1
|
Hu B, Dong W, Song Y, Fan Z, Cavadini P, Wang F. Detection of a New Recombinant Rabbit Hemorrhagic Disease Virus 2 in China and Development of Virus-like Particle-Based Vaccine. Viruses 2025; 17:710. [PMID: 40431721 PMCID: PMC12116138 DOI: 10.3390/v17050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is a very virulent virus of the genus Lagovirus causing severe and fatal hepatitis in the European rabbit (Oryctolagus cuniculus). RHDV has two distinct genotypes: GI.1 (RHDV) and GI.2 (RHDV2). The first RHDV2/GI.2 strain was identified as a recombinant virus between a non-pathogenic (GI.3P) and a pathogenic (GI.2) lagovirus, and the recombination is thought to have been a key mechanism in the emergence and evolution of RHDV2. Here, a new variant of RHDV2 was identified affecting domestic rabbits on Chinese farms, with a mortality rate of 70-80%. Phylogenetic analysis indicated that the nonstructural portion of this newly identified strain's genome clustered with the GI.1a variants. In contrast, the capsid gene shared the highest nucleotide identity of 97.9% with the North American GI.2 strains, suggesting a possible introduction in China of North American strains and recombination with the GI.1a strains circulating in China. We have produced a recombinant vaccine using the first Chinese GI.2 strain, SC2020/0401, by cloning the vp60 gene into a baculovirus expression vector. Virus-like particles (VLPs) were then produced in Sf9 insect cells, and a challenge study was performed. Rabbits immunized with the VLP vaccine survived 7 d after being challenged with the new virus. The results indicate that commercial vaccines are urgently required in China to control the circulation of RHDV2 variants.
Collapse
MESH Headings
- Animals
- Hemorrhagic Disease Virus, Rabbit/genetics
- Hemorrhagic Disease Virus, Rabbit/immunology
- Hemorrhagic Disease Virus, Rabbit/isolation & purification
- Hemorrhagic Disease Virus, Rabbit/classification
- Rabbits
- Caliciviridae Infections/veterinary
- Caliciviridae Infections/prevention & control
- Caliciviridae Infections/virology
- China
- Phylogeny
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Recombination, Genetic
- Genome, Viral
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Genotype
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, National Center for Engineering Research of Veterinary Bio-Products, Ministry of Agriculture, Nanjing 210014, China; (B.H.); (Y.S.); (Z.F.)
| | - Wenyu Dong
- College of Animal Science, Xizang Agriculture and Animal Husbandry College, Linzhi 860000, China;
| | - Yanhua Song
- Key Laboratory of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, National Center for Engineering Research of Veterinary Bio-Products, Ministry of Agriculture, Nanjing 210014, China; (B.H.); (Y.S.); (Z.F.)
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Zhiyu Fan
- Key Laboratory of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, National Center for Engineering Research of Veterinary Bio-Products, Ministry of Agriculture, Nanjing 210014, China; (B.H.); (Y.S.); (Z.F.)
- College of Animal Science, Xizang Agriculture and Animal Husbandry College, Linzhi 860000, China;
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Patrizia Cavadini
- WOAH Reference Laboratory for Rabbit Haemorrhagic Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy
| | - Fang Wang
- Key Laboratory of Veterinary Biologicals Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, National Center for Engineering Research of Veterinary Bio-Products, Ministry of Agriculture, Nanjing 210014, China; (B.H.); (Y.S.); (Z.F.)
- College of Animal Science, Xizang Agriculture and Animal Husbandry College, Linzhi 860000, China;
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
2
|
Esteves PJ, Abrantes J, Lopes AM. New Insights into Rabbit Viral Diseases. Viruses 2024; 16:1521. [PMID: 39459856 PMCID: PMC11512326 DOI: 10.3390/v16101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Viruses are responsible for many devastating rabbit diseases that impact their health and welfare and put their conservation and economic revenue at risk [...].
Collapse
Affiliation(s)
- Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (P.J.E.); (J.A.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (P.J.E.); (J.A.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (P.J.E.); (J.A.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| |
Collapse
|
3
|
Smertina E, Keller LM, Huang N, Flores-Benner G, Correa-Cuadros JP, Duclos M, Jaksic FM, Briceño C, Ramirez VN, Díaz-Gacitúa M, Carrasco-Fernández S, Smith IL, Strive T, Jenckel M. First Detection of Benign Rabbit Caliciviruses in Chile. Viruses 2024; 16:439. [PMID: 38543804 PMCID: PMC10974056 DOI: 10.3390/v16030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Pathogenic lagoviruses (Rabbit hemorrhagic disease virus, RHDV) are widely spread across the world and are used in Australia and New Zealand to control populations of feral European rabbits. The spread of the non-pathogenic lagoviruses, e.g., rabbit calicivirus (RCV), is less well studied as the infection results in no clinical signs. Nonetheless, RCV has important implications for the spread of RHDV and rabbit biocontrol as it can provide varying levels of cross-protection against fatal infection with pathogenic lagoviruses. In Chile, where European rabbits are also an introduced species, myxoma virus was used for localised biocontrol of rabbits in the 1950s. To date, there have been no studies investigating the presence of lagoviruses in the Chilean feral rabbit population. In this study, liver and duodenum rabbit samples from central Chile were tested for the presence of lagoviruses and positive samples were subject to whole RNA sequencing and subsequent data analysis. Phylogenetic analysis revealed a novel RCV variant in duodenal samples that likely originated from European RCVs. Sequencing analysis also detected the presence of a rabbit astrovirus in one of the lagovirus-positive samples.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Luca M. Keller
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Gabriela Flores-Benner
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Jennifer Paola Correa-Cuadros
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Melanie Duclos
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
- Centro de Investigación para la Sustentabilidad, Universidad Andrés Bello (CIS-UNAB), Santiago 8370251, Chile
| | - Fabian M. Jaksic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (G.F.-B.); (J.P.C.-C.); (F.M.J.)
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
| | - Cristóbal Briceño
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile; (C.B.); (V.N.R.)
| | - Victor Neira Ramirez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8330111, Chile; (C.B.); (V.N.R.)
| | | | - Sebastián Carrasco-Fernández
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile; (M.D.); (S.C.-F.)
- Magíster en Recursos Naturales, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 440, Santiago 8370251, Chile
| | - Ina L. Smith
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| | - Maria Jenckel
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Black Mountain, Canberra, ACT 2601, Australia; (E.S.); (L.M.K.); (N.H.); (I.L.S.); (T.S.)
| |
Collapse
|
4
|
Krejmer-Rąbalska M, Peplińska M, Szewczyk B, Fitzner A. Serological characterisation of Lagovirus virus-like particles originating from native and mutated VP60 of rabbit haemorrhagic disease virus 2 and European brown hare syndrome virus. J Vet Res 2024; 68:9-17. [PMID: 38525228 PMCID: PMC10960260 DOI: 10.2478/jvetres-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.
Collapse
Affiliation(s)
- Martyna Krejmer-Rąbalska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Marta Peplińska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Bogusław Szewczyk
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
5
|
Almeida T, Lopes AM, Estruch J, Rouco C, Cavadini P, Neimanis A, Gavier-Widén D, Le Gall-Reculé G, Velarde R, Abrantes J. A new HaCV-EBHSV recombinant lagovirus circulating in European brown hares (Lepus europaeus) from Catalonia, Spain. Sci Rep 2024; 14:2872. [PMID: 38311618 PMCID: PMC10838927 DOI: 10.1038/s41598-024-53201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
In 2020/2021, several European brown hare syndrome virus (EBHSV) outbreaks were recorded in European hares (Lepus europaeus) from Catalonia, Spain. Recombination analysis combined with phylogenetic reconstruction and estimation of genetic distances of the complete coding sequences revealed that 5 strains were recombinants. The recombination breakpoint is located within the non-structural protein 2C-like RNA helicase (nucleotide position ~ 1889). For the genomic fragment upstream of the breakpoint, a non-pathogenic EBHSV-related strain (hare calicivirus, HaCV; GII.2) was the most closely related sequence; for the rest of the genome, the most similar strains were the European brown hare syndrome virus (EBHSV) strains recovered from the same 2020/2021 outbreaks, suggesting a recent origin. While the functional impact of the atypical recombination breakpoint remains undetermined, the novel recombinant strain was detected in different European brown hare populations from Catalonia, located 20-100 km apart, and seems to have caused a fatal disease both in juvenile and adult animals, confirming its viability and ability to spread and establish infection. This is the first report of a recombination event involving HaCV and EBHSV and, despite the recombination with a non-pathogenic strain, it appears to be associated with mortality in European brown hares, which warrants close monitoring.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana M Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR, Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Estruch
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Rouco
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Patrizia Cavadini
- WOAH Reference Laboratory for Rabbit Haemorrhagic Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, 75189, Uppsala, Sweden
| | - Dolores Gavier-Widén
- Swedish Veterinary Agency (SVA), 75189, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 75007, Uppsala, Sweden
| | - Ghislaine Le Gall-Reculé
- Avian and Rabbit Virology, Immunology and Parasitology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 22440, Ploufragan, France
| | - Roser Velarde
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.
| |
Collapse
|
6
|
Lopes AM, Abrantes J. On the virome's hidden diversity: lessons from RHDV. mBio 2023; 14:e0197123. [PMID: 37855614 PMCID: PMC10746256 DOI: 10.1128/mbio.01971-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Emerging infectious diseases are a major challenge to human and animal health. While predicting the emergence of pathogens is complex, the advent of high-throughput sequencing technologies has allowed the rapid identification of unknown microbiology diversity within organisms. Here, we discuss an example of a metatranscriptomics output to decipher viral evolution.
Collapse
Affiliation(s)
- Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Hu B, Fan Z, Qiu R, Chen M, Wei H, Song Y, Liu W, Xu W, Wang F. Novel Recombinant Rabbit Hemorrhagic Disease Virus 2 (RHDV2) is Circulating in China within 12 Months after Original RHDV2 Arrival. Transbound Emerg Dis 2023; 2023:4787785. [PMID: 40303780 PMCID: PMC12017194 DOI: 10.1155/2023/4787785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 05/02/2025]
Abstract
Rabbit hemorrhagic disease (RHD) causes lethal fulminant hepatitis in rabbits. Two different genotypes (GI.1 and GI.2) responsible for RHD are reported. GI.2 was first detected in France in 2010 and subsequently spread to other countries in Europe. In April 2020, GI.2 was detected in China. In this study, we report a novel recombinant strain of fatal rabbit hemorrhagic disease virus 2 (RHDV2 or GI.2) detected from domestic rabbits in three provinces in China in 2020-2021. Full-length genomic analysis has revealed that the recombinant virus contained an RHDV2 capsid gene and nonstructural genes from an unclassified lagovirus genotype. This type of virus emerged and circulated throughout China within a year after the initial detection of the original RHDV2. Compared with the original strain, the new virus showed a longer infected time and lower mortality rate but almost the same viral load at the moribund stage of infection. This might have resulted in high virus contamination in the environment, facilitating virus transmission. As the consequences of the presence of novel recombinant strains are unpredictable, the circulation of the novel variant in the population should be carefully monitored in China.
Collapse
Affiliation(s)
- Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Weilong Liu
- Xizang Agriculture and Animal Husbandry College, Linzhi, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
- Xizang Agriculture and Animal Husbandry College, Linzhi, China
| |
Collapse
|
8
|
Shah PT, Bahoussi AN, Yang C, Yao G, Dong L, Wu C, Xing L. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023; 15:815. [PMID: 37112796 PMCID: PMC10143477 DOI: 10.3390/v15040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guanhan Yao
- Department of Molecular Genetics and Development, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Koh EY, Ong J, Wang Y, Toh X, Fernandez CJ, Huangfu T, Hall RN, Toh S, Lim K, Sng W, Lim HP, Ho K, Chang SF, Yap HH. Rabbit haemorrhagic disease virus 2 from Singapore 2020 outbreak revealed an Australian recombinant variant. Virus Evol 2023; 9:vead029. [PMID: 37207001 PMCID: PMC10190043 DOI: 10.1093/ve/vead029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
Rabbit haemorrhagic disease (RHD) is a significant and debilitating viral disease affecting lagomorphs. In September 2020, Singapore reported its first cases of RHD virus (RHDV) infection in domesticated rabbits. The initial findings reported that the outbreak strain belonged to genotype GI.2 (RHDV2/RHDVb), and epidemiological investigations could not identify the definitive source of the virus origin. Further recombination detection and phylogenetic analyses of the Singapore outbreak strain revealed that the RHDV was a GI.2 structural (S)/GI.4 non-structural (NS) recombinant variant. Sequence analyses on the National Centre for Biotechnology Information (NCBI) database showed high homology to recently emerged Australian variants, which were prevalent in local Australian lagomorph populations since 2017. Time-structured and phylogeographic analyses for the S and NS genes revealed a close genetic relationship between the Singapore RHDV strain and the Australian RHDV variants. More thorough epidemiological inquiries are necessary to ascertain how an Australian RHDV was introduced into the Singapore rabbit population, and opportune development of RHDV diagnostics and vaccines will be important to safeguard lagomorphs from future RHDV infection and disease management.
Collapse
Affiliation(s)
| | - Jasmine Ong
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Yifan Wang
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Xinyu Toh
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Charlene Judith Fernandez
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Taoqi Huangfu
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | | | - Steffie Toh
- Centre for Animal & Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Kelvin Lim
- Veterinary Health Management, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Wendy Sng
- Veterinary Health Management, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Hwee Ping Lim
- Veterinary Health Management, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Kelvin Ho
- Veterinary Health Management, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Siow Foong Chang
- Professional and Scientific Services, Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| | - Him Hoo Yap
- Animal and Veterinary Service, National Parks Board (NParks), 1 Cluny Road, Singapore Botanic Gardens 259569, Singapore
| |
Collapse
|
10
|
Chen M, Fan Z, Hu B, Song Y, Wei H, Qiu R, Zhu W, Xu W, Wang F. Pathogenicity of the newly emerged Lagovirus europaeus GI.2 strain in China in experimentally infected rabbits. Vet Microbiol 2021; 265:109311. [PMID: 34965497 DOI: 10.1016/j.vetmic.2021.109311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
In April 2020, rabbit hemorrhagic virus type 2 (Lagovirus europaeus GI.2), which causes highly infectious fatal rabbit hemorrhagic disease, was emerged in China. The phylogenetic analyses of the complete genome sequence of GI.2 showed that it belonged to the non-recombinant GI.3/GI.2 genotype. However, the pathogenicity of this GI.2 strain differed from that of early typical GI.2 strains in Europe. To prevent the spread of the new strain in China, its pathogenicity urgently needs to be studied. Thus, viral shedding and distribution as well as clinical symptoms, histopathological changes, and serum cytokines were studied in experimentally GI.2/SC2020-infected rabbit adults and kits. The kit group showed a shorter survival time after the challenge than the adult group did. The mortality rate was higher in the kits (80 %) than in the adults (30 %). Viral RNA could be detected in both nasal and fecal swabs, and the main dissemination route appeared to be the fecal route. Viral RNA rapidly increased in the blood of the adults and kits at 6 h post-infection, indicating that blood viral load testing can be used for early diagnosis. The most affected organs were the liver and spleen, and the lesions were more severe in the kits than in the adults. The liver contained the highest viral RNA levels. Moreover, serum interleukin (IL)-6, IL-8, IL-10, and tumor necrosis factor-alpha levels were increased in the infected rabbits. In conclusion, our findings will help to understand the evolutionary trends and pathogenic characteristics of GI.2 strains in China.
Collapse
Affiliation(s)
- Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weifeng Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China.
| |
Collapse
|
11
|
Müller C, Hrynkiewicz R, Bębnowska D, Maldonado J, Baratelli M, Köllner B, Niedźwiedzka-Rystwej P. Immunity against Lagovirus europaeus and the Impact of the Immunological Studies on Vaccination. Vaccines (Basel) 2021; 9:vaccines9030255. [PMID: 33805607 PMCID: PMC8002203 DOI: 10.3390/vaccines9030255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
In the early 1980s, a highly contagious viral hemorrhagic fever in rabbits (Oryctolagus cuniculus) emerged, causing a very high rate of mortality in these animals. Since the initial occurrence of the rabbit hemorrhagic disease virus (RHDV), several hundred million rabbits have died after infection. The emergence of genetically-different virus variants (RHDV GI.1 and GI.2) indicated the very high variability of RHDV. Moreover, with these variants, the host range broadened to hare species (Lepus). The circulation of RHDV genotypes displays different virulences and a limited induction of cross-protective immunity. Interestingly, juvenile rabbits (<9 weeks of age) with an immature immune system display a general resistance to RHDV GI.1, and a limited resistance to RHDV GI.2 strains, whereas less than 3% of adult rabbits survive an infection by either RHDV GI.1. or GI.2. Several not-yet fully understood phenomena characterize the RHD. A very low infection dose followed by an extremely rapid viral replication could be simplified to the induction of a disseminated intravascular coagulopathy (DIC), a severe loss of lymphocytes—especially T-cells—and death within 36 to 72 h post infection. On the other hand, in animals surviving the infection or after vaccination, very high titers of RHDV-neutralizing antibodies were induced. Several studies have been conducted in order to deepen the knowledge about the virus’ genetics, epidemiology, RHDV-induced pathology, and the anti-RHDV immune responses of rabbits in order to understand the phenomenon of the juvenile resistance to this virus. Moreover, several approaches have been used to produce efficient vaccines in order to prevent an infection with RHDV. In this review, we discuss the current knowledge about anti-RHDV resistance and immunity, RHDV vaccination, and the further need to establish rationally-based RHDV vaccines.
Collapse
Affiliation(s)
- Claudia Müller
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | | | | | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
- Correspondence: (B.K.); (P.N.-R.)
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
- Correspondence: (B.K.); (P.N.-R.)
| |
Collapse
|
12
|
Recombination at the emergence of the pathogenic rabbit haemorrhagic disease virus Lagovirus europaeus/GI.2. Sci Rep 2020; 10:14502. [PMID: 32879332 PMCID: PMC7468141 DOI: 10.1038/s41598-020-71303-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Rabbit haemorrhagic disease is a viral disease that emerged in the 1980s and causes high mortality and morbidity in the European rabbit (Oryctolagus cuniculus). In 2010, a new genotype of the rabbit haemorrhagic disease virus emerged and replaced the former circulating Lagovirus europaeus/GI.1 strains. Several recombination events have been reported for the new genotype Lagovirus europaeus/GI.2, with pathogenic (variants GI.1a and GI.1b) and benign (genotype GI.4) strains that served as donors for the non-structural part while GI.2 composed the structural part; another recombination event has also been described at the p16/p23 junction involving GI.4 strains. In this study, we analysed new complete coding sequences of four benign GI.3 strains and four GI.2 strains. Phylogenetic and recombination detection analyses revealed that the first GI.2 strains, considered as non-recombinant, resulted from a recombination event between GI.3 and GI.2, with GI.3 as the major donor for the non-structural part and GI.2 for the structural part. Our results indicate that recombination contributed to the emergence, persistence and dissemination of GI.2 as a pathogenic form and that all described GI.2 strains so far are the product of recombination. This highlights the need to study full-genomic sequences of lagoviruses to understand their emergence and evolution.
Collapse
|
13
|
Abrantes J, Lopes AM, Lemaitre E, Ahola H, Banihashem F, Droillard C, Marchandeau S, Esteves PJ, Neimanis A, Le Gall-Reculé G. Retrospective Analysis Shows That Most RHDV GI.1 Strains Circulating Since the Late 1990s in France and Sweden Were Recombinant GI.3P-GI.1d Strains. Genes (Basel) 2020; 11:E910. [PMID: 32784857 PMCID: PMC7464634 DOI: 10.3390/genes11080910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Recombination is one of the major sources of genetic variation in viruses. RNA viruses, such as rabbit hemorrhagic disease virus (RHDV), are among the viruses with the highest recombination rates. Several recombination events have been described for RHDV, mostly as a consequence of their genomic architecture. Here, we undertook phylogenetic and recombination analyses of French and Swedish RHDV strains from 1994 to 2016 and uncovered a new intergenotypic recombination event. This event occurred in the late 1990s/early 2000s and involved nonpathogenic GI.3 strains as donors for the nonstructural part of the genome of these recombinants, while pathogenic GI.1d strains contributed to the structural part. These GI.3P-GI.1d recombinant strains did not entirely replace GI.1d (nonrecombinant) strains, but became the dominant strains in France and Sweden, likely due to a fitness advantage associated with this genomic architecture. GI.3P-GI.1d (P stands for polymerase) strains persisted until 2013 and 2016 in Sweden and France, respectively, and cocirculated with the new genotype GI.2 in France. Since strains from the first GI.2 outbreaks were GI.3P-GI.2, we hypothesize that GI.3P-GI.1d could be the parental strain. Our results confirm the outstanding recombination ability of RHDV and its importance in the evolution of lagoviruses, which was only revealed by studying complete genomic sequences.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Instituto de Ciências Biomédicas Abel Salazar/Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, 4050-313 Porto, Portugal
| | - Evelyne Lemaitre
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Clément Droillard
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Stéphane Marchandeau
- Unité Petite Faune Sédentaire et Espèces Outre-Mer, Direction de la Recherche et de l’Appui Scientifique, Office Français de la Biodiversité (OFB), 44300 Nantes, France;
| | - Pedro J. Esteves
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden
| | - Ghislaine Le Gall-Reculé
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| |
Collapse
|
14
|
Droillard C, Lemaitre E, Chatel M, Quéméner A, Briand FX, Guitton JS, Marchandeau S, Le Pendu J, Eterradossi N, Le Gall-Reculé G. Genetic diversity and evolution of Hare Calicivirus (HaCV), a recently identified lagovirus from Lepus europaeus. INFECTION GENETICS AND EVOLUTION 2020; 82:104310. [PMID: 32243924 DOI: 10.1016/j.meegid.2020.104310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 01/07/2023]
Abstract
First recognized as highly pathogenic viruses, hare lagoviruses belonging to genotype GII.1 (EBHSV) infect various Lepus species. Genetically distinct benign lagoviruses (Hare Calicivirus, HaCV) have recently been identified but few data have been available so far on these strains. The analysis of 199 samples from hunted hares collected throughout France allowed the detection of 20 HaCV and showed that they were widely distributed in this country. Ten HaCV capsid protein gene sequences were characterized. A first HaCV capsid protein structural model was proposed, revealing a global structure similar to that of a pathogenic GII.1 strain. The HaCV sequences showed an even higher genetic diversity than previously appreciated, with the characterization of two genotypes (GII.2, GII.3) and several additional putative genotypes. The most recent common ancestor for HaCV VP60 gene was estimated to be much older than that for GII.1 pathogenic strains. These results give new insights into the phylogenetic relationships of HaCV within the Lagovirus genus.
Collapse
Affiliation(s)
- Clément Droillard
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France.
| | - Evelyne Lemaitre
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France.
| | - Marina Chatel
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France
| | - Agnès Quéméner
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France.
| | - François-Xavier Briand
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France.
| | - Jean-Sébastien Guitton
- Office Français de la Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, Unité Petite Faune Sédentaire et Espèces Outre-Mer, CS 42355, F-44323, Nantes Cedex 3, France.
| | - Stéphane Marchandeau
- Office Français de la Biodiversité (OFB), Direction de la Recherche et de l'Appui Scientifique, Unité Petite Faune Sédentaire et Espèces Outre-Mer, CS 42355, F-44323, Nantes Cedex 3, France.
| | - Jacques Le Pendu
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France.
| | - Nicolas Eterradossi
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France.
| | - Ghislaine Le Gall-Reculé
- Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, BP 53, F-22440, Ploufragan, France.
| |
Collapse
|
15
|
Pinheiro A, de Sousa-Pereira P, Almeida T, Ferreira CC, Otis JA, Boudreau MR, Seguin JL, Lanning DK, Esteves PJ. Sequencing of VDJ genes in Lepus americanus confirms a correlation between VHn expression and the leporid species continent of origin. Mol Immunol 2019; 112:182-187. [PMID: 31174011 DOI: 10.1016/j.molimm.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Leporid VH genes used in the generation of their primary antibody repertoire exhibit highly divergent lineages. For the European rabbit (Oryctolagus cuniculus) four VHa lineages have been described, the a1, a2, a3 and a4. Hares (Lepus spp.) and cottontail (Sylvilagus floridanus) express one VHa lineage each, the a2L and the a5, respectively, along with a more ancient lineage, the Lepus spp. sL and S. floridanus sS. Both the European rabbit and the Lepus europaeus use a third lineage, VHn, in a low proportion of their VDJ rearrangements. The VHn genes are a conserved ancestral polymorphism that is being maintained in the leporid genome.Their usage in a low proportion of VDJ rearrangements by both European rabbit and L. europaeus but not S. floridanus has been argued to be a remnant of an ancient European leporid immunologic response to pathogens. To address this hypothesis, in this study we sequenced VDJ rearranged genes for another North American leporid, L. americanus. Our results show that L. americanus expressed these genes less frequently and in a highly modified fashion compared to the European Lepus species. Our results suggest that the American leporid species use a different VH repertoire than the European species which may be related with an immune adaptation to different environmental conditions, such as different pathogenic agents.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal; Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tereza Almeida
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Catarina C Ferreira
- Department of Biology, Trent University, Peterborough, Ontario, Canada; UFZ - Helmholtz Centre for Environmental Research, Department of Conservation Biology, Leipzig, Germany
| | - Josée-Anne Otis
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | - Jacob L Seguin
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States
| | - Pedro J Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal; Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
16
|
First Complete Genome Sequence of a Hare Calicivirus Strain Isolated from Lepus europaeus. Microbiol Resour Announc 2018; 7:MRA01224-18. [PMID: 30533849 PMCID: PMC6284081 DOI: 10.1128/mra.01224-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
The first full-genome sequence of a hare calicivirus (HaCV), recently characterized as a novel member of the Caliciviridae, is described. This presumed nonpathogenic lagovirus is 7,433 nucleotides long, shows the same genomic organization as that of other lagoviruses, and has the highest nucleotide identity (79%) with pathogenic European brown hare syndrome viruses. The first full-genome sequence of a hare calicivirus (HaCV), recently characterized as a novel member of the Caliciviridae, is described. This presumed nonpathogenic lagovirus is 7,433 nucleotides long, shows the same genomic organization as that of other lagoviruses, and has the highest nucleotide identity (79%) with pathogenic European brown hare syndrome viruses.
Collapse
|
17
|
Pinheiro A, de Sousa-Pereira P, Strive T, Knight KL, Woof JM, Esteves PJ, Abrantes J. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS One 2018; 13:e0201567. [PMID: 30089177 PMCID: PMC6082545 DOI: 10.1371/journal.pone.0201567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of IGHVa1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- * E-mail:
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jenny M. Woof
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pedro J. Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
18
|
First complete genome sequence of a European non-pathogenic rabbit calicivirus (lagovirus GI.3). Arch Virol 2018; 163:2921-2924. [PMID: 29978262 PMCID: PMC6132933 DOI: 10.1007/s00705-018-3901-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/10/2018] [Indexed: 01/24/2023]
Abstract
We report the full genome sequence of the non-pathogenic rabbit lagovirus Lagovirus europaeus/GI.3/O cun/FR/2006/06-11 (GI.3/06-11), collected from a healthy French domestic rabbit in 2006, and initially described as 06-11 strain. The sequence reveals a genomic organization similar to lagoviruses. It was 7,436 bases long and contained two open reading frames (ORF). A dipeptide variation at the potential p23/2C-like helicase cleavage site (EE instead of ED) was observed, a feature only shared with non-recombinant pathogenic lagoviruses in GI.2 and with two European brown hare syndrome viruses (EBHSV) collected in 1982 in Sweden. GI.3/06-11 has only one initiation codon at the beginning of the ORF2 like the avirulent Italian rabbit calicivirus (RCV) and EBHSV. Previous genetic analyses based on the capsid gene sequences showed that GI.3/06-11 was closer to the RCV and pathogenic lagoviruses GI.1 strains than other lagoviruses. This study, by revealing that GI.3/06-11 genome sequence significantly clustered with pathogenic GI.2 strains, gives prominence of new genetic relationship among lagoviruses and should contribute to understand the emergence of pathogenic strains.
Collapse
|
19
|
Detecting European Rabbit ( Oryctolagus cuniculus) Disease Outbreaks by Monitoring Digital Media. J Wildl Dis 2018; 54:544-547. [PMID: 29667872 DOI: 10.7589/2017-05-121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Digital media and digital search tools offer simple and effective means to monitor for pathogens and disease outbreaks in target organisms. Using tools such as Rich Site Summary feeds, and Google News and Google Scholar specific key word searches, international digital media were actively monitored from 2012 to 2016 for pathogens and disease outbreaks in the taxonomic order Lagomorpha, with a specific focus on the European rabbit ( Oryctolagus cuniculus). The primary objective was identifying pathogens for assessment as potential new biocontrol agents for Australia's pest populations of the European rabbit. A number of pathogens were detected in digital media reports. Additional benefits arose in the regular provision of case reports and research on myxomatosis and rabbit haemorrhagic disease virus that assisted with current research.
Collapse
|
20
|
Silvério D, Lopes AM, Melo-Ferreira J, Magalhães MJ, Monterroso P, Serronha A, Maio E, Alves PC, Esteves PJ, Abrantes J. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transbound Emerg Dis 2018; 65:983-992. [DOI: 10.1111/tbed.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- D. Silvério
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - A. M. Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB); Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - J. Melo-Ferreira
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - M. J. Magalhães
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. Monterroso
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - A. Serronha
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - E. Maio
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. C. Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. J. Esteves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - J. Abrantes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| |
Collapse
|
21
|
Host-Specific Glycans Are Correlated with Susceptibility to Infection by Lagoviruses, but Not with Their Virulence. J Virol 2018; 92:JVI.01759-17. [PMID: 29187537 DOI: 10.1128/jvi.01759-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepus europaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.
Collapse
|
22
|
Rouco C, Abrantes J, Serronha A, Lopes AM, Maio E, Magalhães MJ, Blanco E, Bárcena J, Esteves PJ, Santos N, Alves PC, Monterroso P. Epidemiology of RHDV2 (Lagovirus europaeus/GI.2) in free-living wild European rabbits in Portugal. Transbound Emerg Dis 2017; 65:e373-e382. [DOI: 10.1111/tbed.12767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/29/2023]
Affiliation(s)
- C. Rouco
- Departamento de Zoología; Facultad de Ciencias de la Universidad de Córdoba; Córdoba Spain
| | - J. Abrantes
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - A. Serronha
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - A. M. Lopes
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB); Universidade do Porto; Porto Portugal
| | - E. Maio
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - M. J. Magalhães
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - E. Blanco
- Centro de Investigación en Sanidad Animal (INIA-CISA); Valdeolmos Madrid Spain
| | - J. Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA); Valdeolmos Madrid Spain
| | - P. J. Esteves
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
| | - N. Santos
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - P. C. Alves
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. Monterroso
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| |
Collapse
|
23
|
Lopes AM, Silvério D, Magalhães MJ, Areal H, Alves PC, Esteves PJ, Abrantes J. Characterization of old RHDV strains by complete genome sequencing identifies a novel genetic group. Sci Rep 2017; 7:13599. [PMID: 29051566 PMCID: PMC5648873 DOI: 10.1038/s41598-017-13902-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) is a veterinary disease that affects the European rabbit and has a significant economic and ecological negative impact. In Portugal, rabbit hemorrhagic disease virus (RHDV) was reported in 1989 and still causes enzootic outbreaks. Several recombination events have been detected in RHDV strains, including in the first reported outbreak. Here we describe the occurrence of recombination in RHDV strains recovered from rabbit and Iberian hare samples collected in the mid-1990s in Portugal. Characterization of full genomic sequences revealed the existence of a single recombination breakpoint at the boundary of the non-structural and the structural encoding regions, further supporting the importance of this region as a recombination hotspot in lagoviruses. Phylogenetic analysis showed that in the structural region, the recombinant strains were similar to pathogenic G1 strains, but in the non-structural region they formed a new group that diverged ~13% from known strains. No further reports of such group exist, but this recombination event was also detected in an Iberian hare that was associated with the earliest species jump in RHDV. Our results highlight the importance of the characterization of full genomes to disclose RHDV evolution and show that lagoviruses’ diversity has been significantly undersampled.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Diogo Silvério
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Helena Areal
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, 59812, Montana, USA
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| |
Collapse
|
24
|
Le Pendu J, Abrantes J, Bertagnoli S, Guitton JS, Le Gall-Reculé G, Lopes AM, Marchandeau S, Alda F, Almeida T, Célio AP, Bárcena J, Burmakina G, Blanco E, Calvete C, Cavadini P, Cooke B, Dalton K, Delibes Mateos M, Deptula W, Eden JS, Wang F, Ferreira CC, Ferreira P, Foronda P, Gonçalves D, Gavier-Widén D, Hall R, Hukowska-Szematowicz B, Kerr P, Kovaliski J, Lavazza A, Mahar J, Malogolovkin A, Marques RM, Marques S, Martin-Alonso A, Monterroso P, Moreno S, Mutze G, Neimanis A, Niedzwiedzka-Rystwej P, Peacock D, Parra F, Rocchi M, Rouco C, Ruvoën-Clouet N, Silva E, Silvério D, Strive T, Thompson G, Tokarz-Deptula B, Esteves P. Proposal for a unified classification system and nomenclature of lagoviruses. J Gen Virol 2017; 98:1658-1666. [PMID: 28714849 DOI: 10.1099/jgv.0.000840] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.
Collapse
Affiliation(s)
- Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Joana Abrantes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Jean-Sébastien Guitton
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Ghislaine Le Gall-Reculé
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Ploufragan- Plouzané Laboratory, Avian and Rabbit Virology Immunology Parasitology Unit, Ploufragan, France
| | - Ana Margarida Lopes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Stéphane Marchandeau
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Fernando Alda
- Louisiana State University, Museum of Natural Science, 119 Foster Hall, Baton Rouge, USA
| | - Tereza Almeida
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Alves Paulo Célio
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, 32 Campus Drive, Missoula, USA
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Galina Burmakina
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Carlos Calvete
- Animal Production and Health Department, Agrifood Research and Technology Centre of Aragon (CITA). Agrifood Institute of Aragon-IA2 (CITA-Zaragoza University), 50059 Zaragoza, Spain
| | - Patrizia Cavadini
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Brian Cooke
- Invasive Animals Cooperative Research Centre and Institute of Applied Ecology, University of Canberra, Canberra, Australia
| | - Kevin Dalton
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Miguel Delibes Mateos
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Wieslaw Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - John Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, PR China
| | - Catarina C Ferreira
- Department of Biology, Trent University, Peterborough, Ontario, Canada.,Department of Conservation Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Paula Ferreira
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Pilar Foronda
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - David Gonçalves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Dolores Gavier-Widén
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | - Robin Hall
- CSIRO Health & Biosecurity, Canberra, Australia
| | - Beata Hukowska-Szematowicz
- Department of Immunology, University of Szczecin, Faculty of Biology, Z. Felczaka 3c, 71- 412 Szczecin, Poland
| | - Peter Kerr
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - John Kovaliski
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Antonio Lavazza
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Jackie Mahar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia.,Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - Alexander Malogolovkin
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Raquel M Marques
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Sara Marques
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Aaron Martin-Alonso
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - Pedro Monterroso
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sacramento Moreno
- Ethology and Biodiversity Conservation Department, Doñana, Biological Station-CSIC, Américo Vespucio S/N, 41092 Seville, Spain
| | - Greg Mutze
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | | | - David Peacock
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Mara Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Carlos Rouco
- Departamento de Zoología, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Eliane Silva
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Gertrudes Thompson
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Beata Tokarz-Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - Pedro Esteves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| |
Collapse
|
25
|
Fitzner A, Niedbalski W. Phylogenetic analysis of rabbit haemorrhagic disease virus (RHDV) strains isolated in Poland. Arch Virol 2017; 162:3197-3203. [PMID: 28702932 PMCID: PMC5602050 DOI: 10.1007/s00705-017-3476-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to characterise the nucleotide and amino acid sequence of complete genomes (7.5 kb) from RHDV strains isolated in Poland and estimate the genetic variability in different elements of the viral RNA. In addition, the sequence of Polish RHDV isolates isolated from 1988-2015 was compared with the sequences of other European RHDV, including the RHDVa and RHDV2/RHDVb subtypes. The complete sequence was developed by the compilation of partial nucleotide sequences. This sequence consisted of approximately 7428 nucleotides. For comparison of nucleotide sequences and the development of phylogenetic trees of Polish RHDV isolates and reference RHDV strains representing the main phylogenetic groups of classical RHDV, RHDVa and RHDV2 as well as the non-pathogenic rabbit lagovirus RCV, the BLAST software with blastn and MEGA6 with neighbour-joining method was applied. The complete nucleotide sequence of Polish isolates of RHDV has also been entered into GenBank. For comparative analysis, nineteen complete sequences representing the main RHDV genetic types available in GenBank were used. The results of phylogenetic analysis of Polish RHDV strains reveals the presence of three classical RHDV genogroups (G2, G4 and G5) and an RHDVa variant (G6). The oldest RHDV isolates (KGM 1988, PD 1989 and MAL 1994) belong to genogroup G2. It can be assumed that the elimination of these strains from the environment probably occurred at the turn of 1994 and 1995. Genogroup G2 was replaced by the phylogenetically younger BLA 1994 and OPO 2004 strains from genogroup G4, which probably originated from the G3 lineage, represented by the Italian strains BS89. The last representatives of classical RHDV in Poland are isolates GSK 1988 and ZD0 2000 from genogroup G5. A single clade contains the Polish RHDV strains from 2004-2015 (GRZ 2004, KRY 2004, L145 2004, W147 2005, SKO 2013, GLE 2013, RED1 2013, STR 2012, STR2 2013, STR 2014, BIE 2015) identified as RHDVa, which clustered into genogroup G6, as represented by the RHDV strain Triptis 1996. All recent isolated RHDV isolates belong exclusively to RHDVa and no RHDV2 was diagnosed in Poland.
Collapse
Affiliation(s)
- Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute, Wodna 7, 98-220, Zduńska Wola, Poland.
| | - Wieslaw Niedbalski
- Department of Foot and Mouth Disease, National Veterinary Research Institute, Wodna 7, 98-220, Zduńska Wola, Poland
| |
Collapse
|
26
|
Lopes AM, Magalhães MJ, Alves PC, Esteves PJ, Abrantes J. An update on the rabbit hemorrhagic disease virus (RHDV) strains circulating in Portugal in the 1990s: earliest detection of G3-G5 and G6. Arch Virol 2017; 162:2061-2065. [PMID: 28299483 DOI: 10.1007/s00705-017-3318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 01/23/2023]
Abstract
Rabbit hemorrhagic disease virus (RHDV) causes devastating effects on European rabbit (Oryctolagus cuniculus) populations in the Iberian Peninsula. According to the information available, only genogroup 1 strains were circulating in Iberian wild rabbits until 2011; the antigenic variant G6 has been sporadically detected in rabbitries since 2007. Here, we show for the first time that G3-G5 strains were already present in mainland Portugal in 1998 and that G6 has been circulating since at least 1999. Moreover, we report a G3-G5 strain from the Azores collected in 1998, which is the likely ancestor of Azorean G3-G5like strains. These observations improve the current knowledge on RHDV epidemiology in the Iberian Peninsula and the Azores.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| | - Maria J Magalhães
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| |
Collapse
|
27
|
Rocha G, Alda F, Pagés A, Merchán T. Experimental transmission of rabbit haemorrhagic disease virus (RHDV) from rabbit to wild mice (Mus spretus and Apodemus sylvaticus) under laboratory conditions. INFECTION GENETICS AND EVOLUTION 2016; 47:94-98. [PMID: 27871816 DOI: 10.1016/j.meegid.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
Rabbit haemorrhagic disease (RHD) is a highly lethal and contagious viral disease that produces haemorrhagic lesions in liver and lungs of domestic and wild rabbits (Oryctolagus cuniculus). This study investigates the transmission of RHDV from infected rabbits to mice, based on the detection of viral RNA. Sixteen wild mice (Mus spretus, n=12 and Apodemus sylvaticus, n=4) were put in contact with nine rabbits inoculated with RHDV. No mice died following exposure to RHDV-infected rabbits or developed macroscopic haemorrhagic lesions. On the fourth day of contact, RHDV was detected by RT-PCR in the faeces of three of the four mice killed and in the livers of two of them. Three days after contact period with the inoculated rabbits (7th day of the experiment), RHDV was detected by RT-PCR in 100% (n=4) of the faeces and 50% (n=2) of the livers of euthanized animals. Ten days after contact period (14th day of the experiment), RHDV was not detected in the faeces or liver from any of the mice euthanized. However, 64days after contact period, RHDV was detected in the faeces of one mouse (1 of 4). We demonstrate cross-species transmission of RHDV-RNA from rabbit to rodent and the capability of RHDV-RNA to persist in mice for at least 10days after contact, and potentially up to two months, although viral replication within the rodent and/or infectivity was not evaluated in the present study.
Collapse
Affiliation(s)
- Gregorio Rocha
- Agroforestry Department, University of Extremadura, Avda. Virgen del Puerto 2, 10600 Plasencia, Cáceres, Spain.
| | - Fernando Alda
- Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Louisiana State University, Museum of Natural Science, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Albert Pagés
- Laboratorios Hipra S.A., La Selva, 135, 17170 Amer, Girona, Spain; Plaza del Mercado, 10, 17853 Tortella, Girona, Spain
| | - Tomás Merchán
- Agroforestry Department, University of Extremadura, Avda. Virgen del Puerto 2, 10600 Plasencia, Cáceres, Spain
| |
Collapse
|
28
|
Benign Rabbit Caliciviruses Exhibit Evolutionary Dynamics Similar to Those of Their Virulent Relatives. J Virol 2016; 90:9317-29. [PMID: 27512059 DOI: 10.1128/jvi.01212-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Two closely related caliciviruses cocirculate in Australia: rabbit hemorrhagic disease virus (RHDV) and rabbit calicivirus Australia 1 (RCV-A1). RCV-A1 causes benign enteric infections in the European rabbit (Oryctolagus cuniculus) in Australia and New Zealand, while its close relative RHDV causes a highly pathogenic infection of the liver in the same host. The comparison of these viruses provides important information on the nature and trajectory of virulence evolution, particularly as highly virulent strains of RHDV may have evolved from nonpathogenic ancestors such as RCV-A1. To determine the evolution of RCV-A1 we sequenced the full-length genomes of 44 RCV-A1 samples isolated from healthy rabbits and compared key evolutionary parameters to those of its virulent relative, RHDV. Despite their marked differences in pathogenicity and tissue tropism, RCV-A1 and RHDV have evolved in a very similar manner. Both viruses have evolved at broadly similar rates, suggesting that their dynamics are largely shaped by high background mutation rates, and both exhibit occasional recombination and an evolutionary environment dominated by purifying selection. In addition, our comparative analysis revealed that there have been multiple changes in both virulence and tissue tropism in the evolutionary history of these and related viruses. Finally, these new genomic data suggest that either RCV-A1 was introduced into Australia after the introduction of myxoma virus as a biocontrol agent in 1950 or there was drastic reduction of the rabbit population, and hence of RCV-A1 genetic diversity, perhaps coincident with the emergence of myxoma virus. IMPORTANCE The comparison of closely related viruses that differ profoundly in propensity to cause disease in their hosts offers a powerful opportunity to reveal the causes of changes in virulence and to study how such changes alter the evolutionary dynamics of these pathogens. Here we describe such a novel comparison involving two closely related RNA viruses that cocirculate in Australia, the highly virulent rabbit hemorrhagic disease virus (RHDV) and the nonpathogenic rabbit calicivirus Australia 1 (RCV-A1). Both viruses infect the European rabbit, but they differ in virulence, tissue tropism, and mechanisms of transmission. Surprisingly, and despite these fundamental differences, RCV-A1 and RHDV have evolved at very similar (high) rates and with strong purifying selection. Furthermore, candidate key mutations were identified that may play a role in virulence and/or tissue tropism and therefore warrant further investigation.
Collapse
|
29
|
Comparative analysis of rabbit hemorrhagic disease virus strains originating from outbreaks in the Russian Federation. Arch Virol 2016; 161:1973-9. [PMID: 27094306 DOI: 10.1007/s00705-016-2864-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Since the first introduction of rabbit hemorrhagic disease (RHD) in 1986, disease outbreaks have been continuously reported in different regions of Russia. Despite extensive vaccination, sporadic RHD cases are still reported. Here, we examine eleven RHDV strains originating from disease outbreaks occurring between 2003 and 2012 and one widely used vaccine strain. Notable phenotypic and genetic heterogeneity among RHDV strains was observed. The RHDV strains Tambov-2010, Perm-2010, Manihino-09 showed different hemagglutinating activity (HA) at 4 °C and room temperature. While all RHDV field strains were identified as hemagglutinating virulent viruses of the RHDVa variant, the vaccine strain was assigned as a "classical" RHDV. These data indicate that since 2003, RHDVa has become the predominant variant circulating in Russia.
Collapse
|
30
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
31
|
Magalhães V, Abrantes J, Munõz-Pajares AJ, Esteves PJ. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics 2015; 67:579-90. [PMID: 26307416 DOI: 10.1007/s00251-015-0866-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift.
Collapse
Affiliation(s)
- Vanessa Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Antonio Jesús Munõz-Pajares
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Centro de Investigação em Tecnologias da Saúde (CITS), ISPN, CESPU, Gandra, Portugal.
| |
Collapse
|