1
|
Bouma RG, Wang AZ, den Haan JMM. Exploring CD169 + Macrophages as Key Targets for Vaccination and Therapeutic Interventions. Vaccines (Basel) 2025; 13:330. [PMID: 40266235 PMCID: PMC11946325 DOI: 10.3390/vaccines13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation.
Collapse
Affiliation(s)
- Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Aru Z. Wang
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Candor K, Ding L, Balchand S, Hammonds JE, Spearman P. The CLIC/GEEC pathway regulates particle uptake and formation of the virus-containing compartment (VCC) in HIV-1-infected macrophages. PLoS Pathog 2025; 21:e1012564. [PMID: 40067817 PMCID: PMC11925468 DOI: 10.1371/journal.ppat.1012564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/20/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
HIV-1 particles are captured by the immunoglobulin superfamily member Siglec-1 on the surface of macrophages and dendritic cells, leading to particle internalization and facilitating trans-infection of CD4+ T cells. HIV-1-infected macrophages develop a unique intracellular compartment termed the virus-containing compartment (VCC) that exhibits characteristic markers of the late endosome and is enriched in components of the plasma membrane (PM). The VCC has been proposed as the major site of particle assembly in macrophages. Depleting Siglec-1 from macrophages significantly reduces VCC formation, implying a link between the capture and uptake of external HIV-1 particles and the development of VCCs within HIV-infected cells. We found that internalization of particles to the VCC was independent of clathrin, but required dynamin-2. CD98 and CD44, classical markers of the CLIC/GEEC pathway, colocalized with Siglec-1 and HIV-1 particles within the VCC. Virus-like particles (VLPs) were taken up within CD98 and Siglec-1-enriched tubular membranes that migrated centripetally over time to form VCC-like structures. Inhibition of CLIC/GEEC-mediated endocytosis resulted in the arrest of captured HIV-1 particles on the macrophage cell surface, prevented VCC formation, and significantly reduced the efficiency of trans-infection of T cells. These findings indicate that following capture of virus by Siglec-1, particles follow an endocytic route to the VCC that requires both the CLIC/GEEC pathway and dynamin-2. We propose a model in which internalization of HIV-1 particles together with CLIC/GEEC membranes leads to the formation of the VCC in HIV-infected macrophages, creating an intracellular platform that facilitates further particle assembly and budding.
Collapse
Affiliation(s)
- Kathleen Candor
- Immunology Graduate Program, University of Cincinnati, and Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Lingmei Ding
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Sai Balchand
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Jason E. Hammonds
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| | - Paul Spearman
- Infectious Diseases Division, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio United States of America
| |
Collapse
|
3
|
Laguía F, Chojnacki J, Erkizia I, Geli MI, Enrich C, Martinez-Picado J, Resa-Infante P. Massive endocytosis mechanisms are involved in uptake of HIV-1 particles by monocyte-derived dendritic cells. Front Immunol 2025; 15:1505840. [PMID: 39867902 PMCID: PMC11757119 DOI: 10.3389/fimmu.2024.1505840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin. Here, we investigate the potential involvement of massive endocytosis (MEND) in this process. Methods We used live cell confocal imaging to measure the dimensions and dynamics of the compartment. We assessed the role of actin and cholesterol in fixed and live cells using confocal microscopy and evaluated the effect of PI3K and protein palmytoilation inhibitors during viral uptake. Results Our data demonstrate extensive plasma membrane invagination based on sac-like compartment dimensions (2.9 μm in diameter and 20 μm3 in volume). We showed that the cholesterol concentration doubles within the regions of viral uptake, suggesting lipid-phase separation, and that development of the sac-like compartment is accompanied by transient depolarization of cortical actin. Moreover, we observed that protein palmitoylation and PI3K inhibition reduce the sac-like compartment formation rate from 70% to 20% and 40%, respectively. Conclusions Our results indicate the involvement of MEND mechanisms during sac-like compartment formation.
Collapse
Affiliation(s)
| | - Jakub Chojnacki
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - María Isabel Geli
- Department of Cell Biology, Institute for Molecular Biology of Barcelona (IBMB, CSIC), Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa, Badalona, Spain
- CIBERINFEC, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
4
|
Xing Y, Wen Z, Mei J, Huang X, Zhao S, Zhong J, Jiu Y. Cytoskeletal Vimentin Directs Cell-Cell Transmission of Hepatitis C Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408917. [PMID: 39611409 PMCID: PMC11744697 DOI: 10.1002/advs.202408917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Hepatitis C virus (HCV) is a major human pathogen causing liver diseases. Although direct-acting antiviral agents effectively inhibit HCV infection, cell-cell transmission remains a critical venue for HCV persistence in vivo. However, the underlying mechanism of how HCV spreads intercellularly remains elusive. Here, we demonstrated that vimentin, a host intermediate filaments protein, is dispensable for HCV infection in cell models but essential for simulated in vivo infection in differentiated hepatocytes. Genetic removal of vimentin markedly and specifically disrupts HCV cell-cell transmission without influencing cell-free infection. Through mutual co-immunoprecipitation screening, we identified that the N-terminal 1-95 amino acids of vimentin exclusively interact with the HCV envelope protein E1. Introducing either full-length or head region of vimentin is capable of restoring the cell-cell transmission deficiency in vimentin-knockout cells. Moreover, we showed that it is vimentin on the plasma membrane of recipient cells that orchestrates HCV cell-cell transmission. Consequently, vimentin antibody, either applied individually or in combination with HCV neutralizing antibody, exerts pronounced inhibition of HCV cell-cell transmission. Together, the results unveil an unrecognized function of vimentin as a unique venue dominating viral transmission, providing novel insights into propelling advancements in vimentin-targeted anti-HCV therapies.
Collapse
Affiliation(s)
- Yifan Xing
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Jie Mei
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Xinyi Huang
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Shuangshuang Zhao
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Jin Zhong
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| | - Yaming Jiu
- University of Chinese Academy of SciencesYuquan Road No. 19(A)Shijingshan DistrictBeijing100049P. R. China
- Key Laboratory of Molecular Virology and ImmunologyShanghai Institute of Immunity and InfectionChinese Academy of SciencesShanghai200031P. R. China
| |
Collapse
|
5
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
6
|
Gerberick A, Rinaldo CR, Sluis-Cremer N. Antigen Presenting Cell-Mediated HIV-1 Trans Infection in the Establishment and Maintenance of the Viral Reservoir. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i7.1.4064. [PMID: 39634038 PMCID: PMC11616617 DOI: 10.18103/mra.v11i7.1.4064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Despite potent antiretroviral therapy, an HIV-1 reservoir persists that represents a major barrier to a cure. Understanding the mechanisms by which the HIV-1 reservoir is established and maintained is critical for the discovery of effective treatments to significantly reduce or eliminate the viral reservoir. In addition to cis infection, in which HIV-1 directly infects target CD4+ T cells, cell-to-cell transmission, or trans infection, can also occur. HIV-1 trans infection is significantly more efficient than cis infection, mostly due to the occurrence of multiple infections per cell during transfer. Additionally, trans infection is efficient even in the presence of ART and/or neutralizing antibodies. Cell-to-cell transmission is mediated by CD4+ T cells and professional antigen presenting cells (APC). Here we focus on APC, i.e., myeloid dendritic cells, B lymphocytes, and monocytes/macrophages, that bind, internalize, and transfer HIV-1 to target CD4+ T cells via various proposed mechanisms. We assess the potential impact of trans infection on the establishment and maintenance of the HIV-1 reservoir including its role in disease progression. We consider the natural interactions between APC and CD4+ T cells in vivo that HIV-1 may hijack, allowing for the highly efficient trans infection of CD4+ T cells, maintaining the viral reservoirs in tissue despite undetectable plasma viral loads in peripheral blood. We propose that these modes of viral pathogenesis need to be addressed in potential cure strategies to ensure eradication of the viral reservoir.
Collapse
Affiliation(s)
- Abigail Gerberick
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Charles R Rinaldo
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| | - Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Infectious Diseases, Pittsburgh, PA, 15261, USA
| |
Collapse
|
7
|
Basar E, Shum B, Skaletz-Rorowski A, Wu Y, Nambiar S, Brockmeyer NH. Cholesterol-conjugated siRNAs silence gene expression in mucosal dendritic cells in cervicovaginal tissue in mice. J Eur Acad Dermatol Venereol 2023; 37:615-626. [PMID: 36331362 DOI: 10.1111/jdv.18718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND RNA interference (RNAi) provides a powerful way to investigate the role of genes in disease pathogenesis and modulate gene expression to treat disease. In 2018, the FDA approved patisiran, the first RNAi-based drug, hence paving the way for a novel class of RNAi therapeutics. Harnessing RNAi to inhibit vaginal HIV transmission requires effective gene silencing in immune cells, which remains difficult. Knockdown in accessible mucosal tissues may be easier than systemic gene silencing. Vaginally applied cholesterol-conjugated small interfering RNAs (chol-siRNAs) blocked herpes simplex virus transmission in mice without tissue damage or immunostimulation. OBJECTIVES AND METHODS To investigate using flow cytometry, confocal microscopy, and quantitative imaging if chol-siRNAs silence gene expression in vaginal immune cells in mice. RESULTS Although chol-siRNAs and lipoplexed-siRNAs silence gene expression in dendritic cells (DCs) in vitro, most internalized siRNAs concentrate within multivesicular bodies, where they are inaccessible to the cellular RNAi machinery. When applied intravaginally in vivo, chol-siRNAs penetrate the vaginal mucosa, including the lamina propria, and are efficiently internalized by intraepithelial (IE) and lamina propria (LP) DCs, and CD11b+ CD45+ cells, but not by T cells. Chol-siRNAs induce partial gene silencing in IE and LP DCs throughout the genital mucosa in vivo but are inactive in F4/80+ CD11b+ macrophages and T cells. CONCLUSION As mucosal DCs play an essential role for mucosal viral entry and dissemination, chol-siRNAs could be harnessed to target various host factors that are critical for viral uptake, DC migration and trans-infection of virions to T cells, hence allowing the development of a preventive vaginal HIV microbicide. Furthermore, chol-siRNAs could help elucidate the pathways of HIV transmission and understand the immunologic function of DCs in the genital tract.
Collapse
Affiliation(s)
- Emre Basar
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.,WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Bennett Shum
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriane Skaletz-Rorowski
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Yichao Wu
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandeep Nambiar
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Norbert H Brockmeyer
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
8
|
Zang H, Siddiqui M, Gummuluru S, Wong WW, Reinhard BM. Ganglioside-Functionalized Nanoparticles for Chimeric Antigen Receptor T-Cell Activation at the Immunological Synapse. ACS NANO 2022; 16:18408-18420. [PMID: 36282488 PMCID: PMC9815837 DOI: 10.1021/acsnano.2c06516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has proven to be an effective strategy against hematological malignancies but persistence and activity against solid tumors must be further improved. One emerging strategy for enhancing efficacy is based on directing CAR T cells to antigen presenting cells (APCs). Activation of CAR T cells at the immunological synapse (IS) formed between APC and T cell is thought to promote strong, persistent antigen-specific T cell-mediated immune responses but requires integration of CAR ligands into the APC/T-cell interface. Here, we demonstrate that CAR ligand functionalized, lipid-coated, biodegradable polymer nanoparticles (NPs) that contain the ganglioside GM3 (GM3-NPs) bind to CD169 (Siglec-1)-expressing APCs and localize to the cell contact site between APCs and CAR T cells upon initiation of cell conjugates. The CD169+ APC/CAR T-cell interface is characterized by a strong optical colocalization of GM3-NPs and CARs, enrichment of F-actin, and recruitment of ZAP-70, indicative of integration of GM3-NPs into a functional IS. Ligands associated with GM3-NPs localized to the APC/T-cell contact site remain accessible to CARs and result in robust T-cell activation. Overall, this work identifies GM3-NPs as a potential antigen delivery platform for active targeting of CD169 expressing APCs and enhancement of CAR T-cell activation at the NP-containing IS.
Collapse
Affiliation(s)
- Han Zang
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA, 02215, United States
| | - Menna Siddiqui
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Björn M. Reinhard
- Departments of Chemistry and The Photonics Center, Boston University, Boston, MA, 02215, United States
| |
Collapse
|
9
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Ramaswamy S, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. PLoS Pathog 2022; 18:e1010479. [PMID: 36279285 PMCID: PMC9632919 DOI: 10.1371/journal.ppat.1010479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/03/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169-mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and subgenomic RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral genomic and subgenomic RNA in CD169+ macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sita Ramaswamy
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Herzog S, Fragkou PC, Arneth BM, Mkhlof S, Skevaki C. Myeloid CD169/Siglec1: An immunoregulatory biomarker in viral disease. Front Med (Lausanne) 2022; 9:979373. [PMID: 36213653 PMCID: PMC9540380 DOI: 10.3389/fmed.2022.979373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
CD169, also known as Siglec1 or Sialoadhesin (Sn), is a surface adhesion molecule on human myeloid cells. Being part of the Siglec family, it acts as a receptor for sialylated molecular structures, which are found among various pathogenic and non-pathogenic ligands. Recent data suggest that CD169 may represent a promising new biomarker in acute respiratory and non-respiratory viral infections, such as SARS-CoV-2, Respiratory syncytial virus (RSV) and Human immunodeficiency virus (HIV). Therein lies a great potential to sufficiently differentiate viral from bacterial infection, which has been an incessant challenge in the clinical management of infectious disease. CD169 equips myeloid cells with functions, reaching far beyond pathogen elimination. In fact, CD169 seems to crosslink innate and adaptive immunity by antigen presentation and consecutive pathogen elimination, embodying a substantial pillar of immunoregulation. Yet, our knowledge about the kinetics, mechanisms of induction, signaling pathways and its precise role in host-pathogen interaction remains largely obscure. In this review, we describe the role of CD169 as a potentially novel diagnostic biomarker for respiratory viral infection by evaluating its strengths and weaknesses and considering host factors that are involved in pathogenesis of virus infection. Finally, this brief review aims to point out shortcomings of available evidence, thus, guiding future work revolving the topic.
Collapse
Affiliation(s)
- Silva Herzog
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C. Fragkou
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Borros M. Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Samr Mkhlof
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
- *Correspondence: Chrysanthi Skevaki,
| |
Collapse
|
11
|
Activating Fc Gamma Receptors and Viral Receptors Are Required for Antibody-Dependent Enhancement of Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2022; 9:vetsci9090470. [PMID: 36136686 PMCID: PMC9504219 DOI: 10.3390/vetsci9090470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome virus (PRRSV)-specific sub- or non-neutralizing antibodies promote the adhesion and internalization of the virion into host cells. This phenomenon is known as antibody-dependent enhancement (ADE) of PRRSV infection. It has long been accepted that Fc gamma receptors (FcγRs) are responsible for mediating ADE of virus infection. However, few researchers pay attention to the role of the virus receptors in the ADE of virus infection. In this study, we showed that activating FcγRs (FcγRI and FcγRIII) were responsible for mediating PRRSV-ADE infection. Simultaneously, we showed that the viral receptors (sialoadhesin and CD163) were involved in FcγR-mediated PRRSV-ADE infection. The extracellular domains 1-6 of sialoadhesin and the scavenger receptor cysteine-rich 5 domain of CD163 might play central roles in PRRSV-ADE infection. In conclusion, our studies indicated that activating FcγRs and virus receptors were required for PRRSV-ADE infection. Our findings should allow a more precise understanding of the structural basis for the mechanism of PRRSV-ADE infection, which would provide references for screening targets of novel PRRS vaccines or antiviral drugs against the PRRSV. Abstract Antibody-dependent enhancement (ADE) is an event in preexisting sub-, or non-neutralizing antibodies increasing the viral replication in its target cells. ADE is one crucial factor that intensifies porcine reproductive and respiratory syndrome virus (PRRSV) infection and results in PRRSV-persistent infection. Nevertheless, the exact mechanisms of PRRSV-ADE infection are poorly understood. In the current research, the results of the ADE assay showed that porcine immunoglobulin G (IgG) specific for the PRRSV significantly enhanced PRRSV proliferation in porcine alveolar macrophages (PAMs), suggesting that the ADE activity of PRRSV infection existed in pig anti-PRRSV IgG. The results of the RNA interference assay showed that knockdown of the Fc gamma receptor I (FcγRI) or FcγRIII gene significantly suppressed the ADE activity of PRRSV infection in PAMs, suggesting that FcγRI and FcγRIII were responsible for mediating PRRSV-ADE infection. In addition, the results of the antibody blocking assay showed that specific blocking of the Sn1, 2, 3, 4, 5, or 6 extracellular domain of the sialoadhesin (Sn) protein or selective blockade of the scavenger receptor cysteine-rich (SRCR) 5 domain of the CD163 molecule significantly repressed the ADE activity of PRRSV infection in PAMs, suggesting that Sn and CD163 were involved in FcγR-mediated PRRSV-ADE infection. The Sn1–6 domains of porcine Sn protein and the SRCR 5 domain of porcine CD163 molecule might play central roles in the ADE of PRRSV infection. In summary, our studies indicated that activating FcγRs (FcγRI and FcγRIII) and viral receptors (Sn and CD163) were required for ADE of PRRSV infection. Our findings provided a new insight into PRRSV infection that could be enhanced by FcγRs and PRRSV receptors-mediated PRRSV-antibody immune complexes (ICs), which would deepen our understanding of the mechanisms of PRRSV-persistent infection via the ADE pathway.
Collapse
|
12
|
Zang H, Fofana J, Xu F, Nodder SB, Gummuluru S, Reinhard BM. Characterizing Lipid-Coated Mesoporous Silica Nanoparticles as CD169-Binding Delivery System for Rilpivirine and Cabotegravir. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100157. [PMID: 36313942 PMCID: PMC9610980 DOI: 10.1002/anbr.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Herein, lipid-coated mesoporous silica nanoparticles (LMSN) are investigated as biomimetic delivery vehicle for two antiretroviral compounds (ARVs), rilpivirine (RPV) and cabotegravir (CAB). Monosialodihexosylganglioside (GM3) is incorporated into the membrane to facilitate LMSN binding to CD169 (Siglec-1)-expressing myeloid cells, that are predominantly expressed in secondary lymphoid tissues in vivo. It is demonstrated that in addition to providing CD169-binding functionalities, the lipid membrane around the silica core provides stealth properties that dampen the inflammatory cytokine response to ARVs-loaded LMSN in human monocyte-derived macrophages. Quantification of RPV and CAB releases from nanoparticles, and assessment of antiviral potency to human immunodeficiency virus (HIV-1) infection in vitro reveals that RPV and CAB co-formulated into LMSN retain optimal antiviral potency for 90 days, even upon storage at room temperature, making LMSN an attractive nanoplatform, immune to cold chain requirements. These findings suggest that GM3-LMSN equip the mesoporous silica nanoparticle (MSN) core with lipid-derived properties for surface passivation and lipid-mediated binding that are of high interest for achieving an effective delivery of ARVs to tissue reservoirs of HIV-1 replication.
Collapse
Affiliation(s)
- Han Zang
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| | - Josiane Fofana
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Fangda Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| | - Sarah B. Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston MA 02215, United States
| |
Collapse
|
13
|
Jalloh S, Olejnik J, Berrigan J, Nisa A, Suder EL, Akiyama H, Lei M, Tyagi S, Bushkin Y, Mühlberger E, Gummuluru S. CD169-mediated restrictive SARS-CoV-2 infection of macrophages induces pro-inflammatory responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.29.486190. [PMID: 35378756 PMCID: PMC8978933 DOI: 10.1101/2022.03.29.486190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exacerbated and persistent innate immune response marked by pro-inflammatory cytokine expression is thought to be a major driver of chronic COVID-19 pathology. Although macrophages are not the primary target cells of SARS-CoV-2 infection in humans, viral RNA and antigens in activated monocytes and macrophages have been detected in post-mortem samples, and dysfunctional monocytes and macrophages have been hypothesized to contribute to a protracted hyper-inflammatory state in COVID-19 patients. In this study, we demonstrate that CD169, a myeloid cell specific I-type lectin, facilitated ACE2-independent SARS-CoV-2 fusion and entry in macrophages. CD169- mediated SARS-CoV-2 entry in macrophages resulted in expression of viral genomic and sub-genomic (sg) RNAs with minimal viral protein expression and no infectious viral particle release, suggesting a post-entry restriction of the SARS-CoV-2 replication cycle. Intriguingly this post-entry replication block was alleviated by exogenous ACE2 expression in macrophages. Restricted expression of viral gRNA and sgRNA in CD169 + macrophages elicited a pro-inflammatory cytokine expression (TNFα, IL-6 and IL-1β) in a RIG-I, MDA-5 and MAVS-dependent manner, which was suppressed by remdesivir pre- treatment. These findings suggest that de novo expression of SARS-CoV-2 RNA in macrophages contributes to the pro-inflammatory cytokine signature and that blocking CD169-mediated ACE2 independent infection and subsequent activation of macrophages by viral RNA might alleviate COVID-19-associated hyperinflammatory response. Author Summary Over-exuberant production of pro-inflammatory cytokine expression by macrophages has been hypothesized to contribute to severity of COVID-19 disease. Molecular mechanisms that contribute to macrophage-intrinsic immune activation during SARS- CoV-2 infection are not fully understood. Here we show that CD169, a macrophage- specific sialic-acid binding lectin, facilitates abortive SARS-CoV-2 infection of macrophages that results in innate immune sensing of viral replication intermediates and production of proinflammatory responses. We identify an ACE2-independent, CD169- mediated endosomal viral entry mechanism that results in cytoplasmic delivery of viral capsids and initiation of virus replication, but absence of infectious viral production. Restricted viral replication in CD169 + macrophages and detection of viral genomic and sub-genomic RNAs by cytoplasmic RIG-I-like receptor family members, RIG-I and MDA5, and initiation of downstream signaling via the adaptor protein MAVS, was required for innate immune activation. These studies uncover mechanisms important for initiation of innate immune sensing of SARS-CoV-2 infection in macrophages, persistent activation of which might contribute to severe COVID-19 pathophysiology.
Collapse
Affiliation(s)
- Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacob Berrigan
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Maohua Lei
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Dufloo J, Planchais C, Frémont S, Lorin V, Guivel-Benhassine F, Stefic K, Casartelli N, Echard A, Roingeard P, Mouquet H, Schwartz O, Bruel T. Broadly neutralizing anti-HIV-1 antibodies tether viral particles at the surface of infected cells. Nat Commun 2022; 13:630. [PMID: 35110562 PMCID: PMC8810770 DOI: 10.1038/s41467-022-28307-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/17/2022] [Indexed: 01/13/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) are promising molecules for therapeutic or prophylactic interventions. Beyond neutralization, bNAbs exert Fc-dependent functions including antibody-dependent cellular cytotoxicity and activation of the complement. Here, we show that a subset of bNAbs targeting the CD4 binding site and the V1/V2 or V3 loops inhibit viral release from infected cells. We combined immunofluorescence, scanning electron microscopy, transmission electron microscopy and immunogold staining to reveal that some bNAbs form large aggregates of virions at the surface of infected cells. This activity correlates with the capacity of bNAbs to bind to Env at the cell surface and to neutralize cell-free viral particles. We further show that antibody bivalency is required for viral retention, and that aggregated virions are neutralized. We have thus identified an additional antiviral activity of bNAbs, which block HIV-1 release by tethering viral particles at the surface of infected cells. Broadly neutralizing antibodies (bNAbs) neutralize HIV-1 and exert Fc-dependent activities against infected cells. Here, Dufloo et al. show that bNAbs also block HIV-1 release by trapping viral particles at the surface of infected cells.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France.,Université de Paris, École doctorale BioSPC 562, 75013, Paris, France.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, 46980, València, Spain
| | - Cyril Planchais
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015, Paris, France
| | - Valérie Lorin
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | | | - Karl Stefic
- CHRU de Tours, Hôpital Bretonneau, Service de Bactériologie-Virologie, 37000, Tours, France
| | - Nicoletta Casartelli
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015, Paris, France
| | - Philippe Roingeard
- Université de Tours, CHRU de Tours, INSERM U1259 MAVIVH and Plateforme IBiSA de Microscopie Électronique, 37000, Tours, France
| | - Hugo Mouquet
- Institut Pasteur, Université de Paris, INSERM U1222, Humoral Immunology Laboratory, 75015, Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France. .,Vaccine Research Institute, 94000, Créteil, France.
| | - Timothée Bruel
- Institut Pasteur, Université de Paris, CNRS UMR3569, Virus and Immunity Unit, 75015, Paris, France. .,Vaccine Research Institute, 94000, Créteil, France.
| |
Collapse
|
15
|
HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022; 14:v14010152. [PMID: 35062355 PMCID: PMC8779814 DOI: 10.3390/v14010152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
So far, only two retroviruses, human immunodeficiency virus (HIV) (type 1 and 2) and human T-cell lymphotropic virus type 1 (HTLV-1), have been recognized as pathogenic for humans. Both viruses mainly infect CD4+ T lymphocytes. HIV replication induces the apoptosis of CD4 lymphocytes, leading to the development of acquired immunodeficiency syndrome (AIDS). After a long clinical latency period, HTLV-1 can transform lymphocytes, with subsequent uncontrolled proliferation and the manifestation of a disease called adult T-cell leukemia (ATLL). Certain infected patients develop neurological autoimmune disorder called HTLV-1-associated myelopathy, also known as tropical spastic paraparesis (HAM/TSP). Both viruses are transmitted between individuals via blood transfusion, tissue/organ transplantation, breastfeeding, and sexual intercourse. Within the host, these viruses can spread utilizing either cell-free or cell-to-cell modes of transmission. In this review, we discuss the mechanisms and importance of each mode of transmission for the biology of HIV-1 and HTLV-1.
Collapse
|
16
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW In the gastro-intestinal tract, the complex network of multiple innate cell populations play critical roles not only as a first line of defense against invading pathogens and in driving adaptive immune responses but also in maintaining intestinal homeostasis. Here, we describe the roles of various innate immune cell populations in gut immunity and detail studies investigating the impact of acute and chronic HIV infection on these cell populations. RECENT FINDINGS Alterations in frequencies, phenotype and/or function of innate lymphoid cells, dendritic cells, macrophages, neutrophils, and innate-like T cells have been reported in people with HIV (PWH), with many of these features persisting despite anti-retroviral therapy and virological suppression. Dysregulated gut innate immunity in PWH is a feature of gut pathogenesis. A greater understanding of the mechanisms driving impairment in the multiple different gut innate immune cell populations and the downstream consequences of an altered innate immune response on host defense and gut homeostasis in PWH is needed to develop more effective HIV treatments and cure strategies.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA
| |
Collapse
|
18
|
Arista-Romero M, Pujals S, Albertazzi L. Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design. Front Bioeng Biotechnol 2021; 9:647874. [PMID: 33842446 PMCID: PMC8033170 DOI: 10.3389/fbioe.2021.647874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
In the last year the COVID19 pandemic clearly illustrated the potential threat that viruses pose to our society. The characterization of viral structures and the identification of key proteins involved in each step of the cycle of infection are crucial to develop treatments. However, the small size of viruses, invisible under conventional fluorescence microscopy, make it difficult to study the organization of protein clusters within the viral particle. The applications of super-resolution microscopy have skyrocketed in the last years, converting this group into one of the leading techniques to characterize viruses and study the viral infection in cells, breaking the diffraction limit by achieving resolutions up to 10 nm using conventional probes such as fluorescent dyes and proteins. There are several super-resolution methods available and the selection of the right one it is crucial to study in detail all the steps involved in the viral infection, quantifying and creating models of infection for relevant viruses such as HIV-1, Influenza, herpesvirus or SARS-CoV-1. Here we review the use of super-resolution microscopy (SRM) to study all steps involved in the viral infection and antiviral design. In light of the threat of new viruses, these studies could inspire future assays to unveil the viral mechanism of emerging viruses and further develop successful antivirals against them.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
19
|
Pouget M, Coussens AK, Ruggiero A, Koch A, Thomas J, Besra GS, Wilkinson RJ, Bhatt A, Pollakis G, Paxton WA. Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections. Int J Mol Sci 2021; 22:ijms22041945. [PMID: 33669411 PMCID: PMC7920488 DOI: 10.3390/ijms22041945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death among HIV-1-infected individuals and Mycobacterium tuberculosis (Mtb) co-infection is an early precipitate to AIDS. We aimed to determine whether Mtb strains differentially modulate cellular susceptibility to HIV-1 infection (cis- and trans-infection), via surface receptor interaction by their cell envelope lipids. Total lipids from pathogenic (lineage 4 Mtb H37Rv, CDC1551 and lineage 2 Mtb HN878, EU127) and non-pathogenic (Mycobacterium bovis BCG and Mycobacterium smegmatis) Mycobacterium strains were integrated into liposomes mimicking the lipid distribution and antigen accessibility of the mycobacterial cell wall. The resulting liposomes were tested for modulating in vitro HIV-1 cis- and trans-infection of TZM-bl cells using single-cycle infectious virus particles. Mtb glycolipids did not affect HIV-1 direct infection however, trans-infection of both R5 and X4 tropic HIV-1 strains were impaired in the presence of glycolipids from M. bovis, Mtb H37Rv and Mtb EU127 strains when using Raji-DC-SIGN cells or immature and mature dendritic cells (DCs) to capture virus. SL1, PDIM and TDM lipids were identified to be involved in DC-SIGN recognition and impairment of HIV-1 trans-infection. These findings indicate that variant strains of Mtb have differential effect on HIV-1 trans-infection with the potential to influence HIV-1 disease course in co-infected individuals.
Collapse
Affiliation(s)
- Marion Pouget
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- UCD Centre for Experimental Pathogen Host Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna K. Coussens
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
- Walter and Eliza Hall Institute of Medical Research, Parkville 3279, Australia
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Academic Department of Pediatrics (DPUO), IRCCS Ospedale Pediatrico Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Anastasia Koch
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (G.S.B.); (A.B.)
| | - Robert J. Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa; (A.K.C.); (A.K.); (R.J.W.)
- Department of Infectious Diseases, Imperial College, London W2 1PG, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Apoorva Bhatt
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (G.S.B.); (A.B.)
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Correspondence: (G.P.); (W.A.P.); Tel.: +44-151-795-9681 (G.P.); +44-151-795-9605 (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (M.P.); (A.R.); (J.T.)
- Correspondence: (G.P.); (W.A.P.); Tel.: +44-151-795-9681 (G.P.); +44-151-795-9605 (W.A.P.)
| |
Collapse
|
20
|
Abstract
Chronic neuroinflammation is observed in HIV+ individuals on suppressive combination antiretroviral therapy (cART) and is thought to cause HIV-associated neurocognitive disorders. We have recently reported that expression of HIV intron-containing RNA (icRNA) in productively infected monocyte-derived macrophages induces pro-inflammatory responses. Microglia, yolk sac-derived brain-resident tissue macrophages, are the primary HIV-1 infected cell type in the central nervous system (CNS). In this study, we tested the hypothesis that persistent expression of HIV icRNA in primary human microglia induces innate immune activation. We established multiple orthogonal primary human microglia-like cell cultures including peripheral blood monocyte-derived microglia (MDMG) and induced pluripotent stem cell (iPSC)-derived microglia. Unlike MDMG, human iPSC-derived microglia (hiMG), which phenotypically mimic primary CNS microglia, were robustly infected with replication competent HIV-1, and establishment of productive HIV-1 infection and de novo viral gene expression led to pro-inflammatory cytokine production. Blocking of HIV-1 icRNA expression, but not multiply spliced viral RNA, either via infection with virus expressing a Rev-mutant deficient for HIV icRNA nuclear export or infection in the presence of small molecule inhibitor of CRM1-mediated viral icRNA nuclear export pathway, attenuated induction of innate immune responses. These studies suggest that Rev-CRM1-dependent nuclear export and cytosolic sensing of HIV-1 icRNA induces pro-inflammatory responses in productively infected microglia. Novel strategies targeting HIV icRNA expression specifically are needed to suppress HIV-induced neuroinflammation.
Collapse
|
21
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
22
|
Eshaghi B, Alsharif N, An X, Akiyama H, Brown KA, Gummuluru S, Reinhard BM. Stiffness of HIV-1 Mimicking Polymer Nanoparticles Modulates Ganglioside-Mediated Cellular Uptake and Trafficking. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000649. [PMID: 32999830 PMCID: PMC7509657 DOI: 10.1002/advs.202000649] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/19/2020] [Indexed: 05/12/2023]
Abstract
The monosialodihexosylganglioside, GM3, and its binding to CD169 (Siglec-1) have been indicated as key factors in the glycoprotein-independent sequestration of the human immunodeficiency virus-1 (HIV-1) in virus-containing compartments (VCCs) in myeloid cells. Here, lipid-wrapped polymer nanoparticles (NPs) are applied as a virus-mimicking model to characterize the effect of core stiffness on NP uptake and intracellular fate triggered by GM3-CD169 binding in macrophages. GM3-functionalized lipid-wrapped NPs are assembled with poly(lactic-co-glycolic) acid (PLGA) as well as with low and high molecular weight polylactic acid (PLAlMW and PLAhMW) cores. The NPs have an average diameter of 146 ± 17 nm and comparable surface properties defined by the self-assembled lipid layer. Due to differences in the glass transition temperature, the Young's modulus (E) differs substantially under physiological conditions between PLGA (E PLGA = 60 ± 32 MPa), PLAlMW (E PLA lMW = 86 ± 25 MPa), and PLAhMW (E PLA hMW = 1.41 ± 0.67 GPa) NPs. Only the stiff GM3-presenting PLAhMW NPs but not the softer PLGA or PLAlMW NPs avoid a lysosomal pathway and localize in tetraspanin (CD9)-positive compartments that resemble VCCs. These observations suggest that GM3-CD169-induced sequestration of NPs in nonlysosomal compartments is not entirely determined by ligand-receptor interactions but also depends on core stiffness.
Collapse
Affiliation(s)
- Behnaz Eshaghi
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Nourin Alsharif
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Xingda An
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Hisashi Akiyama
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Keith A. Brown
- Department of Mechanical Engineering and The Photonics CenterBoston UniversityBostonMA02215USA
| | - Suryaram Gummuluru
- Department of MicrobiologyBoston University School of MedicineBostonMA02118USA
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics CenterBoston UniversityBostonMA02215USA
| |
Collapse
|
23
|
Koh WH, Lopez P, Ajibola O, Parvarchian R, Mohammad U, Hnatiuk R, Kindrachuk J, Murooka TT. HIV-Captured DCs Regulate T Cell Migration and Cell-Cell Contact Dynamics to Enhance Viral Spread. iScience 2020; 23:101427. [PMID: 32798973 PMCID: PMC7452485 DOI: 10.1016/j.isci.2020.101427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Trafficking of cell-associated HIV-1 from the genital mucosa to lymphoid organs represents a critical first step toward systemic infection. Mature DCs capture and transmit HIV-1 to T cells, but insights into DC-to-T cell viral spread dynamics within a 3-dimensional environment is lacking. Using live-cell imaging, we show that mature DCs rapidly compartmentalize HIV-1 within surface-accessible invaginations near the uropod. HIV-1 capture did not interfere with DC migration toward lymph node homing chemo-attractants and their ability to enter lymphatic vessels. However, HIV-captured DCs engaged in prolonged contacts with autologous CD4+ T cells, which led to high T cell infection. Interestingly, we show that surface bound, virion-associated Env induced signal transduction in motile T cells that facilitated prolonged DC:T cell interactions, partially through high-affinity LFA-1 expression. Together, we describe a mechanism by which surface bound HIV-1 particles function as signaling receptors that regulate T cell motility, cell-cell contact dynamics, and productive infection. Mature DCs compartmentalize HIV particles near the uropodia via Siglec-1 receptor HIV-captured DCs respond to lymph node-homing chemokines and access lymphatics Prolonged contacts between HIV-captured DCs and CD4 T cells facilitate virus transfer Surface-accessible HIV particles can induce T cell signaling via Env:CD4 engagement
Collapse
Affiliation(s)
- Wan Hon Koh
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Paul Lopez
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Oluwaseun Ajibola
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Roshan Parvarchian
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Umar Mohammad
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Ryan Hnatiuk
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada
| | - Jason Kindrachuk
- University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | - Thomas T Murooka
- University of Manitoba, Rady Faculty of Health Sciences, Department of Immunology, Winnipeg, MB, Canada; University of Manitoba, Rady Faculty of Health Sciences, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada.
| |
Collapse
|
24
|
Dupont M, Souriant S, Balboa L, Vu Manh TP, Pingris K, Rousset S, Cougoule C, Rombouts Y, Poincloux R, Ben Neji M, Allers C, Kaushal D, Kuroda MJ, Benet S, Martinez-Picado J, Izquierdo-Useros N, Sasiain MDC, Maridonneau-Parini I, Neyrolles O, Vérollet C, Lugo-Villarino G. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. eLife 2020; 9:52535. [PMID: 32223897 PMCID: PMC7173963 DOI: 10.7554/elife.52535] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor. Siglec-1 expression depends on Mtb-induced production of type I interferon (IFN-I). In co-infected non-human primates, Siglec-1 is highly expressed by alveolar macrophages, whose abundance correlates with pathology and activation of IFN-I/STAT1 pathway. Siglec-1 localizes mainly on microtubule-containing TNT that are long and carry HIV-1 cargo. Siglec-1 depletion decreases TNT length, diminishes HIV-1 capture and cell-to-cell transfer, and abrogates the exacerbation of HIV-1 infection induced by Mtb. Altogether, we uncover a deleterious role for Siglec-1 in TB-HIV-1 co-infection and open new avenues to understand TNT biology.
Collapse
Affiliation(s)
- Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Shanti Souriant
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Luciana Balboa
- International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France.,Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | | | - Karine Pingris
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stella Rousset
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Céline Cougoule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Yoann Rombouts
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Myriam Ben Neji
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carolina Allers
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Deepak Kaushal
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Marcelo J Kuroda
- Tulane National Primate Research Center, Department of Microbiology and Immunology, School of Medicine, Tulane University, Covington, United States
| | - Susana Benet
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Department of Retrovirology, Badalona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Maria Del Carmen Sasiain
- International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France.,Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.,International associated laboratory (LIA) CNRS 'IM-TB/HIV', Toulouse, France
| |
Collapse
|
25
|
Abstract
We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs. Dendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients.
Collapse
|
26
|
Zhang L, Xu R, Wei F, Li W, Li X, Zhang G, Xia P. Activation of sialoadhesin down-regulates the levels of innate antiviral cytokines in porcine alveolar macrophages in vitro. Virus Res 2019; 275:197792. [PMID: 31669458 DOI: 10.1016/j.virusres.2019.197792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
Abstract
Porcine sialoadhesin (pSn) is a crucial porcine reproductive and respiratory syndrome virus (PRRSV) receptor mediating the attachment and internalization of virus into its major target cells, porcine alveolar macrophages (PAMs). However, the role of pSn in innate antiviral immune response has not yet been investigated. In this study, our results showed that PRRSV down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3 and IFN-λ4 and up-regulated significantly the mRNA levels of IL-10 and pSn in infected PAMs in vitro, suggesting that PRRSV infection inhibited the transcription of innate antiviral cytokines in host cells. Our results also showed that selective activation of pSn down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3, IFN-λ4 and TNF-α and up-regulated significantly the mRNA level of IL-10 in PAMs in vitro, suggesting that pSn signaling inhibited the transcription of innate antiviral cytokines. Further results showed that pSn1, pSn2, pSn3, pSn4 and pSn5 domains of pSn were responsible for the inhibition of levels of innate antiviral cytokines. In conclusion, our results suggested that pSn suppressed innate antiviral immune response by down-regulating the levels of innate antiviral cytokines in PAMs. It was possible that PRRSV-pSn interaction may suppress innate antiviral immune response to PRRSV infection by repressing the production of innate antiviral cytokines.
Collapse
Affiliation(s)
- Liujun Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Ruiqin Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Fengling Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Wen Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Xiangtong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China.
| | - Pingan Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
27
|
LYAR Suppresses Beta Interferon Induction by Targeting Phosphorylated Interferon Regulatory Factor 3. J Virol 2019; 93:JVI.00769-19. [PMID: 31413131 DOI: 10.1128/jvi.00769-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
The innate immune response is vital for host defense and must be tightly controlled, but the mechanisms responsible for its negative regulation are not fully understood. The cell growth-regulating nucleolar protein LYAR was found to promote replication of multiple viruses in our previous study. Here, we report that LYAR acts as a negative regulator of innate immune responses. We found that LYAR expression is induced by beta interferon (IFN-β) during virus infection. Further studies showed that LYAR interacts with phosphorylated IFN regulatory factor 3 (IRF3) to impede the DNA binding capacity of IRF3, thereby suppressing the transcription of IFN-β and downstream IFN-stimulated genes (ISGs). In addition, LYAR inhibits nuclear factor-κB (NF-κB)-mediated expression of proinflammatory cytokines. In summary, our study reveals the mechanism of LYAR in modulating IFN-β-mediated innate immune responses by targeting phosphorylated IRF3, which not only helps us to better understand the mechanisms of LYAR-regulated virus replication but also uncovers a novel role of LYAR in host innate immunity.IMPORTANCE Type I interferon (IFN-I) plays a critical role in the antiviral innate immune responses that protect the host against virus infection. The negative regulators of IFN-I are important not only for fine-tuning the antiviral responses to pathogens but also for preventing excessive inflammation. Identification of negative regulators and study of their modulation in innate immune responses will lead to new strategies for the control of both viral and inflammatory diseases. Here, we report for the first time that the cell growth-regulating nucleolar protein LYAR behaves as a repressor of host innate immune responses. We demonstrate that LYAR negatively regulates IFN-β-mediated immune responses by inhibiting the DNA binding ability of IFN regulatory factor 3 (IRF3). Our study reveals a common mechanism of LYAR in promoting different virus replication events and improves our knowledge of host negative regulation of innate immune responses.
Collapse
|
28
|
Constitutive Siglec-1 expression confers susceptibility to HIV-1 infection of human dendritic cell precursors. Proc Natl Acad Sci U S A 2019; 116:21685-21693. [PMID: 31591213 DOI: 10.1073/pnas.1911007116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human dendritic cell (DC) lineage has recently been unraveled by high-dimensional mapping, revealing the existence of a discrete new population of blood circulating DC precursors (pre-DCs). Whether this new DC population possesses specific functional features as compared to the other blood DC subset upon pathogen encounter remained to be evaluated. A unique feature of pre-DCs among blood DCs is their constitutive expression of the viral adhesion receptor Siglec-1. Here, we show that pre-DCs, but not other blood DC subsets, are susceptible to infection by HIV-1 in a Siglec-1-dependent manner. Siglec-1 mediates pre-DC infection of CCR5- and CXCR4-tropic strains. Infection of pre-DCs is further enhanced in the presence of HIV-2/SIVmac Vpx, indicating that Siglec-1 does not counteract restriction factors such as SAMHD1. Instead, Siglec-1 promotes attachment and fusion of viral particles. HIV-1-infected pre-DCs produce new infectious viral particles that accumulate in intracellular compartments reminiscent of the virus-containing compartment of macrophages. Pre-DC activation by toll-like receptor (TLR) ligands induces an antiviral state that inhibits HIV-1 fusion and infection, but Siglec-1 remains functional and mediates replication-independent transfer of HIV-1 to activated primary T lymphocytes. Altogether, Siglec-1-mediated susceptibility to HIV-1 infection of pre-DCs constitutes a unique functional feature that might represent a preferential relationship of this emerging cell type with viruses.
Collapse
|
29
|
Nodder SB, Gummuluru S. Illuminating the Role of Vpr in HIV Infection of Myeloid Cells. Front Immunol 2019; 10:1606. [PMID: 31396206 PMCID: PMC6664105 DOI: 10.3389/fimmu.2019.01606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Vpr is a 14 kDa accessory protein conserved amongst extant primate lentiviruses that is required for virus replication in vivo. Although many functions have been attributed to Vpr, its primary role, and the function under selective pressure in vivo, remains elusive. The minimal importance of Vpr in infection of activated CD4+ T cells in vitro suggests that its major importance lies in overcoming restriction to virus replication in non-cycling myeloid cell populations, such as macrophages and dendritic cells. HIV-1 replication is attenuated in the absence of Vpr in myeloid cells such as monocyte-derived dendritic cells (MDDCs) and macrophages, and is correlated with the ability of Vpr to overcome a post-integration transcriptional defect in these cells. Intriguingly, recent identification of the human hub silencing (HUSH) complex as a target for DCAFCRL4-mediated degradation by numerous ancestral SIV Vpr alleles, and the Vpr paralog Vpx, signifies the potential function of HIV-1 Vpr to alter yet-to-be identified chromatin remodeling complexes and prevent host-mediated transcriptional repression of both invading viral genomes and pro-inflammatory responses. Myeloid cells constitute an important bridge between innate and adaptive immune responses to invading pathogens. Here, we seek to illustrate the numerous means by which Vpr manipulates the myeloid cellular environment and facilitates virus replication, myeloid cell-dependent HIV transmission, and systemic virus dissemination.
Collapse
Affiliation(s)
- Sarah Beth Nodder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
30
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
31
|
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019; 34:117-129. [PMID: 30849709 PMCID: PMC6476673 DOI: 10.1016/j.coviro.2019.01.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Attachment of viruses to cell-surface receptors is the initial step in infection. Many mammalian viruses have evolved to recognize receptors that are glycans on cell-surface glycoproteins or glycolipids. Although glycans are a ubiquitous component of mammalian cells, the types of terminal structures expressed vary among different cell-types and tissues, and even between comparable cells and tissues from different species, frequently leading to specific tissue and species tropisms as a direct consequence of glycan receptor recognition. Covering the majority of known virus families, this review provides an overview of mammalian viruses that use glycans as receptors, and their roles in determining in host recognition and tropism.
Collapse
Affiliation(s)
- Andrew J Thompson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - James C Paulson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Trifonova RT, Bollman B, Barteneva NS, Lieberman J. Myeloid Cells in Intact Human Cervical Explants Capture HIV and Can Transmit It to CD4 T Cells. Front Immunol 2018; 9:2719. [PMID: 30532754 PMCID: PMC6265349 DOI: 10.3389/fimmu.2018.02719] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
The importance of myeloid cells in HIV transmission in the female genital tract is uncertain. Because it is difficult to study the early events in HIV transmission in humans, most of our knowledge is based on animal models of SIV infection in Rhesus macaques and more recently HIV infection in humanized mice. However, these models may not accurately recapitulate transmission in the human genital tract. CD14+ myeloid cells are the most abundant hematopoietic cells in the human cervical mucosa, comprising 40-50% of CD45+ mononuclear cells. Most CD14+ cells are CD14+CD11c- macrophages and about a third are CD14+CD11c+ tissue dendritic cells, which express the HIV-binding receptors, DC-SIGN and CX3CR1. To examine the role of mucosal myeloid cells in HIV transmission, we infected intact healthy human cervical explants with CCR5-tropic HIV-1 ex vivo and then sorted populations of cervical immune cells 20 h later to determine whether they took up virus and could transmit it to activated CD4 T cells. Viral RNA was detected in CD14+ myeloid cells in all but one of 10 donor tissue samples, even when HIV RNA was not detected in CD4+ T cells. HIV RNA was detected predominantly in CD14+CD11c+ dendritic cells rather than in CD14+CD11c- macrophages. The reverse transcriptase inhibitor, nevirapine, reduced HIV RNA in CD4+ T cells, but not in CD14+ cells. Moreover, integrated HIV DNA were not detected above background in myeloid cells but was detected in T cells. These data suggest that although HIV replicates in T cells, myeloid cells in the female genital mucosa capture viral particles, but do not replicate the virus at early timepoints. However, sorted CD14+ myeloid cells isolated 20 h post-infection from 5 HIV-infected cervical explants tested all transmitted HIV to activated CD4+ T cells, while only 1 sample of sorted CD4+ T cells did. Thus, myeloid cells in human cervical tissue capture HIV and are an important early cellular storage site of infectious virus.
Collapse
Affiliation(s)
- Radiana T Trifonova
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Brooke Bollman
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
33
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Xu F, Bandara A, Akiyama H, Eshaghi B, Stelter D, Keyes T, Straub JE, Gummuluru S, Reinhard BM. Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways. Proc Natl Acad Sci U S A 2018; 115:E9041-E9050. [PMID: 30190430 PMCID: PMC6166840 DOI: 10.1073/pnas.1804292115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gold nanoparticles (NPs) wrapped in a membrane can be utilized as artificial virus nanoparticles (AVNs) that combine the large nonblinking or bleaching optical cross-section of the NP core with the biological surface properties and functionalities provided by a self-assembled lipid membrane. We used these hybrid nanomaterials to test the roles of monosialodihexosylganglioside (GM3) and phosphatidylserine (PS) for a lipid-mediated targeting of virus-containing compartments (VCCs) in macrophages. GM3-presenting AVNs bind to CD169 (Siglec-1)-expressing macrophages, but inclusion of PS in the GM3-containing AVN membrane decreases binding. Molecular dynamics simulations of the AVN membrane and experimental binding studies of CD169 to GM3-presenting AVNs reveal Na+-mediated interactions between GM3 and PS as a potential cause of the antagonistic action on binding by the two negatively charged lipids. GM3-functionalized AVNs with no or low PS content localize to tetherin+, CD9+ VCC in a membrane composition-depending fashion, but increasing amounts of PS in the AVN membrane redirect the NP to lysosomal compartments. Interestingly, this compartmentalization is highly GM3 specific. Even AVNs presenting the related monosialotetrahexosylganglioside (GM1) fail to achieve an accumulation in VCC. AVN localization to VCC was observed for AVN with gold NP core but not for liposomes, suggesting that NP sequestration into VCC has additional requirements beyond ligand (GM3)-receptor (CD169) recognition that are related to the physical properties of the NP core. Our results confirm AVN as a scalable platform for elucidating the mechanisms of lipid-mediated viral entry pathways and for selective intracellular targeting.
Collapse
Affiliation(s)
- Fangda Xu
- Department of Chemistry, Boston University, Boston, MA 02215
- The Photonics Center, Boston University, Boston, MA 02215
| | - Asanga Bandara
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Hisashi Akiyama
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02215
| | - Behnaz Eshaghi
- Department of Chemistry, Boston University, Boston, MA 02215
- The Photonics Center, Boston University, Boston, MA 02215
| | - David Stelter
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Tom Keyes
- Department of Chemistry, Boston University, Boston, MA 02215
| | - John E Straub
- Department of Chemistry, Boston University, Boston, MA 02215
| | - Suryaram Gummuluru
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02215
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215;
- The Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
35
|
Akiyama H, Miller CM, Ettinger CR, Belkina AC, Snyder-Cappione JE, Gummuluru S. HIV-1 intron-containing RNA expression induces innate immune activation and T cell dysfunction. Nat Commun 2018; 9:3450. [PMID: 30150664 PMCID: PMC6110775 DOI: 10.1038/s41467-018-05899-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/24/2018] [Indexed: 01/07/2023] Open
Abstract
Low levels of type I interferon (IFN-I) are thought to be a driving force for immune activation and T-cell exhaustion in HIV-1 infected individuals on combination antiretroviral therapy (cART), though the causative mechanisms for persistent IFN-I signaling have remained unclear. Here, we show Rev–CRM1-dependent nuclear export and peripheral membrane association of intron-containing HIV-1 RNA, independent of primary viral sequence or viral protein expression, is subject to sensing and signaling via MAVS, resulting in IFN-I-dependent pro-inflammatory responses in macrophages. Additionally, HIV-1 intron-containing-RNA-induced innate immune activation of macrophages leads to upregulation of inhibitory receptor expression and functional immune exhaustion of co-cultured T cells. Our findings suggest that persistent expression of HIV-1 intron-containing RNA in macrophages contributes to chronic immune activation and T-cell dysfunction and that use of HIV RNA expression inhibitors as adjunct therapy might abrogate aberrant inflammation and restore immune function in HIV-infected individuals on cART. Type I Interferon is thought to be a driving force for immune activation and T cell exhaustion during HIV infection. Here the authors show that intron-containing HIV RNA induces innate immune activation resulting in associated T cell dysfunction.
Collapse
Affiliation(s)
- Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Caitlin M Miller
- Department of Pathology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Chelsea R Ettinger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Anna C Belkina
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.,Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
36
|
Dufloo J, Bruel T, Schwartz O. HIV-1 cell-to-cell transmission and broadly neutralizing antibodies. Retrovirology 2018; 15:51. [PMID: 30055632 PMCID: PMC6064125 DOI: 10.1186/s12977-018-0434-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
HIV-1 spreads through contacts between infected and target cells. Polarized viral budding at the contact site forms the virological synapse. Additional cellular processes, such as nanotubes, filopodia, virus accumulation in endocytic or phagocytic compartments promote efficient viral propagation. Cell-to-cell transmission allows immune evasion and likely contributes to HIV-1 spread in vivo. Anti-HIV-1 broadly neutralizing antibodies (bNAbs) defeat the majority of circulating viral strains by binding to the viral envelope glycoprotein (Env). Several bNAbs have entered clinical evaluation during the last years. It is thus important to understand their mechanism of action and to determine how they interact with infected cells. In experimental models, HIV-1 cell-to-cell transmission is sensitive to neutralization, but the effect of antibodies is often less marked than during cell-free infection. This may be due to differences in the conformation or accessibility of Env at the surface of virions and cells. In this review, we summarize the current knowledge on HIV-1 cell-to-cell transmission and discuss the role of bNAbs during this process.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France.,CNRS-UMR3569, Paris, France.,Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France. .,CNRS-UMR3569, Paris, France. .,Vaccine Research Institute, Créteil, France.
| |
Collapse
|
37
|
Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun 2018; 9:2436. [PMID: 29934525 PMCID: PMC6015004 DOI: 10.1038/s41467-018-04846-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells in secondary lymphoid organs, the major sites for HIV-1 infection of CD4+ T cells. Although FRCs regulate T cell survival, proliferation, and migration, whether they play any role in HIV-1 spread has not been studied. Here, we show that FRCs enhance HIV-1 spread via trans-infection in which FRCs capture HIV-1 and facilitate infection of T cells that come into contact with FRCs. FRCs mediate trans-infection in both two- and three-dimensional culture systems and in a manner dependent on the virus producer cells. This producer cell dependence, which was also observed for virus spread in secondary lymphoid tissues ex vivo, is accounted for by CD44 incorporated into virus particles and hyaluronan bound to such CD44 molecules. This virus-associated hyaluronan interacts with CD44 expressed on FRCs, thereby promoting virus capture by FRCs. Overall, our results reveal a novel role for FRCs in promoting HIV-1 spread. Fibroblastic reticular cells (FRCs) are important regulators of T cell survival, proliferation, and migration in secondary lymphoid organs, but their role in HIV infection isn’t studied. Here, Murakami et al. show that FRCs enhance HIV spread via CD44- and hyaluronan-mediated trans-infection.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiwon Kim
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Li
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Glenn Edward Green
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
38
|
DDX41 Recognizes RNA/DNA Retroviral Reverse Transcripts and Is Critical for In Vivo Control of Murine Leukemia Virus Infection. mBio 2018; 9:mBio.00923-18. [PMID: 29871919 PMCID: PMC5989071 DOI: 10.1128/mbio.00923-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host recognition of viral nucleic acids generated during infection leads to the activation of innate immune responses essential for early control of virus. Retrovirus reverse transcription creates numerous potential ligands for cytosolic host sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA), RNA/DNA hybrids, and double-stranded DNA (dsDNA). We and others recently showed that the sensors cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41 (DDX41), and members of the Aim2-like receptor (ALR) family participate in the recognition of retroviral reverse transcripts. However, why multiple sensors might be required and their relative importance in in vivo control of retroviral infection are not known. Here, we show that DDX41 primarily senses the DNA/RNA hybrid generated at the first step of reverse transcription, while cGAS recognizes dsDNA generated at the next step. We also show that both DDX41 and cGAS are needed for the antiretroviral innate immune response to murine leukemia virus (MLV) and HIV in primary mouse macrophages and dendritic cells (DCs). Using mice with cell type-specific knockout of the Ddx41 gene, we show that DDX41 sensing in DCs but not macrophages was critical for controlling in vivo MLV infection. This suggests that DCs are essential in vivo targets for infection, as well as for initiating the antiviral response. Our work demonstrates that the innate immune response to retrovirus infection depends on multiple host nucleic acid sensors that recognize different reverse transcription intermediates. Viruses are detected by many different host sensors of nucleic acid, which in turn trigger innate immune responses, such as type I interferon (IFN) production, required to control infection. We show here that at least two sensors are needed to initiate a highly effective innate immune response to retroviruses—DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step of retrovirus replication, and cGAS, which recognizes double-stranded DNA generated at the second step. Importantly, we demonstrate using mice lacking DDX41 or cGAS that both sensors are needed for the full antiviral response needed to control in vivo MLV infection. These findings underscore the need for multiple host factors to counteract retroviral infection.
Collapse
|
39
|
Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev 2018; 40:48-58. [PMID: 29625900 DOI: 10.1016/j.cytogfr.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
The induction of hundreds of Interferon Stimulated Genes (ISGs) subsequent to virus infection generates an antiviral state that functions to restrict virus growth at multiple steps of their replication cycles. In the context of Human Immunodeficiency Virus-1 (HIV-1), ISGs also possess antiviral functions, but some ISGs show proapoptotic or proviral activity. One of the most studied ISGs, the RNA activated Protein Kinase (PKR), shuts down the viral protein synthesis upon activation. HIV-1 has evolved to evade its inhibition by PKR through viral and cellular mechanisms. One of the cellular mechanisms is the induction of another ISG, the Adenosine Deaminase acting on RNA 1 (ADAR1). ADAR1 promotes viral replication by acting as an RNA sensing inhibitor, by editing viral RNA and by inhibiting PKR. This review challenges the orthodox dogma of ISGs as antiviral proteins, by demonstrating that two ISGs have opposing and clashing effects on viral replication.
Collapse
Affiliation(s)
- Roman Radetskyy
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada
| | - Aïcha Daher
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada
| | - Anne Gatignol
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada; Department of Medicine, Division of Infectious Diseases, Canada; Department of Microbiology-Immunology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
40
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
41
|
Liu YC, Yu MM, Chai YF, Shou ST. Sialic Acids in the Immune Response during Sepsis. Front Immunol 2017; 8:1601. [PMID: 29209331 PMCID: PMC5702289 DOI: 10.3389/fimmu.2017.01601] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a group of cell surface transmembrane receptors expressed on immune cells, and regulate immune balance in inflammatory diseases. Sepsis is a life-threatened inflammatory syndrome induced by infection, and the pathogenesis of sepsis includes immune dysregulation, inflammation, and coagulation disorder. Here, we reviewed the various roles acted by Siglecs family in the pathogenesis of sepsis. Siglec-1, Siglec-5, and Siglec-14 play bidirectional roles through modulation of inflammation and immunity. Siglec-2 regulates the immune balance during infection by modulating B cell and T cell response. Siglec-9 helps endocytosis of toll-like receptor 4, regulates macrophages polarization, and inhibits the function of neutrophils during infection. Siglec-10 inhibits danger-associated molecular patterns induced inflammation, helps the initiation of antigen response by T cells, and decreases B-1a cell population to weaken inflammation. Regulating the Siglecs function in the different stages of sepsis holds great potential in the therapy of sepsis.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
42
|
Martinez-Picado J, McLaren PJ, Telenti A, Izquierdo-Useros N. Retroviruses As Myeloid Cell Riders: What Natural Human Siglec-1 "Knockouts" Tell Us About Pathogenesis. Front Immunol 2017; 8:1593. [PMID: 29209326 PMCID: PMC5702442 DOI: 10.3389/fimmu.2017.01593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
Myeloid cells initiate immune responses and are crucial to control infections. In the case of retroviruses, however, myeloid cells also promote pathogenesis by enabling viral dissemination; a process extensively studied in vitro using human immunodeficiency virus type 1 (HIV-1). This viral hijacking mechanism does not rely on productive myeloid cell infection but requires HIV-1 capture via Siglec-1/CD169, a receptor expressed on myeloid cells that facilitates the infection of bystander target cells. Murine retroviruses are also recognized by Siglec-1, and this interaction is required for robust retroviral infection in vivo. Yet, the relative contribution of Siglec-1-mediated viral dissemination to HIV-1 disease progression remains unclear. The identification of human null individuals lacking working copies of a particular gene enables studying how this loss affects disease progression. Moreover, it can reveal novel antiviral targets whose blockade might be therapeutically effective and safe, since finding null individuals in natura uncovers dispensable functions. We previously described a loss-of-function variant in SIGLEC-1. Analysis of a large cohort of HIV-1-infected individuals identified homozygous and heterozygous subjects, whose cells were functionally null or partially defective for Siglec-1 activity in HIV-1 capture and transmission ex vivo. Nonetheless, analysis of the effect of Siglec-1 truncation on progression to AIDS was not conclusive due to the limited cohort size, the lack of complete clinical records, and the restriction to study only off-therapy periods. Here, we review how the study of loss-of-function variants might serve to illuminate the role of myeloid cells in viral pathogenesis in vivo and the challenges ahead.
Collapse
Affiliation(s)
- Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Paul J McLaren
- National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Amalio Telenti
- Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, United States
| | | |
Collapse
|
43
|
Interferon-Inducible CD169/Siglec1 Attenuates Anti-HIV-1 Effects of Alpha Interferon. J Virol 2017; 91:JVI.00972-17. [PMID: 28794041 DOI: 10.1128/jvi.00972-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A hallmark of human immunodeficiency virus type 1 (HIV-1) infection in vivo is chronic immune activation concomitant with type I interferon (IFN) production. Although type I IFN induces an antiviral state in many cell types, HIV-1 can replicate in vivo via mechanisms that have remained unclear. We have recently identified a type I IFN-inducible protein, CD169, as the HIV-1 attachment factor on dendritic cells (DCs) that can mediate robust infection of CD4+ T cells in trans Since CD169 expression on macrophages is also induced by type I IFN, we hypothesized that type I IFN-inducible CD169 could facilitate productive HIV-1 infection in myeloid cells in cis and CD4+ T cells in trans and thus offset antiviral effects of type I IFN. In support of this hypothesis, infection of HIV-1 or murine leukemia virus Env (MLV-Env)-pseudotyped HIV-1 particles was enhanced in IFN-α-treated THP-1 monocytoid cells, and this enhancement was primarily dependent on CD169-mediated enhancement at the virus entry step, a phenomenon phenocopied in HIV-1 infections of IFN-α-treated primary monocyte-derived macrophages (MDMs). Furthermore, expression of CD169, a marker of type I IFN-induced immune activation in vivo, was enhanced in lymph nodes from pigtailed macaques infected with simian immunodeficiency virus (SIV) carrying HIV-1 reverse transcriptase (RT-SHIV), compared to uninfected macaques, and interestingly, there was extensive colocalization of p27gag and CD169, suggesting productive infection of CD169+ myeloid cells in vivo While cell-free HIV-1 infection of IFN-α-treated CD4+ T cells was robustly decreased, initiation of infection in trans via coculture with CD169+ IFN-α-treated DCs restored infection, suggesting that HIV-1 exploits CD169 in cis and in trans to attenuate a type I IFN-induced antiviral state.IMPORTANCE HIV-1 infection in humans causes immune activation characterized by elevated levels of proinflammatory cytokines, including type I interferons (IFN). Although type I IFN induces an antiviral state in many cell types in vitro, HIV-1 can replicate in vivo via mechanisms that have remained unclear. In this study, we tested the hypothesis that CD169, a type I IFN-inducible HIV-1 attachment factor, offsets antiviral effects of type I IFN. Infection of HIV-1 was rescued in IFN-α-treated myeloid cells via upregulation of CD169 and a subsequent increase in CD169-dependent virus entry. Furthermore, extensive colocalization of viral Gag and CD169 was observed in lymph nodes of infected pigtailed macaques, suggesting productive infection of CD169+ cells in vivo Treatment of dendritic cell (DC)-T cell cocultures with IFN-α upregulated CD169 expression on DCs and rescued HIV-1 infection of CD4+ T cells in trans, suggesting that HIV-1 exploits CD169 to attenuate type I IFN-induced restrictions.
Collapse
|
44
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
45
|
Hertoghs N, Pul LV, Geijtenbeek TBH. Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors. Future Virol 2017. [DOI: 10.2217/fvl-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sexual transmission is the major route of HIV-1 infection worldwide. The interaction of HIV-1 with mucosal dendritic cells (DCs) might determine HIV-1 susceptibility as well as initial antiviral immunity controlling virus in the chronic phase. Different DC subsets reside in mucosal tissues and express specific C-type lectin receptors (CLRs) that interact with HIV-1 with different outcomes. HIV-1 has been shown to subvert CLRs for viral transmission and immune evasion, whereas CLRs can also protect against HIV-1 infection. Here, we will discuss the role of CLRs in HIV-1 transmission and adaptive immunity, and how the CLRs dictate the function of DCs in infection. Ultimately, understanding the interplay between CLRs and HIV-1 will lead to targeted approaches in the search for preventative measures.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Kozlowski E, Wasserman GA, Morgan M, O’Carroll D, Ramirez NGP, Gummuluru S, Rah JY, Gower AC, Ieong M, Quinton LJ, Mizgerd JP, Jones MR. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS One 2017; 12:e0179797. [PMID: 28665939 PMCID: PMC5493306 DOI: 10.1371/journal.pone.0179797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023] Open
Abstract
Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.
Collapse
Affiliation(s)
- Elyse Kozlowski
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcos Morgan
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
| | - Dónal O’Carroll
- European Molecular Biology Laboratory (EMBL), Mouse Biology Unit, Monterotondo, Italy
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nora-Guadalupe P. Ramirez
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jasmine Y. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of Dendritic Cells. J Virol 2017; 91:JVI.00051-17. [PMID: 28424288 DOI: 10.1128/jvi.00051-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/16/2017] [Indexed: 01/23/2023] Open
Abstract
Viral protein R (Vpr) is an HIV-1 accessory protein whose function remains poorly understood. In this report, we sought to determine the requirement of Vpr for facilitating HIV-1 infection of monocyte-derived dendritic cells (MDDCs), one of the first cell types to encounter virus in the peripheral mucosal tissues. In this report, we characterize a significant restriction of Vpr-deficient virus replication and spread in MDDCs alone and in cell-to-cell spread in MDDC-CD4+ T cell cocultures. This restriction of HIV-1 replication in MDDCs was observed in a single round of virus replication and was rescued by the expression of Vpr in trans in the incoming virion. Interestingly, infections of MDDCs with viruses that encode Vpr mutants unable to interact with either the DCAF1/DDB1 E3 ubiquitin ligase complex or a host factor hypothesized to be targeted for degradation by Vpr also displayed a significant replication defect. While the extent of proviral integration in HIV-1-infected MDDCs was unaffected by the absence of Vpr, the transcriptional activity of the viral long terminal repeat (LTR) from Vpr-deficient proviruses was significantly reduced. Together, these results characterize a novel postintegration restriction of HIV-1 replication in MDDCs and show that the interaction of Vpr with the DCAF1/DDB1 E3 ubiquitin ligase complex and the yet-to-be-identified host factor might alleviate this restriction by inducing transcription from the viral LTR. Taken together, these findings identify a robust in vitro cell culture system that is amenable to addressing mechanisms underlying Vpr-mediated enhancement of HIV-1 replication.IMPORTANCE Despite decades of work, the function of the HIV-1 protein Vpr remains poorly understood, primarily due to the lack of an in vitro cell culture system that demonstrates a deficit in replication upon infection with viruses in the absence of Vpr. In this report, we describe a novel cell infection system that utilizes primary human dendritic cells, which display a robust decrease in viral replication upon infection with Vpr-deficient HIV-1. We show that this replication difference occurs in a single round of infection and is due to decreased transcriptional output from the integrated viral genome. Viral transcription could be rescued by virion-associated Vpr. Using mutational analysis, we show that domains of Vpr involved in binding to the DCAF1/DDB1/E3 ubiquitin ligase complex and prevention of cell cycle progression into mitosis are required for LTR-mediated viral expression, suggesting that the evolutionarily conserved G2 cell cycle arrest function of Vpr is essential for HIV-1 replication.
Collapse
|
48
|
De Schryver M, Leemans A, Pintelon I, Cappoen D, Maes L, Caljon G, Cos P, Delputte PL. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines. Immunobiology 2017; 222:797-806. [DOI: 10.1016/j.imbio.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 01/05/2023]
|
49
|
Mikulak J, Di Vito C, Zaghi E, Mavilio D. Host Immune Responses in HIV-1 Infection: The Emerging Pathogenic Role of Siglecs and Their Clinical Correlates. Front Immunol 2017; 8:314. [PMID: 28386256 PMCID: PMC5362603 DOI: 10.3389/fimmu.2017.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
A better understanding of the mechanisms employed by HIV-1 to escape immune responses still represents one of the major tasks required for the development of novel therapeutic approaches targeting a disease still lacking a definitive cure. Host innate immune responses against HIV-1 are key in the early phases of the infection as they could prevent the development and the establishment of two hallmarks of the infection: chronic inflammation and viral reservoirs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) belong to a family of transmembrane proteins able to dampen host immune responses and set appropriate immune activation thresholds upon ligation with their natural ligands, the sialylated carbohydrates. This immune-modulatory function is also targeted by many pathogens that have evolved to express sialic acids on their surface in order to escape host immune responses. HIV-1 envelope glycoprotein 120 (gp120) is extensively covered by carbohydrates playing active roles in life cycle of the virus. Indeed, besides forming a protecting shield from antibody recognition, this coat of N-linked glycans interferes with the folding of viral glycoproteins and enhances virus infectivity. In particular, the sialic acid residues present on gp120 can bind Siglec-7 on natural killer and monocytes/macrophages and Siglec-1 on monocytes/macrophages and dendritic cells. The interactions between these two members of the Siglec family and the sialylated glycans present on HIV-1 envelope either induce or increase HIV-1 entry in conventional and unconventional target cells, thus contributing to viral dissemination and disease progression. In this review, we address the impact of Siglecs in the pathogenesis of HIV-1 infection and discuss how they could be employed as clinic and therapeutic targets.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
50
|
Cell-Free versus Cell-to-Cell Infection by Human Immunodeficiency Virus Type 1 and Human T-Lymphotropic Virus Type 1: Exploring the Link among Viral Source, Viral Trafficking, and Viral Replication. J Virol 2016; 90:7607-17. [PMID: 27334587 DOI: 10.1128/jvi.00407-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.
Collapse
|