 GTPases by RT-qPCR. Results show that the Gal/GalNAc lectin acts as a possible binding site for ACh and this binding may occur through the 150 kDa intermediate subunit. At the same time, this interaction activates the GTPases, Ras, and Rab, which are involved in the proliferation, and reorganization of the amoebic cytoskeleton and vesicular trafficking. In conclusion, ACh is captured by the parasite, and the interaction promotes the activation of signaling pathways involved in pathogenicity mechanisms, contributing to disease and the establishment of invasive amebiasis.
Collapse
Affiliation(s)
- Marisol Pacheco-Sánchez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Sandra Luz Martínez-Hernández
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Martín Humberto Muñoz-Ortega
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | | | - Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Javier Ventura-Juárez
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
5
|
Jhingan GD, Manich M, Olivo-Marin JC, Guillen N. Live Cells Imaging and Comparative Phosphoproteomics Uncover Proteins from the Mechanobiome in Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24108726. [PMID: 37240072 DOI: 10.3390/ijms24108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.
Collapse
Affiliation(s)
| | - Maria Manich
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, 75015 Paris, France
| |
Collapse
|
6
|
Apte A, Manich M, Labruyère E, Datta S. PI Kinase-EhGEF2-EhRho5 axis contributes to LPA stimulated macropinocytosis in Entamoeba histolytica. PLoS Pathog 2022; 18:e1010550. [PMID: 35594320 PMCID: PMC9173640 DOI: 10.1371/journal.ppat.1010550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica is a protozoan responsible for several pathologies in humans. Trophozoites breach the intestinal site to enter the bloodstream and thus traverse to a secondary site. Macropinocytosis and phagocytosis, collectively accounting for heterophagy, are the two major processes responsible for sustenance of Entamoeba histolytica within the host. Both of these processes require significant rearrangements in the structure to entrap the target. Rho GTPases play an indispensable role in mustering proteins that regulate cytoskeletal remodelling. Unlike phagocytosis which has been studied in extensive detail, information on machinery of macropinocytosis in E. histolytica is still limited. In the current study, using site directed mutagenesis and RNAi based silencing, coupled with functional studies, we have demonstrated the involvement of EhRho5 in constitutive and LPA stimulated macropinocytosis. We also report that LPA, a bioactive phospholipid present in the bloodstream of the host, activates EhRho5 and translocates it from cytosol to plasma membrane and endomembrane compartments. Using biochemical and FRAP studies, we established that a PI Kinase acts upstream of EhRho5 in LPA mediated signalling. We further identified EhGEF2 as a guanine nucleotide exchange factor of EhRho5. In the amoebic trophozoites, EhGEF2 depletion leads to reduced macropinocytic efficiency of trophozoites, thus phenocopying its substrate. Upon LPA stimulation, EhGEF2 is found to sequester near the plasma membrane in a wortmannin sensitive fashion, explaining a possible mode for activation of EhRho5 in the amoebic trophozoites. Collectively, we propose that LPA stimulated macropinocytosis in E. histolytica is driven by the PI Kinase-EhGEF2-EhRho5 axis.
Collapse
Affiliation(s)
- Achala Apte
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Paris, France
| | | | - Sunando Datta
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Narooka AR, Apte A, Yadav P, Murillo JR, Goto-Silva L, Junqueira M, Datta S. EhRho6 mediated actin degradation in Entamoeba histolytica is associated with compromised pathogenicity. Mol Microbiol 2022; 117:1121-1137. [PMID: 35324049 DOI: 10.1111/mmi.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 03/16/2022] [Indexed: 11/27/2022]
Abstract
Entamoeba histolytica causes amoebiasis which is a major health concern in developing countries. E. histolytica pathogenicity has been implicated to a large repertoire of small GTPases which switch between the inactive GDP bound state and the active GTP bound state with the help of guanine nucleotide exchange factors (GEFs) and GTPase activating protein (GAPs). Rho family of small GTPases are well known to modulate the actin cytoskeletal dynamics which plays a major role in E. histolytica pathogenicity. Here we report an atypical amoebic RhoGEF, and its preferred substrate EhRho6, which, upon overexpression abrogated the pathogenic behavior of the amoeba such as adhesion to host cell, monolayer destruction, erythrophagocytosis, and formation of actin dots. A causative immunoblot analysis revealed actin degradation in the EhRho6 overexpressing trophozoites that could be inhibited by blocking the amoebic proteasomal pathway. A careful analysis of the results from a previously published transcriptomics study, in conjunction with our observations, led to the identification of a clade of Rho GTPases in this pathogenic amoeba which we hypothesize to have implications during the amoebic encystation.
Collapse
Affiliation(s)
- Anil Raj Narooka
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Achala Apte
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Pooja Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Livia Goto-Silva
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30 - Botafogo, Rio de Janeiro, RJ, Brazil
| | - Magno Junqueira
- Laboratório de Espectrometria de Massa Biológica - LEMB, do Departamento de Bioquímica do Instituto de Química UFRJ, Rio de Janeiro, RJ, Brasil
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
8
|
Saito-Nakano Y, Makiuchi T, Tochikura M, Gilchrist CA, Petri WA, Nozaki T. ArfX2 GTPase Regulates Trafficking From the Trans-Golgi to Lysosomes and Is Necessary for Liver Abscess Formation in the Protozoan Parasite Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:794152. [PMID: 34976870 PMCID: PMC8719317 DOI: 10.3389/fcimb.2021.794152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess in humans. The parasitic lifestyle and the virulence of the protist require elaborate biological processes, including vesicular traffic and stress management against a variety of reactive oxygen and nitrogen species produced by the host immune response. Although the mechanisms for intracellular traffic of representative virulence factors have been investigated at molecular levels, it remains poorly understood whether and how intracellular traffic is involved in the defense against reactive oxygen and nitrogen species. Here, we demonstrate that EhArfX2, one of the Arf family of GTPases known to be involved in the regulation of vesicular traffic, was identified by comparative transcriptomic analysis of two isogenic strains: an animal-passaged highly virulent HM-1:IMSS Cl6 and in vitro maintained attenuated avirulent strain. EhArfX2 was identified as one of the most highly upregulated genes in the highly virulent strain. EhArfX2 was localized to small vesicle-like structures and largely colocalized with the marker for the trans-Golgi network SNARE, EhYkt6, but neither with the endoplasmic reticulum (ER)-resident chaperon, EhBip, nor the cis-Golgi SNARE, EhSed5, and Golgi-luminal galactosyl transferase, EhGalT. Expression of the dominant-active mutant form of EhArfX2 caused an increase in the number of lysosomes, while expression of the dominant-negative mutant led to a defect in lysosome formation and cysteine protease transport to lysosomes. Expression of the dominant-negative mutant in the virulent E. histolytica strain caused a reduction of the size of liver abscesses in a hamster model. This defect in liver abscess formation was likely at least partially attributed to reduced resistance to nitrosative, but not oxidative stress in vitro. These results showed that the EhArfX2-mediated traffic is necessary for the nitrosative stress response and virulence in the host.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mami Tochikura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Carol A Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - William A Petri
- Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
9
|
CynthiaVanegas-Villa S, Milena Torres-Cifuentes D, Baylon-Pacheco L, Espíritu-Gordillo P, Durán-Díaz Á, Luis Rosales-Encina J, Omaña-Molina M. External pH Variations Modify Proliferation, Erythrophagocytosis, Cytoskeleton Remodeling, and Cell Morphology of Entamoeba histolytica Trophozoites. Protist 2022; 173:125857. [DOI: 10.1016/j.protis.2022.125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
10
|
Low molecular weight protein tyrosine phosphatase (LMW-PTP2) protein can potentially modulate virulence of the parasite Entamoeba histolytica. Mol Biochem Parasitol 2021; 242:111360. [PMID: 33428948 DOI: 10.1016/j.molbiopara.2021.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The Entamoeba histolytica parasite is the causative agent of amebiasis, infecting approximately 1% of the world population and causing 100,000 deaths per year. It binds to Fibronectin (FN), activating signaling pathways regulated by kinases and phosphatases. EhLMW-PTPs genes from E. histolytica encode for Low Molecular Weight Tyrosine Phosphatases expressed in trophozoites and amoebic cysts. The role of these phosphatases in the virulence of the parasite has not yet been well characterized. Our results showed a differential expression of the EhLMW-PTPs, at the mRNA and protein levels, in an asynchronous trophozoites culture. Furthermore, we observed that trophozoites transfected that overexpressed EhLMW-PTP2 phagocytized fewer erythrocytes, possibly due to decreased phagocytic cups, and showed deficiencies in adherence to FN and less cytopathic effect. These analyzes suggest that the parasite's EhLMW-PTPs have an essential role in the mechanisms of proliferation, adhesion, and phagocytosis, regulating its pathogenicity.
Collapse
|
11
|
Batra S, Pancholi P, Roy M, Kaushik S, Jyoti A, Verma K, Srivastava VK. Exploring insights of syntaxin superfamily proteins from
Entamoeba histolytica
: a prospective simulation,
protein‐protein
interaction, and docking study. J Mol Recognit 2021; 34:e2886. [DOI: 10.1002/jmr.2886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Sagar Batra
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Puranjaya Pancholi
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Kuldeep Verma
- Institute of Science, Nirma University Ahmedabad Gujarat India
| | | |
Collapse
|
12
|
Pan ZN, Pan MH, Sun MH, Li XH, Zhang Y, Sun SC. RAB7 GTPase regulates actin dynamics for DRP1-mediated mitochondria function and spindle migration in mouse oocyte meiosis. FASEB J 2020; 34:9615-9627. [PMID: 32472654 DOI: 10.1096/fj.201903013r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022]
Abstract
RAB7 is a small GTPase that belongs to the Rab family, and as a vesicle trafficking factor it is shown to regulate the transport to late endocytic compartments, autophagosome maturation and organelle function. In present study, we showed the critical roles of RAB7 GTPase on actin dynamics and mitochondria function in oocyte meiosis. RAB7 mainly accumulated at cortex and spindle periphery during oocyte maturation. RAB7 depletion caused the failure of polar body extrusion and asymmetric division, and Rab7 exogenous mRNA supplement could rescue the defects caused by RAB7 RNAi. Based on mass spectrometry analysis, we found that RAB7 associated with several actin nucleation factors and mitochondria-related proteins in oocytes. The depletion of RAB7 caused the decrease of actin dynamics, which further affected meiotic spindle migration to the oocyte cortex. In addition, we found that RAB7 could maintain mitochondrial membrane potential and the mitochondrial distribution in mouse oocytes, and this might be due to its effects on the phosphorylation of DRP1 at Ser616 domain. Taken together, our data indicated that RAB7 transported actin nucleation factor for actin polarization, which further affected the phosphorylation of DRP1 for mitochondria dynamics and the meiotic spindle migration in mouse oocytes.
Collapse
Affiliation(s)
- Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Tripathi A, Jain M, Chandra M, Parveen S, Yadav R, Collins BM, Maiti S, Datta S. EhC2B, a C2 domain-containing protein, promotes erythrophagocytosis in Entamoeba histolytica via actin nucleation. PLoS Pathog 2020; 16:e1008489. [PMID: 32365140 PMCID: PMC7197785 DOI: 10.1371/journal.ppat.1008489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator. EhC2B was first identified as an effector of EhRab21 from E. histolytica. In vitro interaction studies including GST pull-down, fluorescence-based assay and ITC also corroborated with our observation. In the amoebic trophozoites, EhC2B accumulates at the pseudopods and the tips of phagocytic cups. FRAP based studies confirmed the recruitment and dynamics of EhC2B at the phagocytic cup. Moreover, we have shown the role of EhC2B in erythrophagocytosis. It is well known that calcium-dependent signal transduction is essential for the cytoskeletal dynamics during phagocytosis in the amoebic parasite. Using liposome pelleting assay, we demonstrated that EhC2B preferentially binds to the phosphatidylserine in the presence of calcium. The EhC2B mutants defective in calcium or lipid-binding failed to localise beneath the plasma membrane. The cells overexpressing these mutants have also shown a significant reduction in erythrophagocytosis. The role of EhC2B in erythrophagocytosis and pseudopod formation was also validated by siRNA-based gene knockdown approach. Finally, with the help of in vitro nucleation assay using fluorescence spectroscopy and total internal reflection fluorescence microscopy, we have established that EhC2B is an actin nucleator. Collectively, based on the results from the study, we propose that EhC2B acts like a molecular bridge which promotes membrane deformation via its actin nucleation activity during the progression of the phagocytic cup in a calcium-dependent manner.
Collapse
Affiliation(s)
- Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Megha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Mintu Chandra
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Rupali Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Brett M. Collins
- Institute for Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- * E-mail:
| |
Collapse
|
14
|
EhRab21 associates with the Golgi apparatus in Entamoeba histolytica. Parasitol Res 2020; 119:1629-1640. [PMID: 32219551 DOI: 10.1007/s00436-020-06667-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 01/12/2023]
Abstract
Rab proteins constitute the largest group of small GTPases and act as molecular switches in a wide variety of cellular processes, including proliferation, cytoskeleton assembly, and membrane trafficking in all eukaryotic cells. Rab21 has been reported in several eukaryotic cells, and our results suggest that in Entamoeba histolytica, Rab21 is involved in the vesicular traffic associated with the Golgi apparatus, where its function appears to be important to maintain the structure of this organelle. In addition, proteins such as Rab1A and Sec24, identified in this work associated with EhRab21, participate in the traffic of COPII vesicles from the endoplasmic reticulum to the Golgi apparatus and are necessary to maintain the latter's structure in human cells. In addition, EhRab21 probably affects the lysosome biogenesis, as indicated by an increase in the number of lysosomes as a result of the increase in EhRab21 activity. The participation of EhRab21 in the pathogenesis of amebiasis was verified on the amoebic liver abscess formation model using hamsters (Mesocricetus auratus), in which the overexpression of EhRab21Q64L (positive dominant mutant protein) decreased the number of liver abscesses formed.
Collapse
|
15
|
Shaulov Y, Nagaraja S, Sarid L, Trebicz-Geffen M, Ankri S. Formation of oxidised (OX) proteins in Entamoeba histolytica exposed to auranofin and consequences on the parasite virulence. Cell Microbiol 2020; 22:e13174. [PMID: 32017328 DOI: 10.1111/cmi.13174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Metronidazole (MNZ), the first line drug for amoebiasis and auranofin (AF), an emerging antiprotozoan drug, are both inhibiting Entamoeba histolytica thioredoxin reductase. The nature of oxidised proteins (OXs) formed in AF- or MNZ-treated E. histolytica trophozoites is unknown. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the OXs formed in AF- or MNZ-treated E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry (MS). We detected 661 OXs in MNZ-treated trophozoites and 583 OXs in AF-treated trophozoites. More than 50% of these OXs were shared, and their functions include hydrolases, enzyme modulators, transferases, nucleic acid binding proteins, oxidoreductases, cytoskeletal proteins, chaperones, and ligases. Here, we report that the formation of actin filaments (F-actin) is impaired in AF-treated trophozoites. Consequently, their erythrophagocytosis, cytopathic activity, and their motility are impaired. We also observed that less than 15% of OXs present in H2 O2 -treated trophozoites are also present in AF- or MNZ-treated trophozoites. These results strongly suggest that the formation of OXs in AF- or MNZ-treated trophozoites and in H2 O2 -treated trophozoites occurred by two different mechanisms.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
16
|
Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence. PLoS One 2019; 14:e0224032. [PMID: 31647841 PMCID: PMC6812828 DOI: 10.1371/journal.pone.0224032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/03/2019] [Indexed: 11/19/2022] Open
Abstract
Oropharyngeal avian trichomonosis is mainly caused by Trichomonas gallinae, a protozoan parasite that affects the upper digestive tract of birds. Lesions of the disease are characterized by severe inflammation which may result in fatality by starvation. Two genotypes of T. gallinae were found to be widely distributed in different bird species all over the world. Differences in the host distribution and association with lesions of both genotypes have been reported. However, so far no distinct virulence factors of this parasite have been described and studies might suffer from possible co-infections of different genotypes. Therefore, in this paper, we analyzed the virulence capacity of seven clones of the parasite, established by micromanipulation, representing the two most frequent genotypes. Clones of both genotypes caused the maximum score of virulence at day 3 post-inoculation in LMH cells, although significant higher cytopathogenic score was found in ITS-OBT-Tg-1 genotype clones at days 1 and 2, as compared to clones with ITS-OBT-Tg-2. By using one representative clone of each genotype, a comparative proteomic analysis of the membrane proteins enriched fraction has been carried out by a label free approach (Data available via ProteomeXchange: PXD013115). The analysis resulted in 302 proteins of varying abundance. In the clone with the highest initial virulence, proteins related to cell adhesion, such as an immuno-dominant variable surface antigen, a GP63-like protein, an armadillo/beta-catenin-like repeat protein were found more abundant. Additionally, Ras superfamily proteins and calmodulins were more abundant, which might be related to an increased activity in the cytoskeleton re-organization. On the contrary, in the clone with the lowest initial virulence, larger numbers of the identified proteins were related to the carbohydrate metabolism. The results of the present work deliver substantial differences between both clones that could be related to feeding processes and morphological changes, similarly to the closely related pathogen Trichomonas vaginalis.
Collapse
|
17
|
Probst A, Nguyen TN, El-Sakkary N, Skinner D, Suzuki BM, Buckner FS, Gelb MH, Caffrey CR, Debnath A. Bioactivity of Farnesyltransferase Inhibitors Against Entamoeba histolytica and Schistosoma mansoni. Front Cell Infect Microbiol 2019; 9:180. [PMID: 31192168 PMCID: PMC6548881 DOI: 10.3389/fcimb.2019.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 01/17/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica can induce amebic colitis and amebic liver abscess. First-line drugs for the treatment of amebiasis are nitroimidazoles, particularly metronidazole. Metronidazole has side effects and potential drug resistance is a concern. Schistosomiasis, a chronic and painful infection, is caused by various species of the Schistosoma flatworm. There is only one partially effective drug, praziquantel, a worrisome situation should drug resistance emerge. As many essential metabolic pathways and enzymes are shared between eukaryotic organisms, it is possible to conceive of small molecule interventions that target more than one organism or target, particularly when chemical matter is already available. Farnesyltransferase (FT), the last common enzyme for products derived from the mevalonate pathway, is vital for diverse functions, including cell differentiation and growth. Both E. histolytica and Schistosoma mansoni genomes encode FT genes. In this study, we phenotypically screened E. histolytica and S. mansoni in vitro with the established FT inhibitors, lonafarnib and tipifarnib, and with 125 tipifarnib analogs previously screened against both the whole organism and/or the FT of Trypanosoma brucei and Trypanosoma cruzi. For E. histolytica, we also explored whether synergy arises by combining lonafarnib and metronidazole or lonafarnib with statins that modulate protein prenylation. We demonstrate the anti-amebic and anti-schistosomal activities of lonafarnib and tipifarnib, and identify 17 tipifarnib analogs with more than 75% growth inhibition at 50 μM against E. histolytica. Apart from five analogs of tipifarnib exhibiting activity against both E. histolytica and S. mansoni, 10 additional analogs demonstrated anti-schistosomal activity (severe degenerative changes at 10 μM after 24 h). Analysis of the structure-activity relationship available for the T. brucei FT suggests that FT may not be the relevant target in E. histolytica and S. mansoni. For E. histolytica, combination of metronidazole and lonafarnib resulted in synergism for growth inhibition. Also, of a number of statins tested, simvastatin exhibited moderate anti-amebic activity which, when combined with lonafarnib, resulted in slight synergism. Even in the absence of a definitive molecular target, identification of potent anti-parasitic tipifarnib analogs encourages further exploration while the synergistic combination of metronidazole and lonafarnib offers a promising treatment strategy for amebiasis.
Collapse
Affiliation(s)
- Alexandra Probst
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Thi N Nguyen
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Danielle Skinner
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Frederick S Buckner
- Division of Allergy and Infectious Diseases, Department of Medicine, Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Michael H Gelb
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
18
|
Hanadate Y, Saito-Nakano Y, Nakada-Tsukui K, Nozaki T. Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog. Int J Mol Sci 2018; 19:ijms19123831. [PMID: 30513690 PMCID: PMC6321534 DOI: 10.3390/ijms19123831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane.
Collapse
Affiliation(s)
- Yuki Hanadate
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
Kotyada C, Chandra M, Tripathi A, Narooka AR, Datta S, Verma A. Atypical Switch-I Arginine plays a catalytic role in GTP hydrolysis by Rab21 from Entamoeba histolytica. Biochem Biophys Res Commun 2018; 506:660-667. [PMID: 30454703 DOI: 10.1016/j.bbrc.2018.10.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 11/26/2022]
Abstract
Entamoeba histolytica, the causative agent of amoebic dysentery, liver abscess and colitis, exploits its vesicular trafficking machinery for survival and virulence. Rab family of small GTPases play a key role in the vesicular transport by undergoing the GTP/GDP cycle which is central to the biological processes. Amoebic genome encodes several atypical Rab GTPases which are unique due to absence of conserved sequence motif(s) or atypical residues in their catalytic site [Saito-Nakano et al., 2005 ]. Previously, EhRab21 has been reported to involve in amoebic invasion and migration [Emmanuel et al., 2015 ]. The conserved Glutamine of switch-II region is universally accepted to be crucial for GTP hydrolysis. Mutations that reduce the sidechain polarity of Glutamine render the protein GTPase activity deficient [Krengel et al., 1990]. Here, we report a catalytic role of atypical switch-I Arginine (R36) in intrinsic GTP hydrolysis catalysed by EhRab21. Unlike the GTPase activity deficient QL mutants, the GTPase activity of EhRab21Q64L was found to be marginally enhanced compared to the wild-type protein. Although EhRab21R36L mutant showed normal GTPase activity, the double mutant (R36L/Q64L) was found to be GTPase deficient. Thus, EhRab21 is a unique member of small GTPase family in which an atypical switch-I Arginine is capable of driving GTP hydrolysis independent of the conserved switch-II Glutamine.
Collapse
Affiliation(s)
- Chaithanya Kotyada
- Biological Sciences, The University of Auckland, Auckland, 1010, New Zealand
| | - Mintu Chandra
- Institute for Molecular Bioscience (IMB), The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | - Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, India
| | - Anil R Narooka
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462066, India.
| | - Akash Verma
- Maa Smriti Bhavan, Lal Kothi Compound, Hazaribagh, 825301, India
| |
Collapse
|
20
|
Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases 2018; 11:320-333. [PMID: 30273093 DOI: 10.1080/21541248.2018.1528840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity. The pathogenic amoeba Entamoeba histolytica harbours 91 Rab GTPases which is the highest among the currently available genome sequences from the eukaryotic kingdom. Here, we review the current status of amoebic Rab GTPases diversity, unique biochemical and structural features and summarise their predicted regulators. We discuss how amoebic Rab GTPases are involved in cellular processes such as endocytosis, phagocytosis, and invasion of host cellular components, which are essential for parasite survival and virulence.
Collapse
Affiliation(s)
- Kuldeep Verma
- Institute of Science, Nirma University , Ahmedabad, Gujarat, India.,Regional Centre for Biotechnology, NCR Biotech Science Cluster , Faridabad, India
| | | | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri, India
| |
Collapse
|
21
|
Constantino‐Jonapa LA, Hernández‐Ramírez VI, Osorio‐Trujillo C, Talamás‐Rohana P. Eh
Rab21 mobilization during erythrophagocytosis in
Entamoeba histolytica. Microsc Res Tech 2018; 81:1024-1035. [DOI: 10.1002/jemt.23069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/03/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Luis A. Constantino‐Jonapa
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Verónica Ivonne Hernández‐Ramírez
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Carlos Osorio‐Trujillo
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| | - Patricia Talamás‐Rohana
- Departamento de Infectómica y Patogénesis MolecularCentro de Investigación y de Estudios Avanzados del I.P.N., Avenida Instituto Politécnico Nacional No. 2508Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CDMXCP 07360, Mexico
| |
Collapse
|
22
|
Sierra-López F, Baylón-Pacheco L, Espíritu-Gordillo P, Lagunes-Guillén A, Chávez-Munguía B, Rosales-Encina JL. Influence of Micropatterned Grill Lines on Entamoeba histolytica Trophozoites Morphology and Migration. Front Cell Infect Microbiol 2018; 8:295. [PMID: 30197879 PMCID: PMC6117912 DOI: 10.3389/fcimb.2018.00295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022] Open
Abstract
Entamoeba histolytica, the causal agent of human amoebiasis, has two morphologically different phases: a resistant cyst and a trophozoite responsible for the invasion of the host tissues such as the colonic mucosa and the intestinal epithelium. During in vitro migration, trophozoites usually produce protuberances such as pseudopods and rarely filopodia, structures that have been observed in the interaction of trophozoites with human colonic epithelial tissue. To study the different membrane projections produced by the trophozoites, including pseudopods, filopodia, uropods, blebs, and others, we designed an induction system using erythrocyte extract or fibronectin (FN) in micropatterned grill lines (each micro-line containing multiple micro-portions of FN or erythrocyte extract) on which the trophozoites were placed in culture for migration assays. Using light, confocal, and scanning electron microscopy, we established that E. histolytica trophozoites frequently produce short and long filopodia, large retractile uropods in the rear, pseudopods, blebs, and others structures, also showing continuous migration periods. The present study provides a simple migration method to induce trophozoites to generate abundant membrane protrusion structures that are rarely obtained in normal or induced cultures, such as long filopodia; this method will allow a–better understanding of the interactions of trophozoites with FN and cell debris. E. histolytica trophozoites motility plays an important role in invasive amoebiasis. It has been proposed that both physical forces and chemical signals are involved in the trophozoite motility and migration. However, the in vivo molecules that drive the chemotactic migration remain to be determined. We propose the present assay to study host molecules that guide chemotactic behavior because the method is highly reproducible, and a live image of cell movement and migration can be quantified.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Espíritu-Gordillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
23
|
Liechti N, Schürch N, Bruggmann R, Wittwer M. The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC Genomics 2018; 19:654. [PMID: 30185166 PMCID: PMC6125883 DOI: 10.1186/s12864-018-4994-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Background Members of the genus Naegleria are free-living eukaryotes with the capability to transform from the amoeboid form into resting cysts or moving flagellates in response to environmental conditions. More than 40 species have been characterized, but only Naegleria fowleri (N. fowleri) is known as a human pathogen causing primary amoebic meningoencephalitis (PAM), a fast progressing and mostly fatal disease of the central nervous system. Several studies report an involvement of phospholipases and other molecular factors, but the mechanisms involved in pathogenesis are still poorly understood. To gain a better understanding of the relationships within the genus of Naegleria and to investigate pathogenicity factors of N. fowleri, we characterized the genome of its closest non-pathogenic relative N. lovaniensis. Results To gain insights into the taxonomy of Naegleria, we sequenced the genome of N. lovaniensis using long read sequencing technology. The assembly of the data resulted in a 30 Mb genome including the circular mitochondrial sequence. Unravelling the phylogenetic relationship using OrthoMCL protein clustering and maximum likelihood methods confirms the close relationship of N. lovaniensis and N. fowleri. To achieve an overview of the diversity of Naegleria proteins and to assess characteristics of the human pathogen N. fowleri, OrthoMCL protein clustering including data of N. fowleri, N. lovaniensis and N. gruberi was performed. GO enrichment analysis shows an association of N. fowleri specific proteins to the GO terms “Membrane” and “Protein Secretion.” Conclusion In this study, we characterize the hitherto unknown genome of N. lovaniensis. With the description of the 30 Mb genome, a further piece is added to reveal the complex taxonomic relationship of Naegleria. Further, the whole genome sequencing data confirms the hypothesis of the close relationship between N. fowleri and N. lovaniensis. Therefore, the genome of N. lovaniensis provides the basis for further comparative approaches on the molecular and genomic level to unravel pathogenicity factors of its closest human pathogenic relative N. fowleri and possible treatment options for the rare but mostly fatal primary meningoencephalitis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4994-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Liechti
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland.,Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nadia Schürch
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Matthias Wittwer
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland.
| |
Collapse
|
24
|
Invadosome-Mediated Human Extracellular Matrix Degradation by Entamoeba histolytica. Infect Immun 2018; 86:IAI.00287-18. [PMID: 29914929 DOI: 10.1128/iai.00287-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/13/2018] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite that causes invasive amoebiasis when it invades the human colon. Tissue invasion requires a shift from an adhesive lifestyle in the colonic lumen to a motile and extracellular matrix (ECM) degradative lifestyle in the colonic tissue layers. How the parasite regulates these two lifestyles is largely unknown. Previously, we showed that silencing the E. histolytica surface metalloprotease EhMSP-1 results in parasites that are hyperadherent and less motile. To better understand the molecular mechanism of this phenotype, we now show that the parasites with EhMSP-1 silenced cannot efficiently form specialized dot-like polymerized actin (F actin) structures upon interaction with the human ECM component fibronectin. We characterized these F actin structures and found that they are very short-lived structures that are the sites of fibronectin degradation. Motile mammalian cells form F actin structures called invadosomes that are similar in stability and function to these amoebic actin dots. Therefore, we propose here that E. histolytica forms amoebic invadosomes to facilitate colonic tissue invasion.
Collapse
|
25
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
26
|
Manich M, Hernandez-Cuevas N, Ospina-Villa JD, Syan S, Marchat LA, Olivo-Marin JC, Guillén N. Morphodynamics of the Actin-Rich Cytoskeleton in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:179. [PMID: 29896453 PMCID: PMC5986921 DOI: 10.3389/fcimb.2018.00179] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
Entamoeba histolytica is the anaerobic protozoan parasite responsible for human amoebiasis, the third most deadly parasitic disease worldwide. This highly motile eukaryotic cell invades human tissues and constitutes an excellent experimental model of cell motility and cell shape deformation. The absence of extranuclear microtubules in Entamoeba histolytica means that the actin-rich cytoskeleton takes on a crucial role in not only amoebic motility but also other processes sustaining pathogenesis, such as the phagocytosis of human cells and the parasite's resistance of host immune responses. Actin is highly conserved among eukaryotes, although diverse isoforms exist in almost all organisms studied to date. However, E. histolytica has a single actin protein, the structure of which differs significantly from those of its human homologs. Here, we studied the expression, structure and dynamics of actin in E. histolytica. We used molecular and cellular approaches to evaluate actin gene expression during intestinal invasion by E. histolytica trophozoites. Based on a three-dimensional structural bioinformatics analysis, we characterized protein domains differences between amoebic actin and human actin. Fine-tuned molecular dynamics simulations enabled us to examine protein motion and refine the three-dimensional structures of both actins, including elements potentially accounting for differences changes in the affinity properties of amoebic actin and deoxyribonuclease I. The dynamic, multifunctional nature of the amoebic cytoskeleton prompted us to examine the pleiotropic forms of actin structures within live E. histolytica cells; we observed the cortical cytoskeleton, stress fibers, "dot-like" structures, adhesion plates, and macropinosomes. In line with these data, a proteomics study of actin-binding proteins highlighted the Arp2/3 protein complex as a crucial element for the development of macropinosomes and adhesion plaques.
Collapse
Affiliation(s)
- Maria Manich
- BioImaging Unit, Institut Pasteur, Paris, France.,Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France
| | | | - Juan D Ospina-Villa
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France
| | - Laurence A Marchat
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City, Mexico
| | | | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
27
|
Ge J, Chen Q, Liu B, Wang L, Zhang S, Ji B. Knockdown of Rab21 inhibits proliferation and induces apoptosis in human glioma cells. Cell Mol Biol Lett 2017; 22:30. [PMID: 29270202 PMCID: PMC5735509 DOI: 10.1186/s11658-017-0062-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells. Methods The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes. Results The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells. Conclusions We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
Collapse
Affiliation(s)
- Jian Ge
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| | - Baowei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No.9 Zhangzhidong Road, Wuchang District, Wuhan, Hubei 430060 People's Republic of China
| |
Collapse
|
28
|
Lam C, Jamerson M, Cabral G, Carlesso AM, Marciano-Cabral F. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system. MICROBIOLOGY-SGM 2017; 163:1436-1444. [PMID: 28954644 DOI: 10.1099/mic.0.000537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naegleria fowleri is a free-living amoeba found in freshwater lakes and ponds and is the causative agent of primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system (CNS). PAM occurs when amoebae attach to the nasal epithelium and invade the CNS, a process that involves binding to, and degradation of, extracellular matrix (ECM) components. This degradation is mediated by matrix metalloproteinases (MMPs), enzymes that have been described in other pathogenic protozoa, and that have been linked to their increased motility and invasive capability. These enzymes also are upregulated in tumorigenic cells and have been implicated in metastasis of certain tumours. In the present study, in vitro experiments linked MMPs functionally to the degradation of the ECM. Gelatin zymography demonstrated enzyme activity in N. fowleri whole cell lysates, conditioned media and media collected from invasion assays. Western immunoblotting indicated the presence of the metalloproteinases MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-14 [membrane type-1 matrix metalloproteinase (MT1-MMP)]. Highly virulent mouse-passaged amoebae expressed higher levels of MMPs than weakly virulent axenically grown amoebae. The functional relevance of MMPs in media was indicated through the use of the MMP inhibitor, 1,10-phenanthroline. The collective in vitro results suggest that MMPs play a critical role in vivo in invasion of the CNS and that these enzymes may be amenable targets for limiting PAM.
Collapse
Affiliation(s)
- Charlton Lam
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Melissa Jamerson
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Guy Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Ana Maris Carlesso
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
29
|
Verma K, Datta S. Heavy subunit of cell surface Gal/GalNAc lectin (Hgl) undergoes degradation via endo-lysosomal compartments in Entamoeba histolytica. Small GTPases 2017; 10:456-465. [PMID: 28613117 DOI: 10.1080/21541248.2017.1340106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human gut parasite Entamoeba histolytica uses a multifunctional virulence factor, Hgl, a cell surface transmembrane receptor subunit of Gal/GalNAc lectin that contributes to adhesion, invasion, cytotoxicity and immune response in the host. At present, the physiologic importance of Hgl receptor is mostly known for pathogenicity of E. histolytica. However, the molecular mechanisms of Hgl trafficking events and their association with the intracellular membrane transport machinery are largely unknown. We used biochemical and microscopy-based assays to understand the Hgl trafficking in the amoebic trophozoites. Our results suggest that the Hgl is constitutively degraded through delivery into amoebic lysosome-like compartments. Further, we also observed that the Hgl was significantly colocalized with amoebic Rab GTPases such as EhRab5, EhRab7A, and EhRab11B. While, we detected association of Hgl with all these Rab GTPases in early vacuolar compartments, only EhRab7A remains associated with Hgl till its transport to amoebic lysosome-like compartments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal , Bhauri , India
| |
Collapse
|
30
|
Sun Z, Xie Y, Chen Y, Yang Q, Quan Z, Dai R, Qing H. Rab21, a Novel PS1 Interactor, Regulates γ-Secretase Activity via PS1 Subcellular Distribution. Mol Neurobiol 2017; 55:3841-3855. [PMID: 28547526 DOI: 10.1007/s12035-017-0606-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023]
Abstract
γ-Secretase has been a therapeutical target for its key role in cleaving APP to generate β-amyloid (Aβ), the primary constituents of senile plaques and a hallmark of Alzheimer's disease (AD) pathology. Recently, γ-secretase-associating proteins showed promising role in specifically modulating APP processing while sparing Notch signaling; however, the underlying mechanism is still unclear. A co-immunoprecipitation (Co-IP) coupled with mass spectrometry proteomic assay for Presenilin1 (PS1, the catalytic subunit of γ-secretase) was firstly conducted to find more γ-secretase-associating proteins. Gene ontology analysis of these results identified Rab21 as a potential PS1 interacting protein, and the interaction between them was validated by reciprocal Co-IP and immunofluorescence assay. Then, molecular and biochemical methods were used to investigate the effect of Rab21 on APP processing. Results showed that overexpression of Rab21 enhanced Aβ generation, while silencing of Rab21 reduced the accumulation of Aβ, which resulted due to change in γ-secretase activity rather than α- or β-secretase. Finally, we demonstrated that Rab21 had no effect on γ-secretase complex synthesis or metabolism but enhanced PS1 endocytosis and translocation to late endosome/lysosome. In conclusion, we identified a novel γ-secretase-associating protein Rab21 and illustrate that Rab21 promotes γ-secretase internalization and translocation to late endosome/lysosome. Moreover, silencing of Rab21 decreases the γ-secretase activity in APP processing thus production of Aβ. All these results open new gateways towards the understanding of γ-secretase-associating proteins in APP processing and make inhibition of Rab21 a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Zhenzhen Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yujie Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yintong Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhenzhen Quan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
31
|
Trebicz-Geffen M, Shahi P, Nagaraja S, Vanunu S, Manor S, Avrahami A, Ankri S. Identification of S-Nitrosylated (SNO) Proteins in Entamoeba histolytica Adapted to Nitrosative Stress: Insights into the Role of SNO Actin and In vitro Virulence. Front Cell Infect Microbiol 2017; 7:192. [PMID: 28589096 PMCID: PMC5440460 DOI: 10.3389/fcimb.2017.00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022] Open
Abstract
We have recently reported that Entamoeba histolytica trophozoites can adapt to toxic levels of the nitric oxide (NO) donor, S-nitrosoglutathione (GSNO). Even if the consequences of this adaptation on the modulation of gene expression in NO-adapted trophozoites (NAT) have been previously explored, insight on S-nitrosylated (SNO) proteins in NAT is missing. Our study aims to fill this knowledge gap by performing a screening of SNO proteins in NAT. Employing SNO resin-assisted capture (RAC), we identified 242 putative SNO proteins with key functions in calcium binding, enzyme modulation, redox homeostasis, and actin cytoskeleton. Of the SNO proteins in NAT, proteins that are associated with actin family cytoskeleton protein are significantly enriched. Here we report that the formation of actin filaments (F-actin) is impaired in NAT. Consequently, the ability of NAT to ingest erythrocytes and their motility and their cytopathic activity are impaired. These phenotypes can be imitated by treating control parasite with cytochalasin D (CytD), a drug that binds to F-actin polymer and prevent polymerization of actin monomers. Removal of GSNO from the culture medium of NAT restored the sensitivity of the parasite to nitrosative stress (NS) and its ability to form F-actin formation and its virulence. These results establish the central role of NO in shaping the virulence of the parasite through its effect on F-actin formation and highlight the impressive ability of this parasite to adapt to NS.
Collapse
Affiliation(s)
- Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Preeti Shahi
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shai Vanunu
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Shiran Manor
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Amit Avrahami
- Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, TechnionHaifa, Israel
| |
Collapse
|
32
|
Verma K, Datta S. The Monomeric GTPase Rab35 Regulates Phagocytic Cup Formation and Phagosomal Maturation in Entamoeba histolytica. J Biol Chem 2017; 292:4960-4975. [PMID: 28126902 DOI: 10.1074/jbc.m117.775007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/25/2017] [Indexed: 12/27/2022] Open
Abstract
One of the hallmarks of amoebic colitis is the detection of Entamoeba histolytica (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite. Phagocytic cargo, upon internalization, follows a defined trafficking route to amoebic lysosomal degradation machinery. Here, we demonstrated the role of EhRab35 in the early and late phases of erythrophagocytosis by the amoeba. EhRab35 showed large vacuolar as well as punctate vesicular localization. The spatiotemporal dynamics of vacuolar EhRab35 and its exchange with soluble cytosolic pool were monitored by fluorescence recovery after photobleaching experiments. Using extensive microscopy and biochemical methods, we demonstrated that upon incubation with RBCs EhRab35 is recruited to the site of phagocytic cups as well as to the nascent phagosomes that harbor Gal/GalNAc lectin and actin. Overexpression of a dominant negative mutant of EhRab35 reduced phagocytic cup formation and thereby reduced RBC internalization, suggesting a potential role of the Rab GTPase in the cup formation. Furthermore, we also performed a phagosomal maturation assay and observed that the activated form of EhRab35 significantly increased the rate of RBC degradation. Interestingly, this mutant also significantly enhanced the number of acidic compartments in the trophozoites. Taken together, our results suggest that EhRab35 is involved in the initial stage of phagocytosis as well as in the phagolysosomal biogenesis in E. histolytica and thus contributes to the pathogenicity of the parasite.
Collapse
Affiliation(s)
- Kuldeep Verma
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| | - Sunando Datta
- From the Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri 462030, India
| |
Collapse
|
33
|
Verma K, Nozaki T, Datta S. Role of EhRab7A in phagocytosis of type 1 fimbriated E. coli by Entamoeba histolytica. Mol Microbiol 2016; 102:1043-1061. [PMID: 27663892 DOI: 10.1111/mmi.13533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 01/16/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E. coli and investigated the role of a set of amoebic Rab GTPases in the process. The localizations of the Rab GTPases during different stages of the phagocytosis were investigated using laser scanning confocal microscopy and their functional relevance were determined using fluorescence activated cell sorter based assay as well as colony forming unit assay. Our results demonstrate that EhRab7A is localized on the phagosomes and involved in both early and late stages of type 1 E. coli phagocytosis. We further showed that the E. coli or RBC containing phagosomes are distinct from the large endocytic vacuoles in the parasite which are exclusively used to transport human holotransferrin and low density lipoprotein. Remarkably, type 1 E. coli uptake was found to be insensitive to cytochalasin D treatment, suggesting that the initial stage of E. coli phagocytosis is independent of the formation of actin filaments.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
34
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
35
|
Emmanuel M, Datta S. In vitro Fluorescent Matrix Degradation Assay for Entamoeba histolytica. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Abstract
The Rab family of small GTPases play fundamental roles in the regulation of trafficking pathways between intracellular membranes in eukaryotic cells. In this short commentary we highlight a recent high-content screening study that investigates the roles of Rab proteins in retrograde trafficking from the Golgi complex to the endoplasmic reticulum, and we discuss how the findings of this work and other literature might influence our thoughts on how the architecture of the Golgi complex is regulated.
Collapse
Affiliation(s)
- George Galea
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| | - Jeremy C Simpson
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| |
Collapse
|
37
|
Talamás-Lara D, Talamás-Rohana P, Fragoso-Soriano RJ, Espinosa-Cantellano M, Chávez-Munguía B, González-Robles A, Martínez-Palomo A. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy. Exp Cell Res 2015; 337:226-33. [DOI: 10.1016/j.yexcr.2015.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022]
|
38
|
Verma K, Saito-Nakano Y, Nozaki T, Datta S. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles. Cell Microbiol 2015; 17:1779-96. [PMID: 26096601 DOI: 10.1111/cmi.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| |
Collapse
|