1
|
Wang Y, Zhou X, Xu R, Gao X, Cui S, Zhang S, Hu K, Wu C. Structural damage and organelle destruction: Mechanisms of pseudolaric acid B against S. parasitica. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109894. [PMID: 39260528 DOI: 10.1016/j.fsi.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the potential of Chinese herbs in treating aquatic diseases. More particularly, the antibacterial properties and mechanisms of Chinese herbs and their monomers against Saprolegnia parasitica were investigated. In vitro antibacterial testing revealed that Cortex pseudolaricis exhibited significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.98 mg/mL. The primary monomer responsible for this antibacterial effect was identified as pseudolaric acid B (PAB), with an MIC of 0.03 mg/mL. SEM and TEM analyses demonstrated that treatment with PAB resulted in structural damage to the cell wall and cell membrane of hyphae, leading to lysis of the cell wall and membrane of spores, organelle destruction, and vacuole formation within the cells. Analysis of the transcriptome and metabolome revealed that PAB disrupts amino acid, lipid, and nucleic acid metabolism in S. parasitica. This disruption impacts the biosynthesis and metabolism of various amino acids, including arginine, proline, glycine, serine, cysteine, methionine, glutamate, lysine, histidine, phenylalanine, tyrosine, and tryptophan. PAB also results in increased energy consumption and hindered energy generation in S. parasitica, as well as interference with the synthesis of membrane components such as DAG and phytosphingosine. Furthermore, PAB disrupts RNA, DNA, and ATP production in S. parasitica. Consequently, protein synthesis, energy supply, immune function and barrier structure in S. parasitica are weakened, and potentially leading to death. This study identifies potential antibacterial agents for environmentally friendly solutions for controlling fish saprolegniasis.
Collapse
Affiliation(s)
- Yali Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xinghong Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Ruze Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoning Gao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Subin Cui
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Siyu Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Kun Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| | - Congdi Wu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
2
|
Sun T, Jin Y, Rao Z, Liyan W, Tang R, Zaryab KM, Li M, Li Z, Wang Y, Xu J, Han R, Cao L. Knockdown of Thitarodes host genes influences dimorphic transition of Ophiocordyceps sinensis in the host hemolymph. Front Cell Infect Microbiol 2024; 14:1451628. [PMID: 39397862 PMCID: PMC11466941 DOI: 10.3389/fcimb.2024.1451628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024] Open
Abstract
The Chinese cordyceps, a unique parasitic complex of Thitarodes/Hepialus ghost moths and Ophiocordyceps sinensis fungus in the Tibetan Plateau, is a highly valuable biological resource for medicine and health foods in Asian countries. Efficient system for artificial cultivation of Chinese cordyceps relies on understanding the gene functions involved in the induction of growing blastospores into hyphae in the larval hemolymph of insect host, during O. sinensis infection. Transcriptome analysis and ribonucleic acid interference (RNA interference) method were employed to identify the key differentially expressed genes and to demonstrate their functions in Thitarodes xiaojinensis. Key larval genes critical for O. sinensis blastospore development or filamentation were identified. Nine of the 20 top upregulated genes encoded cuticles proteins, indicating that these proteins highly activated when the larval hemolymph was full of blastospores. Small interfering RNA (siRNA) knockdown of five larval genes such as Flightin, larval cuticle protein LCP-30, 26-hydroxylase (CYP18A1), cuticle protein 18.6, isoform B, and probable chitinase 3 significantly stimulated the dimorphic transition from blastospores to prehyphae in O. sinensis in the larval hemolymph after 120 h after injection. The expressions of these genes determined by quantitative real-time PCR were suppressed in various levels from 38.64% to 91.54%, compared to the controls. These results demonstrated that injection of the siRNAs of key upregulated genes into the larval hemolymph containing high load of blastospores caused the gene silence in T. xiaojinensis larvae and induced the fungal transition from blastospores to prehyphae, providing novel knowledge on the regulation of O. sinensis fungal dimorphism by Thitarodes host and cues for further study of Thitarodes biology and commercial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Tanqi Sun
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yongling Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongchen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wang Liyan
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Khalid Muhammad Zaryab
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mingyan Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Zhenhao Li
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Ying Wang
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Jing Xu
- Research Centre, Zhejiang Shouxiangu Pharmaceutical Co. Ltd, Zhejiang, Jinhua, China
| | - Richou Han
- Research Centre, Zhejiang Yuewangshengcao Biotechnological Company Limited, Zhejiang, Jinhua, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Santiago KAA, Wong WC, Goh YK, Tey SH, Ting ASY. Pathogenicity of monokaryotic and dikaryotic mycelia of Ganoderma boninense revealed via LC-MS-based metabolomics. Sci Rep 2024; 14:5330. [PMID: 38438519 PMCID: PMC10912678 DOI: 10.1038/s41598-024-56129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
This study compared the pathogenicity of monokaryotic (monokaryon) and dikaryotic (dikaryon) mycelia of the oil palm pathogen Ganoderma boninense via metabolomics approach. Ethyl acetate crude extracts of monokaryon and dikaryon were analysed by liquid chromatography quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) coupled with multivariate data analysis using MetaboAnalyst. The mummichog algorithm was also used to identify the functional activities of monokaryon and dikaryon without a priori identification of all their secondary metabolites. Results revealed that monokaryon produced lesser fungal metabolites than dikaryon, suggesting that monokaryon had a lower possibility of inducing plant infection. These findings were further supported by the identified functional activities. Monokaryon exhibits tyrosine, phenylalanine, and tryptophan metabolism, which are important for fungal growth and development and to produce toxin precursors. In contrast, dikaryon exhibits the metabolism of cysteine and methionine, arginine and proline, and phenylalanine, which are important for fungal growth, development, virulence, and pathogenicity. As such, monokaryon is rendered non-pathogenic as it produces growth metabolites and toxin precursors, whereas dikaryon is pathogenic as it produces metabolites that are involved in fungal growth and pathogenicity. The LC-MS-based metabolomics approach contributes significantly to our understanding of the pathogenesis of Ganoderma boninense, which is essential for disease management in oil palm plantations.
Collapse
Affiliation(s)
- Krystle Angelique A Santiago
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wei Chee Wong
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - You Keng Goh
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Seng Heng Tey
- Advanced Agriecological Research Sdn. Bhd., 11 Jalan Teknologi 3/6, Taman Sains Selangor 1, Kota Damansara, 47810, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Guruceaga X, Perez-Cuesta U, Martin-Vicente A, Pelegri-Martinez E, Thorn HI, Cendon-Sanchez S, Xie J, Nywening AV, Ramirez-Garcia A, Fortwendel JR, Rementeria A. The Aspergillus fumigatus maiA gene contributes to cell wall homeostasis and fungal virulence. Front Cell Infect Microbiol 2024; 14:1327299. [PMID: 38343890 PMCID: PMC10853476 DOI: 10.3389/fcimb.2024.1327299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
In this study, two distinct in vitro infection models of Aspergillus fumigatus, using murine macrophages (RAW264.7) and human lung epithelial cells (A549), were employed to identify the genes important for fungal adaptation during infection. Transcriptomic analyses of co-incubated A. fumigatus uncovered 140 fungal genes up-regulated in common between both models that, when compared with a previously published in vivo transcriptomic study, allowed the identification of 13 genes consistently up-regulated in all three infection conditions. Among them, the maiA gene, responsible for a critical step in the L-phenylalanine degradation pathway, was identified. Disruption of maiA resulted in a mutant strain unable to complete the Phe degradation pathway, leading to an excessive production of pyomelanin when this amino acid served as the sole carbon source. Moreover, the disruption mutant exhibited noticeable cell wall abnormalities, with reduced levels of β-glucans within the cell wall but did not show lack of chitin or mannans. The maiA-1 mutant strain induced reduced inflammation in primary macrophages and displayed significantly lower virulence in a neutropenic mouse model of infection. This is the first study linking the A. fumigatus maiA gene to fungal cell wall homeostasis and virulence.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Uxue Perez-Cuesta
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Eduardo Pelegri-Martinez
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Harrison I. Thorn
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Graduate Program in Pharmaceutical Science, College of Graduate Health Sciences, University of Tennessee Healths Science Center, Memphis, TN, United States
| | - Saioa Cendon-Sanchez
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jinhong Xie
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Graduate Program in Pharmaceutical Science, College of Graduate Health Sciences, University of Tennessee Healths Science Center, Memphis, TN, United States
| | - Ashley V. Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Aitor Rementeria
- Department of Immunology, Microbiology, and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
5
|
Yuan S, Zhao Q, Yu K, Gao Y, Ma Z, Li H, Yu Y. Transcriptomic Screening of Alternaria oxytropis Isolated from Locoweed Plants for Genes Involved in Mycotoxin Swaisonine Production. J Fungi (Basel) 2024; 10:88. [PMID: 38276034 PMCID: PMC10820250 DOI: 10.3390/jof10010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Locoweed is a collective name for a variety of plants, such as Oxytropis and Astragalus L. When these plants are infected by some fungi or endophytes, they will produce an alkaloid (swainsonine) that is harmful to livestock. Chronic toxicity characterized by neurological disorders occurs in livestock overfed on locoweed, and swainsonine (SW) is considered a major toxic component. The mechanism of the SW synthesis of endophytic fungi from locoweed remains unknown. In order to further discover the possible synthetic pathway of SW, in this study, a mycotoxin (SW) producer, Alternaria oxytropis isolate, UA003, isolated from Locoweed plants, and its mutant were subjected to transcriptomic analyses to ascertain the genes involved in the synthesis of this toxin. Mutant strain A. oxytropis E02 was obtained by ethyl methanesulfonate (EMS) mutagenesis treatment, and the strains were sequenced with different culture times for transcriptomic analysis and screening of differentially expressed genes. The results show a highly significant (p < 0.01) increase in SW yield in the A. oxytropis E02 strain obtained by EMS mutagenesis treatment compared to A. oxytropis UA003. A total of 637 differentially expressed genes were screened by transcriptome sequencing analysis, including 11 genes potentially associated with SW biosynthesis. These genes were screened using GO and KEGG data annotation and analysis. Among the differential genes, evm.TU.Contig4.409, evm.TU.Contig19.10, and evm.TU.Contig50.48 were associated with L-lysine biosynthesis, the L-pipecolic acid pathway, and the α-aminoadipic acid synthesis pathway. This study provides new insights to elucidate the mechanism of SW synthesis of endophytic fungi in locoweed and provides data support for further exploration of A. oxytropis genomics studies.
Collapse
Affiliation(s)
- Shuangjie Yuan
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmei Zhao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Kun Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ying Gao
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengbing Ma
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Huanyu Li
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
6
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
7
|
Tan YP, Tsang CC, Chan KF, Fung SL, Kok KH, Lau SKP, Woo PCY. Differential innate immune responses of human macrophages and bronchial epithelial cells against Talaromyces marneffei. mSphere 2023; 8:e0025822. [PMID: 37695039 PMCID: PMC10597461 DOI: 10.1128/msphere.00258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/11/2023] [Indexed: 09/12/2023] Open
Abstract
Talaromyces marneffei is a thermally dimorphic fungal pathogen endemic in Southeast Asia. As inhalation of airborne conidia is believed as the major infection route, airway epithelial cells followed by pulmonary macrophages are the first cell types which the fungus encounters inside the host. In this study, we established an in vitro infection model based on human peripheral blood-derived macrophages (hPBDMs) cultured with the supplementation of autologous plasma. Using this model, we determined the transcriptomic changes of hPBDMs in response to T. marneffei infection by quantitative real-time reverse-transcription polymerase chain reaction as well as high-throughput RNA sequencing. Results showed that T. marneffei infection could activate hPBDMs to the M1-like phenotype and trigger a potent induction of chemokine and pro-inflammatory cytokine production as well as the expression of other immunoregulatory genes. In contrast to hPBDMs, there was no detectable innate cytokine response against T. marneffei in human bronchial epithelial cells (hBECs). Using a green fluorescent protein-tagged T. marneffei strain and confocal microscopy, internalization of the fungus by hBECs was confirmed. Live cell imaging further demonstrated that the infected cells exhibited normal cellular physiology, especially that the process of cell division could be observed. Moreover, T. marneffei also survived better inside hBECs than hPBDMs. Our results illustrated a potential role of hBECs to serve as reservoir cells for T. marneffei to evade immunosurveillance by phagocytes, from which the fungus reactivates when the host immunity is weakened and causes infection. Such immunoevasion and reactivation may also help explain the long incubation period observed for talaromycosis, in particular the travel-related cases. IMPORTANCE Talaromyces marneffei is an important fungal pathogen especially in Southeast Asia. To understand the innate immune response to talaromycosis, a suitable infection model is needed. Here, we established an in vitro T. marneffei infection model using human peripheral blood-derived macrophages (hPBDMs). We then examined the transcriptomic changes of hPBDMs in response to T. marneffei infection with this model. We found that contact with T. marneffei could activate hPBDMs to the M1-like phenotype and induced mRNA expressions of five cytokines and eight immunoregulatory genes. Contrary to hPBDMs, such immunoresponse was not elicited in human bronchial epithelial cells (hBECs), despite normal physiology observed in infected cells. We also found that infected hBECs did not eliminate T. marneffei as efficiently as hPBDMs. Our observation suggested that hBECs may potentially serve as reservoir cells for T. marneffei to evade immunosurveillance. When the host immunity deteriorates later, then the fungus reactivates and causes infection.
Collapse
Affiliation(s)
- Yen-Pei Tan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Homantin, Hong Kong, China
| | - Ka-Fai Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Siu-Leung Fung
- Tuberculosis and Chest Medicine Unit, Grantham Hospital, Aberdeen, Hong Kong, China
| | - Kin-Hang Kok
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susanna K. P. Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Patrick C. Y. Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Diao Y, Jin J, Xiong X, Yu C, Tian Y, Li D, Liu H. Transcription Factor VM1G_06867: A Requirement for Growth, Pathogenicity, Development, and Maintenance of Cell Wall Integrity in Valsa mali. J Fungi (Basel) 2023; 9:692. [PMID: 37367628 DOI: 10.3390/jof9060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Apple canker disease, caused by Valsa mali, is one of the most serious apple tree diseases in China. VmSom1 is an important transcription factor that acts on the cyclic adenosine signaling pathway (cAMP/PKA), regulating the growth, development, morphological differentiation, and pathogenic forces of the pathogen. We perform transcriptome analysis of the VmSom1 deletion mutant and the wild-type strain 11-175 and identify a significantly differentially expressed gene, VM1G_06867, a zinc finger motif transcription factor in V. mali. In this study, we obtain the VM1G_06867 gene using the single deletion mutant via homologous recombination. To determine the relationship between VmSom1 and VM1G_06867, we also obtain a double deletion mutant ΔVmSom1/06867. Compared to the wild-type strain 11-175, the single deletion mutant VM1G_06867 shows a drastic reduction in growth rate and forms more pycnidia on the PDA medium. Additionally, the growth of the mutant is inhibited by SDS, Congo red, and fluorescent brighteners. In comparison to the single deletion mutant VmSom1, the double deletion mutant ΔVmSom1/06867 shows no significant change in growth or conidiation and is unable to produce conidia. The growth rate is significantly increased in Congo red, NaCl, and Sorbitol mediums. These results demonstrate that VM1G_06867 plays important roles in growth, pathogenicity, asexual development, and maintenance of cell wall integrity. VM1G_06867 can recover osmotic stress and cell wall integrity defects caused by the deletion of VmSom1, as well as restore the loss of pathogenicity caused by the deletion of the VmSom1 gene, but not completely.
Collapse
Affiliation(s)
- Yufei Diao
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Jiyang Jin
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Xiong Xiong
- Mountain Tai Forest Ecosystem Research Station of State Forestry Administration, Forestry College, Shandong Agricultural University, Tai'an 271018, China
| | - Chengming Yu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Yehan Tian
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Duochuan Li
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
10
|
Wang F, Han R, Chen S. An Overlooked and Underrated Endemic Mycosis-Talaromycosis and the Pathogenic Fungus Talaromyces marneffei. Clin Microbiol Rev 2023; 36:e0005122. [PMID: 36648228 PMCID: PMC10035316 DOI: 10.1128/cmr.00051-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Talaromycosis is an invasive mycosis endemic in tropical and subtropical Asia and is caused by the pathogenic fungus Talaromyces marneffei. Approximately 17,300 cases of T. marneffei infection are diagnosed annually, and the reported mortality rate is extremely high (~1/3). Despite the devastating impact of talaromycosis on immunocompromised individuals, particularly HIV-positive persons, and the increase in reported occurrences in HIV-uninfected persons, diagnostic and therapeutic approaches for talaromycosis have received far too little attention worldwide. In 2021, scientists living in countries where talaromycosis is endemic raised a global demand for it to be recognized as a neglected tropical disease. Therefore, T. marneffei and the infectious disease induced by this fungus must be treated with concern. T. marneffei is a thermally dimorphic saprophytic fungus with a complicated mycological growth process that may produce various cell types in its life cycle, including conidia, hyphae, and yeast, all of which are associated with its pathogenicity. However, understanding of the pathogenic mechanism of T. marneffei has been limited until recently. To achieve a holistic view of T. marneffei and talaromycosis, the current knowledge about talaromycosis and research breakthroughs regarding T. marneffei growth biology are discussed in this review, along with the interaction of the fungus with environmental stimuli and the host immune response to fungal infection. Importantly, the future research directions required for understanding this serious infection and its causative pathogenic fungus are also emphasized to identify solutions that will alleviate the suffering of susceptible individuals worldwide.
Collapse
Affiliation(s)
- Fang Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - RunHua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shi Chen
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Burn and Plastic Surgery, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Coccidioides Species: A Review of Basic Research: 2022. J Fungi (Basel) 2022; 8:jof8080859. [PMID: 36012847 PMCID: PMC9409882 DOI: 10.3390/jof8080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Coccidioides immitis and posadasii are closely related fungal species that cause coccidioidomycosis. These dimorphic organisms cause disease in immunocompetent as well as immunocompromised individuals and as much as 40% of the population is infected in the endemic area. Although most infections resolve spontaneously, the infection can be prolonged and, in some instances, fatal. Coccidioides has been studied for more than 100 years and many aspects of the organism and the disease it causes have been investigated. There are over 500 manuscripts concerning Coccidioides (excluding clinical articles) referenced in PubMed over the past 50 years, so there is a large body of evidence to review. We reviewed the most accurate and informative basic research studies of these fungi including some seminal older studies as well as an extensive review of current research. This is an attempt to gather the most important basic research studies about this fungus into one publication. To focus this review, we will discuss the mycology of the organism exclusively rather than the studies of the host response or clinical studies. We hope that this review will be a useful resource to those interested in Coccidioides and coccidioidomycosis.
Collapse
|
12
|
The bZip Transcription Factor VdMRTF1 is a Negative Regulator of Melanin Biosynthesis and Virulence in Verticillium dahliae. Microbiol Spectr 2022; 10:e0258121. [PMID: 35404080 PMCID: PMC9045294 DOI: 10.1128/spectrum.02581-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ascomycete fungus Verticillium dahliae infects over 400 plant species and causes serious losses of economically important crops, such as cotton and tomato, and also of woody plants, such as smoke tree, maple, and olive. Melanized long-term survival structures known as microsclerotia play crucial roles in the disease cycle of V. dahliae, enabling this soilborne fungus to survive for years in the soil in the absence of a host. Previously, we identified VdMRTF1 (microsclerotia-related transcription factor) encoding a bZip transcription factor which is downregulated during microsclerotial development in V. dahliae. In the present study, we showed that VdMRTF1 negatively controls melanin production and virulence by genetic, biological, and transcriptomic analyses. The mutant strain lacking VdMRTF1 (ΔVdMRTF1) exhibited increased melanin biosynthesis and the defect also promoted microsclerotial development and sensitivity to Ca2+. In comparison with the wild-type strain, the ΔVdMRTF1 strain showed a significant enhancement in virulence and displayed an increased capacity to eliminate reactive oxygen species in planta. Furthermore, analyses of transcriptomic profiles between the ΔVdMRTF1 and wild-type strains indicated that VdMRTF1 regulates the differential expression of genes associated with melanin biosynthesis, tyrosine metabolism, hydrogen peroxide catabolic processes, and oxidoreductase activity in V. dahliae. Taken together, these data show that VdMRTF1 is a negative transcriptional regulator of melanin biosynthesis, microsclerotia formation, and virulence in V. dahliae. IMPORTANCE Verticillium wilt is difficult to manage because the pathogen colonizes the plant xylem tissue and produces melanized microsclerotia which survive for more than 10 years in soil without a host. The molecular mechanisms underlying microsclerotia formation are of great importance to control the disease. Here, we provide evidence that a bZip transcription factor, VdMRTF1, plays important roles in melanin biosynthesis, microsclerotial development, resistance to elevated Ca2+ levels, and fungal virulence of V. dahliae. The findings extend and deepen our understanding of the complexities of melanin biosynthesis, microsclerotia formation, and virulence that are regulated by bZip transcription factors in V. dahliae.
Collapse
|
13
|
Chromosome-Level Genome Assembly of a Human Fungal Pathogen Reveals Synteny among Geographically Distinct Species. mBio 2022; 13:e0257421. [PMID: 35089059 PMCID: PMC8725592 DOI: 10.1128/mbio.02574-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Histoplasma capsulatum, a dimorphic fungal pathogen, is the most common cause of fungal respiratory infections in immunocompetent hosts. Histoplasma is endemic in the Ohio and Mississippi River Valleys in the United States and is also distributed worldwide. Previous studies have revealed at least eight clades, each specific to a geographic location: North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B), Eurasian, Netherlands, Australian and African, and an additional distinct lineage (H81) comprised of Panamanian isolates. Previously assembled Histoplasma genomes are highly fragmented, with the highly repetitive G217B (NAm 2) strain, which has been used for most whole-genome-scale transcriptome studies, assembled into over 250 contigs. In this study, we set out to fully assemble the repeat regions and characterize the large-scale genome architecture of Histoplasma species. We resequenced five Histoplasma strains (WU24 [NAm 1], G217B [NAm 2], H88 [African], G186AR [Panama], and G184AR [Panama]) using Oxford Nanopore Technologies long-read sequencing technology. Here, we report chromosomal-level assemblies for all five strains, which exhibit extensive synteny among the geographically distant Histoplasma isolates. The new assemblies revealed that RYP2, a major regulator of morphology and virulence, is duplicated in G186AR. In addition, we mapped previously generated transcriptome data sets onto the newly assembled chromosomes. Our analyses revealed that the expression of transposons and transposon-embedded genes are upregulated in yeast phase compared to mycelial phase in the G217B and H88 strains. This study provides an important resource for fungal researchers and further highlights the importance of chromosomal-level assemblies in analyzing high-throughput data sets. IMPORTANCE Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe. Phylogenetically distinct species of Histoplasma have been isolated and sequenced. However, for the commonly used strains, genome assemblies have been fragmented, leading to underutilization of genome-scale data. This study provides chromosome-level assemblies of the commonly used Histoplasma strains using long-read sequencing technology. Comparative analysis of these genomes shows largely conserved gene order within the chromosomes. Mapping existing transcriptome data on these new assemblies reveals clustering of transcriptionally coregulated genes. The results of this study highlight the importance of obtaining chromosome-level assemblies in understanding the biology of human fungal pathogens.
Collapse
|
14
|
Zheng F, Gao W, Wang Y, Chen Q, Zhang Q, Jiang X, Hou B, Zhang Z. Map of dimorphic switching‑related signaling pathways in Sporothrix schenckii based on its transcriptome. Mol Med Rep 2021; 24:646. [PMID: 34278493 PMCID: PMC8299191 DOI: 10.3892/mmr.2021.12285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Sporothrix schenckii (S. schenckii) induces sporotrichosis, which has gained attention in recent years due to its worldwide prevalence. The dimorphic switching process is essential for the pathogenesis of S. schenckii. Previously, overexpression of several signal transduction genes, including SsDRK1 and SsSte20, was observed during the mycelium‑to‑yeast transition; these were necessary for asexual development, yeast‑phase cell formation, cell wall integrity and melanin synthesis. However, the mechanisms of the signaling pathways during dimorphic switching of S. schenckii remain unclear. In the present study, transcriptome sequencing of the 48‑h induced yeast forms and mycelium of S. schenckii was performed. In total, 24,904,510 high‑quality clean reads were obtained from mycelium samples and 22,814,406 from 48‑h induced yeast form samples. Following assembly, 31,779 unigene sequences were obtained with 52.98% GC content (The proportion of guanine G and cytosine C to all bases in nucleic acid). The results demonstrated that 12,217 genes, including genes involved in signal transduction and chitin synthesis, were expressed differentially between the two stages. According to these results, a map of the signaling pathways, including two‑component and heterotrimeric G‑protein signaling systems, Ras and MAPK cascades associated with the dimorphic switch, was drawn. Taken together, the transcriptome data and analysis performed in the present study lay the foundation for further research into the molecular mechanisms controlling the dimorphic switch of S. schenckii and support the development of anti‑S. schenckii strategies targeting genes associated with signaling pathways.
Collapse
Affiliation(s)
- Fangliang Zheng
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Wei Gao
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ying Wang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qingyan Chen
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Qiuling Zhang
- Department of Dermatology, Shenzhen Shekou People's Hospital, Shenzhen, Guangdong 518067, P.R. China
| | - Xiuyan Jiang
- Academy of Life Science, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Binbin Hou
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Zhenying Zhang
- Department of Dermatology, University of Hong Kong Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
15
|
Kijpornyongpan T, Aime MC. Comparative transcriptomics reveal different mechanisms for hyphal growth across four plant-associated dimorphic fungi. Fungal Genet Biol 2021; 152:103565. [PMID: 33991665 DOI: 10.1016/j.fgb.2021.103565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Fungal dimorphism is a phenomenon by which a fungus can grow both as a yeast form and a hyphal form. It is frequently related to pathogenicity as different growth forms are more suitable for different functions during a life cycle. Among dimorphic plant pathogens, the corn smut fungus Ustilago maydis serves as a model organism to understand fungal dimorphism and its effect on pathogenicity. However, there is a lack of data on whether mechanisms elucidated from model species are broadly applicable to other fungi. In this study, two non-model plant-associated species in the smut fungus subphylum (Ustilaginomycotina), Tilletiopsis washingtonensis and Meira miltonrushii, were selected to compare dimorphic mechanisms in these to those in U. maydis. We sequenced transcriptomic profiles during both yeast and hyphal growth in these two species using Tween40, a lipid mimic, as a trigger for hyphal growth. We then compared our data with previously published data from U. maydis and a fourth but unrelated dimorphic phytopathogen, Ophiostoma novo-ulmi. Comparative transcriptomics was performed to identify common genes upregulated during hyphal growth in all four dimorphic species. Intriguingly, T. washingtonensis shares the least similarities of transcriptomic alteration (hyphal growth versus yeast growth) with the others, although it is closely related to M. miltonrushii and U. maydis. This suggests that phylogenetic relatedness is not correlated with transcriptomic similarity under the same biological phenomenon. Among commonly expressed genes in the four species, genes in cell energy production and conversion, amino acid transport and metabolism and cytoskeleton are significantly enriched. Considering dimorphism genes characterized in U. maydis, as well as hyphal tip-associated genes from the literature, we found only genes encoding the cell end marker Tea4/TeaC and the kinesin motor protein Kin3 concordantly expressed in all four species. This suggests a divergence in species-specific mechanisms for dimorphic transition and hyphal growth.
Collapse
Affiliation(s)
- Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN 47907-2054, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W State St, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
16
|
Carlin AF, Beyhan S, Peña JF, Stajich JE, Viriyakosol S, Fierer J, Kirkland TN. Transcriptional Analysis of Coccidioides immitis Mycelia and Spherules by RNA Sequencing. J Fungi (Basel) 2021; 7:jof7050366. [PMID: 34067070 PMCID: PMC8150946 DOI: 10.3390/jof7050366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coccidioides immitis and C. posadasii are dimorphic fungi that transform from mycelia with internal arthroconidia in the soil to a tissue form known as a spherule in mammals. This process can be recapitulated in vitro by increasing the temperature, CO2 and changing other culture conditions. In this study, we have analyzed changes in gene expression in mycelia and young and mature spherules. Genes that were highly upregulated in young spherules include a spherule surface protein and iron and copper membrane transporters. Genes that are unique to Coccidioides spp. are also overrepresented in this group, suggesting that they may be important for spherule differentiation. Enriched GO terms in young spherule upregulated genes include oxidation-reduction, response to stress and membrane proteins. Downregulated genes are enriched for transcription factors, especially helix–loop–helix and C2H2 type zinc finger domain-containing proteins, which is consistent with the dramatic change in transcriptional profile. Almost all genes that are upregulated in young spherules remain upregulated in mature spherules, but a small number of genes are differentially expressed in those two stages of spherule development. Mature spherules express more Hsp31 and amylase and less tyrosinase than young spherules. Some expression of transposons was detected and most of the differentially expressed transposons were upregulated in spherules.
Collapse
Affiliation(s)
- Aaron F. Carlin
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
| | - Sinem Beyhan
- J. Craig Venter Institute, La Jolla, CA 92037, USA;
| | - Jesús F. Peña
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA; (J.F.P.); (J.E.S.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA; (J.F.P.); (J.E.S.)
| | - Suganya Viriyakosol
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
| | - Joshua Fierer
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
- Infectious Diseases Section, VA Healthcare San Diego, San Diego, CA 92161, USA
- Department of Pathology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Theo N. Kirkland
- Department of Medicine, Division of Infectious Disease, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA; (A.F.C.); (S.V.); (J.F.)
- Department of Pathology, U.C. San Diego School of Medicine, La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
17
|
Liu S, Youngchim S, Zamith-Miranda D, Nosanchuk JD. Fungal Melanin and the Mammalian Immune System. J Fungi (Basel) 2021; 7:jof7040264. [PMID: 33807336 PMCID: PMC8066723 DOI: 10.3390/jof7040264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Melanins are ubiquitous complex polymers that are commonly known in humans to cause pigmentation of our skin. Melanins are also present in bacteria, fungi, and helminths. In this review, we will describe the diverse interactions of fungal melanin with the mammalian immune system. We will particularly focus on Cryptococcus neoformans and also discuss other major melanotic pathogenic fungi. Melanin interacts with the immune system through diverse pathways, reducing the effectiveness of phagocytic cells, binding effector molecules and antifungals, and modifying complement and antibody responses.
Collapse
Affiliation(s)
- Sichen Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Daniel Zamith-Miranda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (S.L.); (D.Z.-M.)
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
18
|
Huberman LB, Wu VW, Kowbel DJ, Lee J, Daum C, Grigoriev IV, O'Malley RC, Glass NL. DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus. Proc Natl Acad Sci U S A 2021; 118:e2009501118. [PMID: 33753477 PMCID: PMC8020665 DOI: 10.1073/pnas.2009501118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in N. crassa is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, amn-1, that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows N. crassa cells to regulate nitrogen utilization.
Collapse
Affiliation(s)
- Lori B Huberman
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - Vincent W Wu
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - David J Kowbel
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
19
|
Sharma S, Choudhary B, Yadav S, Mishra A, Mishra VK, Chand R, Chen C, Pandey SP. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124155. [PMID: 33049626 DOI: 10.1016/j.jhazmat.2020.124155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In a previous study, we identified a halotolerant rhizobacterium belonging to the genus Klebsiella (MBE02) that protected peanut seeds from Aspergillus flavus infection. Here, we investigated the mechanisms underlying the effect of MBE02 against A. flavus via untargeted metabolite profiling of peanut seeds treated with MBE02, A. flavus, or MBE02+A. flavus. Thirty-five metabolites were differentially accumulated across the three treatments (compared to the control), and the levels of pipecolic acid (Pip) were reduced upon A. flavus treatment only. We validated the function of Pip against A. flavus using multiple resistant and susceptible peanut cultivars. Pip accumulation was strongly associated with the resistant genotypes that also accumulated several mRNAs of the ALD1-like gene in the Pip biosynthesis pathway. Furthermore, exogenous treatment of a susceptible peanut cultivar with Pip reduced A. flavus infection in the seeds. Our findings indicate that Pip is a key component of peanut resistance to A. flavus.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Babita Choudhary
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Sonam Yadav
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Avinash Mishra
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, India.
| | - Vinod K Mishra
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Shree P Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
20
|
Silva-Bailão MG, Lima PDS, Oliveira MME, Oliveira LC, Almeida-Paes R, Borges CL, Bailão AM, Coelho ASG, Soares CMDA, Zancopé-Oliveira RM. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect 2020; 23:104762. [PMID: 32992009 DOI: 10.1016/j.micinf.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023]
Abstract
Sporotrichosis is a subcutaneous mycosis of humans and other mammals, caused by dimorphic species of the genus Sporothrix. In Brazil, human disease is broadly linked to transmission by infected cats and is mainly caused by Sporothrix brasiliensis, Sporothrix schenckii and Sporothrix globosa. In this study, we used a nanoscale liquid chromatography coupled with tandem mass spectrometry approach to provide the yeast proteomic profiles of S. brasiliensis, S. schenckii and S. globosa. From a total of 247 identified proteins, 137 were found as differentially expressed. Functional classification revealed that most are related to carbohydrate and amino acid metabolism as well as stress response. Our data indicate that S. brasiliensis metabolism is distinct of that of S. schenckii and S. globosa, mainly regarding amino acid metabolism and cell wall remodeling, which are induced in the former. Enzymes belonging to glycolytic pathway are, on the other hand, up-regulated in S. schenckii and S. globosa. These findings may explain the previously described more virulent character of S. brasiliensis. Besides complementing genomic comparisons already published, this first comparative proteomic study provided information that indicates new aspects of Sporothrix species metabolism as well as offers information that may be useful in the development of prospective functional studies.
Collapse
Affiliation(s)
- Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | | |
Collapse
|
21
|
Xu X, Cao X, Yang J, Chen L, Liu B, Liu T, Jin Q. Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Front Microbiol 2019; 10:2613. [PMID: 31798556 PMCID: PMC6861857 DOI: 10.3389/fmicb.2019.02613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) exist in a wide variety of organisms and play key roles in regulating various essential biological processes. Lysine propionylation is a newly discovered PTM that has rarely been identified in fungi. Trichophyton rubrum (T. rubrum) is one of the most common fungal pathogens in the world and has been studied as an important model organism of anthropic pathogenic filamentous fungi. In this study, we performed a proteome-wide propionylation analysis in the conidial and mycelial stages of T. rubrum. A total of 157 propionylated sites on 115 proteins were identified, and the high confidence of propionylation identification was validated by parallel reaction monitoring (PRM) assay. The results show that the propionylated proteins were mostly involved in various metabolic pathways. Histones and 15 pathogenicity-related proteins were also targets for propionylation modification, suggesting their roles in epigenetic regulation and pathogenicity. A comparison of the conidial and mycelial stages revealed that most propionylated proteins and sites were growth-stage specific and independent of protein abundance. Based on the function classifications, the propionylated proteins had a similar distribution in both stages; however, some differences were also identified. Furthermore, our results show that the concentration of propionyl-CoA had a significant influence on the propionylation level. In addition to the acetylation, succinylation and propionylation identified in T. rubrum, 26 other PTMs were also found to exist in this fungus. Overall, our study provides the first global propionylation profile of a pathogenic fungus. These results would be a foundation for further research on the regulation mechanism of propionylation in T. rubrum, which will enhance our understanding of the physiological features of T. rubrum and provide some clues for the exploration of improved therapies to treat this medically important fungus.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
23
|
Almeida-Paes R, Almeida-Silva F, Pinto GCM, Almeida MDA, Muniz MDM, Pizzini CV, Gerfen GJ, Nosanchuk JD, Zancopé-Oliveira RM. L-tyrosine induces the production of a pyomelanin-like pigment by the parasitic yeast-form of Histoplasma capsulatum. Med Mycol 2019; 56:506-509. [PMID: 28992332 DOI: 10.1093/mmy/myx068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/08/2017] [Indexed: 01/17/2023] Open
Abstract
Melanization of Histoplasma capsulatum remains poorly described, particularly in regards to the forms of melanin produced. In the present study, 30 clinical and environmental H. capsulatum strains were grown in culture media with or without L-tyrosine under conditions that produced either mycelial or yeast forms. Mycelial cultures were not melanized under the studied conditions. However, all strains cultivated under yeast conditions produced a brownish to black soluble pigment compatible with pyomelanin when grew in presence of L-tyrosine. Sulcotrione inhibited pigment production in yeast cultures, strengthening the hyphothesis that H. capsulatum yeast forms produce pyomelanin. Since pyomelanin is produced by the fungal parasitic form, this pigment may be involved in H. capsulatum virulence.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gabriela Costa Maia Pinto
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Mauro de Medeiros Muniz
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Claudia Vera Pizzini
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Gary J Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Joshua Daniel Nosanchuk
- Departments of Medicine [Division of Infectious Diseases] and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Melanin and pyomelanin in Aspergillus fumigatus: from its genetics to host interaction. Int Microbiol 2019; 23:55-63. [PMID: 31020477 DOI: 10.1007/s10123-019-00078-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Aspergillus fumigatus is a worldwide-distributed saprophytic fungus and the major cause of invasive aspergillosis. This fungus can produce two types of melanin-dihydroxynaphthalene melanin (DHN-melanin) and pyomelanin. These pigments are considered important resistance mechanisms to stress, as well as virulence factors. The aim of this review is to present the current knowledge of the genetic basis and metabolic pathways of melanin production, their activation, function, and interaction with the host immune system. The DHN-melanin pathway is encoded in a cluster that includes six genes (abr1, abr2, ayg1, arp1, arp2, and pksP/alb1 genes) whose encoded proteins seem to be the origin of the pigment in endosomes. These vesicles are secreted and the pigment is subsequently located in the wall of the conidium beneath the rodlet layer. Unlike DHN-melanin, pyomelanin does not have its own biosynthetic pathway but is related to the activation of the L-tyrosine/L-phenylalanine degradation pathway that includes a cluster of six genes (hppD, hmgX, hmgA, fahA, maiA, and hmgR). Its production is due to the polymerization of homogentisic acid and is linked to conidial germination. Despite the knowledge gained in recent years, further studies will be necessary to confirm the pathways that produce these pigments and their role in the virulence mechanisms of A. fumigatus.
Collapse
|
25
|
Boyce KJ, De Souza DP, Dayalan S, Pasricha S, Tull D, McConville MJ, Andrianopoulos A. Talaromyces marneffei simA Encodes a Fungal Cytochrome P450 Essential for Survival in Macrophages. mSphere 2018; 3:e00056-18. [PMID: 29577082 PMCID: PMC5863032 DOI: 10.1128/msphere.00056-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
Fungi are adept at occupying specific environmental niches and often exploit numerous secondary metabolites generated by the cytochrome P450 (CYP) monoxygenases. This report describes the characterization of a yeast-specific CYP encoded by simA ("survival in macrophages"). Deletion of simA does not affect yeast growth at 37°C in vitro but is essential for yeast cell production during macrophage infection. The ΔsimA strain exhibits reduced conidial germination and intracellular growth of yeast in macrophages, suggesting that the enzymatic product of SimA is required for normal fungal growth in vivo. Intracellular ΔsimA yeast cells exhibit cell wall defects, and metabolomic and chemical sensitivity data suggest that SimA may promote chitin synthesis or deposition in vitro. In vivo, ΔsimA yeast cells subsequently lyse and are degraded, suggesting that SimA may increase resistance to and/or suppress host cell biocidal effectors. The results suggest that simA synthesizes a secondary metabolite that allows T. marneffei to occupy the specific intracellular environmental niche within the macrophage. IMPORTANCE This study in a dimorphic fungal pathogen uncovered a role for a yeast-specific cytochrome P450 (CYP)-encoding gene in the ability of T. marneffei to grow as yeast cells within the host macrophages. This report will inspire further research into the role of CYPs and secondary metabolite synthesis during fungal pathogenic growth.
Collapse
Affiliation(s)
- Kylie J. Boyce
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Shivani Pasricha
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
26
|
Analysis of Transposable Elements in Coccidioides Species. J Fungi (Basel) 2018; 4:jof4010013. [PMID: 29371508 PMCID: PMC5872316 DOI: 10.3390/jof4010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
Coccidioides immitis and C. posadasii are primary pathogenic fungi that cause disease in immunologically-normal animals and people. The organism is found exclusively in arid regions of the Southwestern United States, Mexico, and South America, but not in other parts of the world. This study is a detailed analysis of the transposable elements (TE) in Coccidioides spp. As is common in most fungi, Class I and Class II transposons were identified and the LTR Gypsy superfamily is the most common. The minority of Coccidioides Gypsy transposons contained regions highly homologous to polyprotein domains. Phylogenetic analysis of the integrase and reverse transcriptase sequences revealed that many, but not all, of the Gypsy reverse transcriptase and integrase domains clustered by species suggesting extensive transposition after speciation of the two Coccidiodies spp. The TEs were clustered and the distribution is enriched for the ends on contigs. Analysis of gene expression data from C. immitis found that protein-coding genes within 1 kB of hAT or Gypsy TEs were poorly expressed. The expression of C. posadasii genes within 1 kB of Gypsy TEs was also significantly lower compared to all genes but the difference in expression was smaller than C. immitis. C. posadasii orthologs of C. immitis Gyspsy-associated genes were also likely to be TE-associated. In both C. immitis and C. posadasii the TEs were preferentially associated with genes annotated with protein kinase gene ontology terms. These observations suggest that TE may play a role in influencing gene expression in Coccidioides spp. Our hope is that these bioinformatic studies of the potential TE influence on expression and evolution of Coccidioides will prompt the development of testable hypotheses to better understand the role of TEs in the biology and gene regulation of Coccidioides spp.
Collapse
|
27
|
Steffani-Vallejo JL, Brunck ME, Acosta-Cruz EY, Montiel R, Barona-Gómez F. Genomic insights into Mycobacterium simiae human colonization. Stand Genomic Sci 2018; 13:1. [PMID: 29340007 PMCID: PMC5759803 DOI: 10.1186/s40793-017-0291-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium simiae (Karassova V, Weissfeiler J, Kraszanay E, Acta Microbiol Acad Sci Hung 12:275-82, 1965) is a slow-growing nontuberculous Mycobacterium species found in environmental niches, and recently evidenced as an opportunistic Human pathogen. We report here the genome of a clinical isolate of M. simiae (MsiGto) obtained from a patient in Guanajuato, Mexico. With a size of 6,684,413 bp, the genomic sequence of strain MsiGto is the largest of the three M. simiae genomes reported to date. Gene prediction revealed 6409 CDSs in total, including 6354 protein-coding genes and 52 RNA genes. Comparative genomic analysis identified shared features between strain MsiGto and the other two reported M. simiae genomes, as well as unique genes. Our data reveals that M. simiae MsiGto harbors virulence-related genes, such as arcD, ESAT-6, and those belonging to the antigen 85 complex and mce clusters, which may explain its successful transition to the human host. We expect the genome information of strain MsiGto will provide a better understanding of infective mechanisms and virulence of this emergent pathogen.
Collapse
Affiliation(s)
- José L. Steffani-Vallejo
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Marion E. Brunck
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Erika Y. Acosta-Cruz
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
- Paleogenomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
- Present address: Laboratorio de Biología Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Mexico
| | - Rafael Montiel
- Paleogenomics Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, Mexico
| |
Collapse
|
28
|
Kirkland TN, Fierer J. Coccidioides immitis and posadasii; A review of their biology, genomics, pathogenesis, and host immunity. Virulence 2018; 9:1426-1435. [PMID: 30179067 PMCID: PMC6141143 DOI: 10.1080/21505594.2018.1509667] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Coccidioides immitis and C. posadasii are two highly pathogenic dimorphic fungal species that are endemic in the arid areas of the new world, including the region from west Texas to southern and central California in the USA that cause coccidioidomycosis (also known as Valley Fever). In highly endemic regions such as southern Arizona, up to 50% of long term residents have been infected. New information about fungal population genetics, ecology, epidemiology, and host-pathogen interactions is becoming available. However, our understanding of some aspects of coccidioidomycosis is still incomplete, including the extent of genetic variability of the fungus, the genes involved in virulence, and how the changes in gene expression during the organism's dimorphic life cycle are related to the transformation from a free-living mold to a parasitic spherule. Unfortunately, efforts to develop an effective subunit vaccine have not yet been productive, although two potential live fungus vaccines have been developed.
Collapse
Affiliation(s)
- Theo N. Kirkland
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Joshua Fierer
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, San Diego, CA, USA
- VA Healthcare San Diego, San Diego, CA, USA
| |
Collapse
|
29
|
Adaptation to macrophage killing by Talaromyces marneffei. Future Sci OA 2017; 3:FSO215. [PMID: 28884011 PMCID: PMC5583664 DOI: 10.4155/fsoa-2017-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
Talaromyces (Penicillium) marneffei is an important opportunistic fungal pathogen. It causes disseminated infection in immunocompromised patients especially in Southeast Asian countries. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the macrophage. Major stresses inside the phagosome of macrophages are heat, oxidative substances and nutrient deprivation. The coping strategies of this pathogen with these stresses are under investigation. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. These include molecules in the MAP signal transduction cascade, heat shock proteins, antioxidant enzymes and enzymes responsible in nutrient retrieval. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity. Talaromyces marneffei is an important dimorphic fungus that causes disease in immunocompromised patients. The pathogenicity of T. marneffei depends on the ability of the fungus to survive the killing process and replicate inside the host macrophage cells. This paper summarizes factors relating to the stress responses that contribute to the intracellular survival of T. marneffei. There is speculation that the ability of T. marneffei to withstand these defenses plays an important role in its pathogenicity.
Collapse
|
30
|
Fungal Dimorphism and Virulence: Molecular Mechanisms for Temperature Adaptation, Immune Evasion, and In Vivo Survival. Mediators Inflamm 2017. [PMID: 28626345 PMCID: PMC5463121 DOI: 10.1155/2017/8491383] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The thermally dimorphic fungi are a unique group of fungi within the Ascomycota phylum that respond to shifts in temperature by converting between hyphae (22–25°C) and yeast (37°C). This morphologic switch, known as the phase transition, defines the biology and lifestyle of these fungi. The conversion to yeast within healthy and immunocompromised mammalian hosts is essential for virulence. In the yeast phase, the thermally dimorphic fungi upregulate genes involved with subverting host immune defenses. This review highlights the molecular mechanisms governing the phase transition and recent advances in how the phase transition promotes infection.
Collapse
|
31
|
Paolinelli-Alfonso M, Villalobos-Escobedo JM, Rolshausen P, Herrera-Estrella A, Galindo-Sánchez C, López-Hernández JF, Hernandez-Martinez R. Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics 2016; 17:615. [PMID: 27514986 PMCID: PMC4981995 DOI: 10.1186/s12864-016-2952-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lasiodiplodia theobromae is a fungus of the Botryosphaeriaceae that causes grapevine vascular disease, especially in regions with hot climates. Fungi in this group often remain latent within their host and become virulent under abiotic stress. Transcriptional regulation analysis of L. theobromae exposed to heat stress (HS) was first carried out in vitro in the presence of grapevine wood (GW) to identify potential pathogenicity genes that were later evaluated for in planta expression. RESULTS A total of 19,860 de novo assembled transcripts were obtained, forty-nine per cent of which showed homology to the Botryosphaeriaceae fungi, Neofusicoccum parvum or Macrophomina phaseolina. Three hundred ninety-nine have homology with genes involved in pathogenic processes and several belonged to expanded gene families in others fungal grapevine vascular pathogens. Gene expression analysis showed changes in fungal metabolism of phenolic compounds; where genes encoding for enzymes, with the ability to degrade salicylic acid (SA) and plant phenylpropanoid precursors, were up-regulated during in vitro HS response, in the presence of GW. These results suggest that the fungal L-tyrosine catabolism pathway could help the fungus to remove phenylpropanoid precursors thereby evading the host defense response. The in planta up-regulation of salicylate hydroxylase, intradiol ring cleavage dioxygenase and fumarylacetoacetase encoding genes, further supported this hypothesis. Those genes were even more up-regulated in HS-stressed plants, suggesting that fungus takes advantage of the increased phenylpropanoid precursors produced under stress. Pectate lyase was up-regulated while a putative amylase was down-regulated in planta, this could be associated with an intercellular growth strategy during the first stages of colonization. CONCLUSIONS L. theobromae transcriptome was established and validated. Its usefulness was demonstrated through the identification of genes expressed during the infection process. Our results support the hypothesis that heat stress facilitates fungal colonization, because of the fungus ability to use the phenylpropanoid precursors and SA, both compounds known to control host defense.
Collapse
Affiliation(s)
- Marcos Paolinelli-Alfonso
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences,University of California Riverside, Riverside, 92521 CA USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Clara Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| | - José Fabricio López-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del I. P. N., Irapuato, Gto 36821 Mexico
| | - Rufina Hernandez-Martinez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC 22860 Mexico
| |
Collapse
|
32
|
Kirkland TN. A few shared up-regulated genes may influence conidia to yeast transformation in dimorphic fungal pathogens. Med Mycol 2016; 54:648-53. [PMID: 27118798 DOI: 10.1093/mmy/myw019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/10/2016] [Indexed: 01/13/2023] Open
Abstract
The small number of fungi that commonly cause disease in normal people share the capacity to grow as mycelia in the soil at 25°C and as yeast (or spherules) in mammals at 37°C. This remarkable conversion has long been a topic of interest in medical mycology. The conidia to yeast conversion has been studied by transcription profiling in several fungal species, including Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides spp., Blastomyces dermatitidis, and Talaromyces marneffei One limitation of transcriptional profiling is determining which genes are involved in the process of conversion to yeast as opposed to a result of conversion to yeast. If there are genes that are up-regulated in the yeast phase of more than one dimorphic, pathogenic fungus they might be required for conversion to yeast (or spherules). To address this issue, 24 up-regulated genes common to Coccidioides spp spherules and H. capsulatum yeasts were identified. Four homologs of these genes were also found in P. brasiliensis, B. dermatitidis or T. marneffei genes that were up-regulated in yeast. 4-hydroxyphenylpurvate dioxygenase, a gene involved in tyrosine metabolism and melanin synthesis that has been shown to be required for yeast conversion, is conserved and up-regulated in yeast in all five species. Another up-regulated gene that is conserved in all five species is a MFS sugar porter. These results suggest that a minority of up-regulated yeast (or spherule) genes are conserved across species and raises the possibility that conserved up-regulated genes may be of special interest for differentiation of mycelium into yeast.
Collapse
|
33
|
Two-Component Signaling Regulates Osmotic Stress Adaptation via SskA and the High-Osmolarity Glycerol MAPK Pathway in the Human Pathogen Talaromyces marneffei. mSphere 2016; 1:mSphere00086-15. [PMID: 27303703 PMCID: PMC4863612 DOI: 10.1128/msphere.00086-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
For successful infection to occur, a pathogen must be able to evade or tolerate the host's defense systems. This requires the pathogen to first recognize the host environment and then signal this response to elicit a complex adaptive program in order to activate its own defense strategies. In both prokaryotes and eukaryotes, two-component signaling systems are utilized to sense and respond to changes in the external environment. The hybrid histidine kinases (HHKs) at the start of the two-component signaling pathway have been well characterized in human pathogens. However, how these HHKs regulate processes downstream currently remains unclear. This study describes the role of a response regulator downstream of these HHKs, sskA, in Talaromyces marneffei, a dimorphic human pathogen. sskA is required for asexual reproduction, hyphal morphogenesis, cell wall integrity, osmotic adaptation, and the morphogenesis of yeast cells both in vitro at 37°C and during macrophage infection, but not during dimorphic switching. Comparison of the ΔsskA mutant with a strain in which the mitogen-activated protein kinase (MAPK) of the high-osmolarity glycerol pathway (SakA) has been deleted suggests that SskA acts upstream of this pathway in T. marneffei to regulate these morphogenetic processes. This was confirmed by assessing the amount of phosphorylated SakA in the ΔsskA mutant, antifungal resistance due to a lack of SakA activation, and the ability of a constitutively active sakA allele (sakA(F316L) ) to suppress the ΔsskA mutant phenotypes. We conclude that SskA regulates morphogenesis and osmotic stress adaptation in T. marneffei via phosphorylation of the SakA MAPK of the high-osmolarity glycerol pathway. IMPORTANCE This is the first study in a dimorphic fungal pathogen to investigate the role of a response regulator downstream of two-component signaling systems and its connection to the high-osmolarity glycerol pathway. This study will inspire further research into the downstream components of two-component signaling systems and their role during pathogenic growth.
Collapse
|
34
|
Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, Marty AJ, Carmen JC, Chen Z, Ding L, Gujja S, Magrini V, Misas E, Mitreva M, Priest M, Saif S, Whiston EA, Young S, Zeng Q, Goldman WE, Mardis ER, Taylor JW, McEwen JG, Clay OK, Klein BS, Cuomo CA. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. PLoS Genet 2015; 11:e1005493. [PMID: 26439490 PMCID: PMC4595289 DOI: 10.1371/journal.pgen.1005493] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Three closely related thermally dimorphic pathogens are causal agents of major fungal diseases affecting humans in the Americas: blastomycosis, histoplasmosis and paracoccidioidomycosis. Here we report the genome sequence and analysis of four strains of the etiological agent of blastomycosis, Blastomyces, and two species of the related genus Emmonsia, typically pathogens of small mammals. Compared to related species, Blastomyces genomes are highly expanded, with long, often sharply demarcated tracts of low GC-content sequence. These GC-poor isochore-like regions are enriched for gypsy elements, are variable in total size between isolates, and are least expanded in the avirulent B. dermatitidis strain ER-3 as compared with the virulent B. gilchristii strain SLH14081. The lack of similar regions in related species suggests these isochore-like regions originated recently in the ancestor of the Blastomyces lineage. While gene content is highly conserved between Blastomyces and related fungi, we identified changes in copy number of genes potentially involved in host interaction, including proteases and characterized antigens. In addition, we studied gene expression changes of B. dermatitidis during the interaction of the infectious yeast form with macrophages and in a mouse model. Both experiments highlight a strong antioxidant defense response in Blastomyces, and upregulation of dioxygenases in vivo suggests that dioxide produced by antioxidants may be further utilized for amino acid metabolism. We identify a number of functional categories upregulated exclusively in vivo, such as secreted proteins, zinc acquisition proteins, and cysteine and tryptophan metabolism, which may include critical virulence factors missed before in in vitro studies. Across the dimorphic fungi, loss of certain zinc acquisition genes and differences in amino acid metabolism suggest unique adaptations of Blastomyces to its host environment. These results reveal the dynamics of genome evolution and of factors contributing to virulence in Blastomyces. Dimorphic fungal pathogens including Blastomyces are the cause of major fungal diseases in North and South America. The genus Emmonsia includes species infecting small mammals as well as a newly emerging pathogenic species recently reported in HIV-positive patients in South Africa. Here, we synthesize both genome sequencing of four isolates of Blastomyces and two species of Emmonsia as well as deep sequencing of Blastomyces RNA to draw major new insights into the evolution of this group and the pathogen response to infection. We investigate the trajectory of genome evolution of this group, characterizing the phylogenetic relationships of these species, a remarkable genome expansion that formed large isochore-like regions of low GC content in Blastomyces, and variation of gene content, related to host interaction, among the dimorphic fungal pathogens. Using RNA-Seq, we profile the response of Blastomyces to macrophage and mouse pulmonary infection, identifying key pathways and novel virulence factors. The identification of key fungal genes involved in adaptation to the host suggests targets for further study and therapeutic intervention in Blastomyces and related dimorphic fungal pathogens.
Collapse
Affiliation(s)
- José F. Muñoz
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Gregory M. Gauthier
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | | | - Juan E. Gallo
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Jason Holder
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Thomas D. Sullivan
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Amber J. Marty
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - John C. Carmen
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Li Ding
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elizabeth Misas
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Makedonka Mitreva
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Margaret Priest
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sakina Saif
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Emily A. Whiston
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - William E. Goldman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elaine R. Mardis
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Juan G. McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Oliver K. Clay
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Bruce S. Klein
- Department of Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|