1
|
Silva FWS, Viol DL, Elliot SL. Juvenile responses to immune challenges are not carried through to subsequent life stages in an insect. Sci Rep 2024; 14:21456. [PMID: 39271717 PMCID: PMC11399141 DOI: 10.1038/s41598-024-72546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Environmental variability can significantly impact individual survival and reproduction. Meanwhile, high population densities can lead to resource scarcity and increased exposure to parasites and pathogens. Studies with insects can offer valuable insights into eco-immunology, allowing us to explore the connections between these variables. Here we use the moth Anticarsia gemmatalis to examine how increases in population density and immunological challenge during the larval stage shape its investment in immune defence and reproduction. Larvae reared at a high population density exhibited greater lytic activity against bacteria compared to those reared at low density, whilst bacterial challenge (i.e. bacteria-immersed needles) also increased lytic activity. There was no interaction between the variables population density and bacterial challenge, indicating that these are independent. Surprisingly, neither increase in lytic activity carried through to activity in prepupal haemolymph. Rearing of larvae at a high density delayed pupation and decreased pupal weight. The immunological stimulus did not significantly influence pupal development. Lower population density as a larva resulted in greater adult weight, but did not significantly influence lytic activity in the eggs or the number of eggs laid. Negative correlations were found between lytic activity in the eggs and the number of eggs, as well as between adult weight and the number of eggs. Overall, this study demonstrates that high population density and immune challenge trigger increased lytic activity in caterpillars, but this effect is transient, not persisting into later stages. The trade-offs observed, such as delayed pupation and reduced prepupal weights under high density, suggest a balancing act between immune investment and developmental aspects. The findings hint at a short-term adaptive response rather than a sustained strategy. The implications of delayed pupation and smaller adult moths could influence the moth's life history strategy, impacting its role in the ecosystem. Further research tracking larval immune investment and subsequent reproductive success will unveil the evolutionary dynamics of this relationship in changing environments.
Collapse
Affiliation(s)
- Farley W S Silva
- Department of Entomology, Universidade Federal de Viçosa (UFV), Av. PH Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil.
- Department of Entomology and Phytopathology, Universidade Federal Rural Do Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| | - Daniel L Viol
- Department of Entomology, Universidade Federal de Viçosa (UFV), Av. PH Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Simon L Elliot
- Department of Entomology, Universidade Federal de Viçosa (UFV), Av. PH Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| |
Collapse
|
2
|
Haraji S, Talaei-Hassanloui R, Ahmed S, Jin G, Lee D, Kim Y. Apolipoprotein D3 and LOX product play a role in immune-priming of a lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105198. [PMID: 38795942 DOI: 10.1016/j.dci.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Immune-priming occurs in insects after a prior pathogen exposure. However, its underlying mechanism in insects remains elusive. In the present work, immune-priming was detected in a lepidopteran insect, Spodoptera exigua. Specifically, a prior infection with a heat-killed pathogenic bacterium, Escherichia coli, led to increased survival upon the second infection of different pathogens. Plasma collected from larvae with the prior infection possessed the immune-priming factor(s) that significantly up-regulated cellular and humoral immune responses of naïve larvae. Our study also finds that variations in the timing of plasma collection for priming larvae resulted in distinct impacts on both cellular and humoral responses. However, when the active plasma exhibiting the immune-priming was heat-treated, it lost this priming activity, therefore suggesting that protein factor(s) play a role in this immune-priming. An immunofluorescence assay showed that the hemocytes collected from the immune-primed larvae highly reacted to a polyclonal antibody specific to a vertebrate lipocalin, apolipoprotein D (ApoD). Among 27 ApoD genes (Se-ApoD1 ∼ Se-ApoD27) of S. exigua, Se-ApoD3 was found to be highly induced during the immune-priming, in which it was shown to be expressed in hemocytes and fat body from a fluorescence in situ hybridization analysis. RNA interference of Se-ApoD3 expression significantly impaired the immune-priming of S. exigua larvae. Moreover, the inhibition of eicosanoid biosynthesis suppressed the immune-priming, in which treatment with a lipoxygenase (LOX) inhibitor-and not treatment with a cyclooxygenase inhibitor-suppressed immune-priming. Further, an addition of LOX product such as lipoxin A4 or lipoxin B4 significantly rescued the lost immune-priming activity. Taken together, these results suggest that a complex of ApoD3 and LOX product mediates the immune-priming activity of S. exigua.
Collapse
Affiliation(s)
- Shiva Haraji
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea; Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Gahyeon Jin
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Donghee Lee
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
3
|
Goerlinger A, Develay C, Balourdet A, Rigaud T, Moret Y. Infection risk by oral contamination does not induce immune priming in the mealworm beetle ( Tenebrio molitor) but triggers behavioral and physiological responses. Front Immunol 2024; 15:1354046. [PMID: 38404577 PMCID: PMC10885348 DOI: 10.3389/fimmu.2024.1354046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
In invertebrates, immune priming is the ability of individuals to enhance their immune response based on prior immunological experiences. This adaptive-like immunity likely evolved due to the risk of repeated infections by parasites in the host's natural habitat. The expression of immune priming varies across host and pathogen species, as well as infection routes (oral or wounds), reflecting finely tuned evolutionary adjustments. Evidence from the mealworm beetle (Tenebrio molitor) suggests that Gram-positive bacterial pathogens play a significant role in immune priming after systemic infection. Despite the likelihood of oral infections by natural bacterial pathogens in T. molitor, it remains debated whether ingestion of contaminated food leads to systemic infection, and whether oral immune priming is possible is currently unknown. We first attempted to induce immune priming in both T. molitor larvae and adults by exposing them to food contaminated with living or dead Gram-positive and Gram-negative bacterial pathogens. We found that oral ingestion of living bacteria did not kill them, but septic wounds caused rapid mortality. Intriguingly, the consumption of either dead or living bacteria did not protect against reinfection, contrasting with injury-induced priming. We further examined the effects of infecting food with various living bacterial pathogens on variables such as food consumption, mass gain, and feces production in larvae. We found that larvae exposed to Gram-positive bacteria in their food ingested less food, gained less mass and/or produced more feces than larvae exposed to contaminated food with Gram-negative bacteria or control food. This suggests that oral contamination with Gram-positive bacteria induced both behavioral responses and peristalsis defense mechanisms, even though no immune priming was observed here. Considering that the oral route of infection neither caused the death of the insects nor induced priming, we propose that immune priming in T. molitor may have primarily evolved as a response to the infection risk associated with wounds rather than oral ingestion.
Collapse
Affiliation(s)
| | | | | | | | - Yannick Moret
- CNRS UMR 6282 Biogéosciences, Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Rutkowski NAJ, McNamara KB, Jones TM, Foo YZ. Trans-generational immune priming is not mediated by the sex of the parent primed: a meta-analysis of invertebrate data. Biol Rev Camb Philos Soc 2023; 98:1100-1117. [PMID: 36879482 DOI: 10.1111/brv.12946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Traditionally, only vertebrates were thought capable of acquired immune responses, such as the ability to transfer immunological experience vertically to their offspring (known as trans-generational immune priming, TGIP). Increasing evidence challenges this belief and it is now clear that invertebrates also have the ability to exhibit functionally equivalent TGIP. This has led to a surge in papers exploring invertebrate TGIP, with most focusing on the costs, benefits or factors that affect the evolution of this trait. Whilst many studies have found support for the phenomenon, not all studies do, and there is considerable variation in the strength of positive results. To address this, we conducted a meta-analysis to answer the question: what is the overall effect of TGIP in invertebrates? Then, to understand the specific factors that affect its presence and intensity, we conducted a moderator analysis. Our results corroborate that TGIP occurs in invertebrates (demonstrated by a large, positive effect size). The strength of the positive effect was related to if and how offspring were immune challenged (i.e. whether they were challenged with the same or different insult as their parents or not challenged at all). Interestingly, there was no effect of the ecology or life history of the species or the sex of the parent or the offspring primed, and responses were comparable across different immune elicitors. Our publication bias testing suggests that the literature may suffer from some level of positive-result bias. However, even after accounting for potential bias, our effect size remains positive. Publication bias testing can be influenced by diversity in the data set, which was considerable in our data, even after moderator analysis. It is therefore conceivable that differences among studies could be caused by other moderators that were unable to be included in our meta-analysis. Nonetheless, our results suggest that TGIP does occur in invertebrates, whilst providing some potential avenues to examine the factors that account for variation in effect sizes.
Collapse
Affiliation(s)
- Nicola-Anne J Rutkowski
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Therésa M Jones
- School of BioSciences, University of Melbourne, Biosciences 4, Royal Parade, Parkville, VIC, 3052, Australia
| | - Yong Zhi Foo
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
5
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
6
|
|
7
|
Cesaro C, Mannozzi C, Lepre A, Ferrocino I, Belleggia L, Corsi L, Ruschioni S, Isidoro N, Riolo P, Petruzzelli A, Savelli D, Milanović V, Cardinali F, Garofalo C, Cocolin L, Aquilanti L, Osimani A. Staphylococcus aureus artificially inoculated in mealworm larvae rearing chain for human consumption: Long-term investigation into survival and toxin production. Food Res Int 2022; 162:112083. [DOI: 10.1016/j.foodres.2022.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
|
8
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Senescence of the immune defences and reproductive trade-offs in females of the mealworm beetle, Tenebrio molitor. Sci Rep 2022; 12:19747. [PMID: 36396809 PMCID: PMC9671880 DOI: 10.1038/s41598-022-24334-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
In the theory of ageing, it has been assumed that ageing is associated with a decline in somatic defences, including the immune system, as a consequence of a trade-off with reproduction. While overall immunity suffers from age-related deterioration (immune senescence), the different components of the immune response appear to age differently. It is also likely that investment among the many arms of the immune system and reproduction with age is finely adjusted to the organisms' reproductive strategy. We investigated this possibility in females of Tenebrio molitor, a species of long-lived insect with reproductive strategies similar to those of long-lived mammals. We specifically tested the effects of immunological challenges imposed early or late in adult life on immune pathway activation as well as fertility early and late in life. We found complex patterns of changes in immune defences with age and age-specific immune challenges with contrasted relationships with female reproduction. While cellular and enzymatic defences showed signs of ageing, they did not trade-off with reproduction. By contrast, the induced antibacterial immune response was found to be unaffected by age and to be highly connected to female fecundity. These findings suggest that these immunological pathways have different functions with regard to female ageing in this insect species.
Collapse
Affiliation(s)
- Charly Jehan
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Camille Sabarly
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Thierry Rigaud
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Yannick Moret
- Laboratoire BioGéoSciences, UMR CNRS 6282, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
9
|
González-Acosta S, Baca-González V, Asensio-Calavia P, Otazo-Pérez A, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Efficient Oral Priming of Tenebrio molitor Larvae Using Heat-Inactivated Microorganisms. Vaccines (Basel) 2022; 10:vaccines10081296. [PMID: 36016184 PMCID: PMC9415734 DOI: 10.3390/vaccines10081296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microbial resistance is a global health problem that will increase over time. Advances in insect antimicrobial peptides (AMPs) offer a powerful new approach to combat antimicrobial resistance. Invertebrates represent a rich group of animals for the discovery of new antimicrobial agents due to their high diversity and the presence of adaptive immunity or “immune priming”. Here, we report a priming approach for Tenebrio molitor that simulates natural infection via the oral route. This oral administration has the advantage of minimizing the stress caused by conventional priming techniques and could be a viable method for mealworm immunity studies. When using inactivated microorganisms for oral priming, our results showed an increased survival of T. molitor larvae after exposure to various pathogens. This finding was consistent with the induction of antimicrobial activity in the hemolymph of primed larvae. Interestingly, the hemolymph of larvae orally primed with Escherichia coli showed constitutive activity against Staphylococcus aureus and heterologous activity for other Gram-negative bacteria, such as Salmonella enterica. The priming of T. molitor is generally performed via injection of the microorganism. To our knowledge, this is the first report describing the oral administration of heat-inactivated microorganisms for priming mealworms. This technique has the advantage of reducing the stress that occurs with the conventional methods for priming vertebrates.
Collapse
Affiliation(s)
- Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Correspondence: ; Tel.: +34-922-474334
| |
Collapse
|
10
|
Koutsos E, Modica B, Freel T. Immunomodulatory potential of black soldier fly larvae: applications beyond nutrition in animal feeding programs. Transl Anim Sci 2022; 6:txac084. [PMID: 35854966 PMCID: PMC9280983 DOI: 10.1093/tas/txac084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Insect-derived ingredients, including whole larvae, protein-rich meal, and oil, have been extensively studied in recent years and shown to be a sustainable source of quality nutrition for virtually all animal species and life stages. In addition to the ability to use these ingredients as a source of essential nutrition, more recent research has demonstrated the potential for the immunomodulatory activity of various components of insect-derived ingredients. For all insects studied, antimicrobial peptides make up a critical part of the insects’ innate immune system and these peptides have antimicrobial efficacy when purified from hemolymph and tested in vitro. From black soldier fly larvae, in particular, lauric acid is a predominant fatty acid deposited into the insect, and lauric acid also has potential antimicrobial activity in vitro and in vivo. Finally, the chitin and chitosan components of the insect exoskeleton may modulate microbial activity in a variety of ways. In companion animals, poultry, and livestock species, insect-derived ingredients have shown the potential to reduce the impact of actual or simulated disease challenge on several parameters of animal health and well-being. This review describes the current state of knowledge of the immunomodulatory potential of insect-derived ingredients.
Collapse
Affiliation(s)
| | - Bree Modica
- EnviroFlight, LLC , 1118 Progress Way, Maysville, KY 41056 , USA
| | - Tarra Freel
- EnviroFlight, LLC , 1118 Progress Way, Maysville, KY 41056 , USA
| |
Collapse
|
11
|
Zhang H, Tan AR, Li PJ, Lu SP, Jia QC, Huang SN, Bai J, Hou YM. A specific primed immune response in red palm weevil, Rhynchophorus ferrugineus, is mediated by hemocyte differentiation and phagocytosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104380. [PMID: 35245605 DOI: 10.1016/j.dci.2022.104380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Red palm weevil, Rhynchophorus ferrugineus, is an invasive and destructive pest that causes serious damages to palm trees. Like other invertebrates, red palm weevil relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming the red palm weevil larvae with heat-killed Bacillus thuringiensis specifically increased survival of the larvae during a secondary lethal infection with live bacteria, and B. thuringiensis primed larvae also showed a higher clearance efficiency for this bacterium, which indicated that the red palm weevil larvae possessed a strong immune priming response. The degree of enhanced immune protection was positively correlated with hemocyte proliferation and the level of phagocytic ability of hemocytes. Moreover, the red palm weevil larvae primed by B. thuringiensis induced the continuous synthesis of serotonin in the hemolymph, which in turn enhanced the phagocytic ability and pathogen clearance ability of the host, representing an important mechanism for the red palm weevil to achieve priming protection. Our findings reveal a specific immune priming of the red palm weevil larvae mediated by the continuous secretion of serotonin, and provide new insights into the mechanisms of invertebrates immune priming.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi, 034000, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - An-Ran Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Peng-Ju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Sheng-Ping Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Qing-Chen Jia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Shu-Ning Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Juan Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| |
Collapse
|
12
|
Harish E, Osherov N. Fungal Priming: Prepare or Perish. J Fungi (Basel) 2022; 8:jof8050448. [PMID: 35628704 PMCID: PMC9145559 DOI: 10.3390/jof8050448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/06/2023] Open
Abstract
Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.
Collapse
|
13
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
14
|
Paraskevopoulou S, Gattis S, Ben-Ami F. Parasite resistance and parasite tolerance: insights into transgenerational immune priming in an invertebrate host. Biol Lett 2022; 18:20220018. [PMID: 35382587 PMCID: PMC8984330 DOI: 10.1098/rsbl.2022.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Parasites impose different selection regimes on their hosts, which respond by increasing their resistance and/or tolerance. Parental challenge with parasites can enhance the immune response of their offspring, a phenomenon documented in invertebrates and termed transgenerational immune priming. We exposed two parental generations of the model organism Daphnia magna to the horizontally transmitted parasitic yeast Metschnikowia bicuspidata and recorded resistance- and tolerance-related traits in the offspring generation. We hypothesized that parentally primed offspring will increase either their resistance or their tolerance to the parasite. Our susceptibility assays revealed no impact of parental exposure on offspring resistance. Nonetheless, different fitness-related traits, which are indicative of tolerance, were altered. Specifically, maternal priming increased offspring production and decreased survival. Grandmaternal priming positively affected age at first reproduction and negatively affected brood size at first reproduction. Interestingly, both maternal and grandmaternal priming significantly reduced within-host-parasite proliferation. Nevertheless, Daphnia primed for two consecutive generations had no competitive advantage in comparison to unprimed ones, implying additive maternal and grandmaternal effects. Our findings do not support evidence of transgenerational immune priming from bacterial infections in the same host species, thus, emphasizing that transgenerational immune responses may not be consistent even within the same host species.
Collapse
Affiliation(s)
- Sofia Paraskevopoulou
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Sabrina Gattis
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Frida Ben-Ami
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
15
|
Acuña Hidalgo B, Armitage SAO. Host Resistance to Bacterial Infection Varies Over Time, but Is Not Affected by a Previous Exposure to the Same Pathogen. Front Physiol 2022; 13:860875. [PMID: 35388288 PMCID: PMC8979062 DOI: 10.3389/fphys.2022.860875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immune priming describes the phenomenon whereby after a primary pathogen exposure, a host more effectively fights a lethal secondary exposure (challenge) to the same pathogen. Conflicting evidence exists for immune priming in invertebrates, potentially due to heterogeneity across studies in the pathogen species tested, the antigen preparation for the primary exposure, and the phenotypic trait used to test for priming. To explore these factors, we injected Drosophila melanogaster with one of two bacterial species, Lactococcus lactis or Providencia burhodogranariea, which had either been heat-killed or inactivated with formaldehyde, or we injected a 1:1 mixture of the two inactivation methods. Survival and resistance (the inverse of bacterial load) were assessed after a live bacterial challenge. In contrast to our predictions, none of the primary exposure treatments provided a survival benefit after challenge compared to the controls. Resistance in the acute phase, i.e., 1 day post-challenge, separated into a lower- and higher-load group, however, neither group varied according to the primary exposure. In the chronic phase, i.e., 7 days post-challenge, resistance did not separate into two groups, and it was also unaffected by the primary exposure. Our multi-angled study supports the view that immune priming may require specific circumstances to occur, rather than it being a ubiquitous aspect of insect immunity.
Collapse
|
16
|
Ali Mohammadie Kojour M, Baliarsingh S, Jang HA, Yun K, Park KB, Lee JE, Han YS, Patnaik BB, Jo YH. Current knowledge of immune priming in invertebrates, emphasizing studies on Tenebrio molitor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104284. [PMID: 34619174 DOI: 10.1016/j.dci.2021.104284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates rely on the most sophisticated adaptive immunity to defend themselves against various pathogens. This includes immunologic memory cells, which mount a stronger and more effective immune response against an antigen after its first encounter. Unlike vertebrates, invertebrates' defense completely depends on the innate immunity mechanisms including humoral and cell-mediated immunity. Furthermore, the invertebrate equivalent of the memory cells was discovered only recently. Since the discovery of transgenerational immune priming (TGIP) in crustaceans, numerous findings have proven the IP in invertebrate classes such as insects. TGIP can be induced through maternal priming pathways such as transcriptional regulation of antimicrobial peptides, and also paternal IP including the induction of proPO system activity. We appraise the diversity and specificity of IP agents to provide sustained immunologic memory in insects, particularly T. molitor in the review. An understanding of IP (more so TGIP) response in T. molitor will deepen our knowledge of invertebrate immunity, and boost the mass-rearing industry by reducing pathogen infection rates.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Keunho Yun
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Ki Beom Park
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jong Eun Lee
- Department of Biological Science and Biotechnology, Andong National University, Andong, 36729, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Bharat Bhusan Patnaik
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, 756089, India.
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
17
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
18
|
Vilcinskas A. Mechanisms of transgenerational immune priming in insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104205. [PMID: 34260954 DOI: 10.1016/j.dci.2021.104205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Parents invest in their offspring by preparing them for defense against pathogens and parasites that only the parents have encountered, a phenomenon known as transgenerational immune priming (TGIP). The priming effect can be passed maternally or paternally to the next generation, thus increasing the survival of offspring exposed to the same pathogen. The scope of the resulting immune response can be narrow (primarily targeting the triggering pathogen) or much more general, depending on the underlying mechanism. Maternal TGIP is often narrowly focused because the major mechanism is the transfer of microbes or fragments thereof, encountered by mothers at the larval stage, to the developing eggs along with the uptake of lipophorins and vitellogenins. This induces the expression of zygotic defense genes, including those encoding antimicrobial peptides (AMPs), comparable to the defenses observed in the larvae and adults. Maternal TGIP does not appear to involve the direct vertical transmission of immunity-related effectors such as AMPs (or the corresponding mRNAs) to the eggs. Parental investment in offspring is also mediated by epigenetic mechanisms such as DNA methylation, histone acetylation and microRNA expression, which can be imprinted on the gametes by either parent without changes in the DNA sequence. Epigenetic inheritance is the only known mechanism of paternal TGIP, and results in a more general fortification of the immune response. This review considers the mechanistic basis of TGIP, its role in evolutionary processes such as the establishment of resistance against pathogens, and the impact of pathogens and parasites on the epigenetic machinery of host insects.
Collapse
Affiliation(s)
- Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany; Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
19
|
Jehan C, Sabarly C, Rigaud T, Moret Y. Age-specific fecundity under pathogenic threat in an insect: Terminal investment versus reproductive restraint. J Anim Ecol 2021; 91:101-111. [PMID: 34626485 DOI: 10.1111/1365-2656.13604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
The terminal investment hypothesis predicts that as an organism's prospects for survival decrease, through age or when exposed to a pathogenic infection, it will invest more in reproduction, which should trade-off against somatic maintenance (including immunity) and therefore future survival. Attempts to test this hypothesis have produced mixed results, which, in addition, mainly rely on the assessment of changes in reproductive effort and often overlooking its impact on somatic defences and survival. Alternatively, animals may restrain current reproduction to sustain somatic protection, increasing the chance of surviving for additional reproductive opportunities. We tested both of these hypotheses in females of the yellow mealworm beetle, Tenebrio molitor, an iteroparous insect with reproductive tactics similar to that of long-lived organisms. To achieve this, we mimicked pathogenic bacterial infections early or late in the life of breeding females by injecting them with a suspension of inactivated Bacillus cereus, a known natural pathogen of T. molitor, and measured female age-specific fecundity, survival, body mass and immunity. Inconsistent with a terminal investment, females given either an early or late-life immune challenge did not exhibit reduced survival or enhance their reproductive output. Female fecundity declined with age and was reduced by the early but not the late immune challenge. Both early and late-life fecundity correlated positively with life expectancy. Finally, young and old females exhibited similar antibacterial immune responses, suggesting that they both restrained reproduction to sustain immunity. Our results clearly demonstrate that age-specific reproduction of T. molitor females under pathogenic threat is inconsistent with a terminal investment. In contrast, our results instead suggest that females used a reproductive restraint strategy to sustain immunity and therefore subsequent reproductive opportunities. However, as infections were mimicked only, the fitness benefit of this reproductive restraint could not be shown.
Collapse
Affiliation(s)
- Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Camille Sabarly
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
20
|
Willis AR, Zhao W, Sukhdeo R, Wadi L, El Jarkass HT, Claycomb JM, Reinke AW. A parental transcriptional response to microsporidia infection induces inherited immunity in offspring. SCIENCE ADVANCES 2021; 7:7/19/eabf3114. [PMID: 33952520 PMCID: PMC8099193 DOI: 10.1126/sciadv.abf3114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/17/2021] [Indexed: 05/05/2023]
Abstract
Parental infection can result in the production of offspring with enhanced immunity phenotypes. Critically, the mechanisms underlying inherited immunity are poorly understood. Here, we show that Caenorhabditis elegans infected with the intracellular microsporidian parasite N. parisii produce progeny that are resistant to microsporidia infection. We determine the kinetics of the response and show that intergenerational immunity prevents host-cell invasion by Nematocida parisii and enhances survival to the bacterial pathogen Pseudomonas aeruginosa We demonstrate that immunity is induced by the parental transcriptional response to infection, which can be mimicked through maternal somatic depletion of PALS-22 and the retinoblastoma protein ortholog, LIN-35. We find that other biotic and abiotic stresses (viral infection and cadmium exposure) that induce a similar transcriptional response as microsporidia also induce immunity in progeny. Together, our results reveal how a parental transcriptional signal can be induced by distinct stimuli and protect offspring against multiple classes of pathogens.
Collapse
Affiliation(s)
- Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Ronesh Sukhdeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Sheehan G, Margalit A, Sheehan D, Kavanagh K. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104213. [PMID: 33662378 DOI: 10.1016/j.jinsphys.2021.104213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Some insects display immunological priming as a result of elevated humoral and cellular responses which give enhanced survival against subsequent infection. The humoral immune response of Galleria mellonella larvae following pre-exposure to heat killed Staphylococcus aureus or Candida albicans cells was determined by quantitative mass spectrometry in order to assess the relationship between the humoral immune response and resistance to subsequent bacterial or fungal infection. Larvae pre-exposed to heat killed S. aureus showed increased resistance to subsequent bacterial and fungal infection. Larvae displayed an increased hemocyte density (14.08 ± 2.14 × 106 larva-1 (p < 0.05) compared to the PBS injected control [10.41 ± 1.67 × 106 larva-1]) and increased abundance of antimicrobial proteins (cecropin-D-like peptide (+22.23 fold), hdd11 (+12.61 fold) and prophenol oxidase activating enzyme 3 (+5.96 fold) in response to heat killed S. aureus. Larvae pre-exposed to heat killed C. albicans cells were resistant to subsequent fungal infection but not bacterial infection and showed a reduced hemocyte density (6.01 ± 1.63 × 106 larva-1 (p < 0.01) and increased abundance of hdd11 (+32.73 fold) and moricin-like peptide C1 (+16.76 fold). While immune priming is well recognised in G. mellonella larvae the results presented here indicate distinct differences in the response of larvae following exposure to heat killed bacterial and fungal cells.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
22
|
Leponiemi M, Amdam GV, Freitak D. Exposure to Inactivated Deformed Wing Virus Leads to Trans-Generational Costs but Not Immune Priming in Honeybees (Apis mellifera). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathogens are identified as one of the major drivers behind the honeybee colony losses, as well as one of the reasons for the reported declines in terrestrial insect abundances in recent decades. To fight infections, animals rely on their immune system. The immune system of many invertebrates can be primed by exposure to a pathogen, so that upon further exposure the animal is better protected. The protective priming effect can even extend to the next generation, but the species capable of priming the immune system of their offspring are still being investigated. Here we studied whether honeybees could prime their offspring against a viral pathogen, by challenging honeybee queens orally with an inactivated deformed wing virus (DWV), one of the most devastating honeybee viruses. The offspring were then infected by viral injection. The effects of immune priming were assayed by measuring viral loads and two typical symptoms of the virus, pupal mortality, and abnormal wing phenotype. We saw a low amount of wing deformities and low pupal mortality. While no clear priming effect against the virus was seen, we found that the maternal immune challenge, when combined with the stress caused by an injection during development, manifested in costs in the offspring, leading to an increased number of deformed wings.
Collapse
|
23
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
24
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
25
|
Tetreau G, Dhinaut J, Galinier R, Audant-Lacour P, Voisin SN, Arafah K, Chogne M, Hilliou F, Bordes A, Sabarly C, Chan P, Walet-Balieu ML, Vaudry D, Duval D, Bulet P, Coustau C, Moret Y, Gourbal B. Deciphering the molecular mechanisms of mother-to-egg immune protection in the mealworm beetle Tenebrio molitor. PLoS Pathog 2020; 16:e1008935. [PMID: 33057453 PMCID: PMC7591081 DOI: 10.1371/journal.ppat.1008935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.
Collapse
Affiliation(s)
- Guillaume Tetreau
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Julien Dhinaut
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Pascaline Audant-Lacour
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | | | - Karim Arafah
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
| | - Manon Chogne
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Frédérique Hilliou
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Anaïs Bordes
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Camille Sabarly
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marie-Laure Walet-Balieu
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Vaudry
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Philippe Bulet
- Plateforme BioPark d'Archamps, ArchParc, Saint Julien en Genevois, France
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, La Tronche, France
| | - Christine Coustau
- CNRS, INRAE, Université Nice Côte d’Azur, UMR 1355–7254 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
26
|
Amiri E, Herman JJ, Strand MK, Tarpy DR, Rueppell O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. INFECTION GENETICS AND EVOLUTION 2020; 85:104558. [PMID: 32947033 DOI: 10.1016/j.meegid.2020.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Trans-generational disease effects include vertical pathogen transmission but also immune priming to enhance offspring immunity. Accordingly, the survival consequences of maternal virus infection can vary and its molecular consequences during early development are poorly understood. The honey bee queen is long-lived and represents the central hub for vertical virus transmission as the sole reproductive individual in her colony. Even though virus symptoms in queens are mild, viral infection may have severe consequences for the offspring. Thus, transcriptome patterns during early developmental are predicted to respond to maternal virus infection. To test this hypothesis, gene expression patterns were compared among pooled honey bee eggs laid by queens that were either infected with Deformed wing virus (DWV1), Sacbrood virus (SBV2), both viruses (DWV and SBV), or no virus. Whole transcriptome analyses revealed significant expression differences of a few genes, some of which have hitherto no known function. Despite the paucity of single gene effects, functional enrichment analyses revealed numerous biological processes in the embryos to be affected by virus infection. Effects on several regulatory pathways were consistent with maternal responses to virus infection and correlated with responses to DWV and SBV in honey bee larvae and pupae. Overall, effects on egg transcriptome patterns were specific to each virus and the results of dual-infection samples suggested synergistic effects of DWV and SBV. We interpret our results as consequences of maternal infections. Thus, this first study to document and characterize virus-associated changes in the transcriptome of honey bee eggs represents an important contribution to understanding trans-generational virus effects, although more in-depth studies are needed to understand the detailed mechanisms of how viruses affect honey bee embryos.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jacob J Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, Durham, NC 27709, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
27
|
Bernier C, Boidin-Wichlacz C, Tasiemski A, Hautekèete N, Massol F, Cuvillier-Hot V. Transgenerational Immune Priming in the Field: Maternal Environmental Experience Leads to Differential Immune Transfer to Oocytes in the Marine Annelid Hediste diversicolor. Genes (Basel) 2019; 10:genes10120989. [PMID: 31805627 PMCID: PMC6947409 DOI: 10.3390/genes10120989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Transgenerational immune priming (TGIP) is an intriguing form of parental care which leads to the plastic adjustment of the progeny’s immunity according to parental immune experience. Such parental effect has been described in several vertebrate and invertebrate taxa. However, very few empirical studies have been conducted from the field, with natural host-parasite systems and real ecological settings, especially in invertebrates. We investigated TGIP in wild populations of the marine annelid Hediste diversicolor. Females laid eggs in a mud tube and thus shared the local microbial threats with the first developmental stages, thus meeting expectations for the evolution of TGIP. We evidenced that a maternal bacterial challenge led to the higher antibacterial defense of the produced oocytes, with higher efficiency in the case of Gram-positive bacterial challenge, pointing out a prevalent role of these bacteria in the evolutionary history of TGIP in this species. Underlying mechanisms might involve the antimicrobial peptide hedistin that was detected in the cytoplasm of oocytes and whose mRNAs were selectively stored in higher quantity in mature oocytes, after a maternal immune challenge. Finally, maternal immune transfer was significantly inhibited in females living in polluted areas, suggesting associated costs and the possible trade-off with female’s protection.
Collapse
Affiliation(s)
- Clémentine Bernier
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Céline Boidin-Wichlacz
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Aurélie Tasiemski
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nina Hautekèete
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - François Massol
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Virginie Cuvillier-Hot
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- Correspondence:
| |
Collapse
|
28
|
Tetreau G, Dhinaut J, Gourbal B, Moret Y. Trans-generational Immune Priming in Invertebrates: Current Knowledge and Future Prospects. Front Immunol 2019; 10:1938. [PMID: 31475001 PMCID: PMC6703094 DOI: 10.3389/fimmu.2019.01938] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023] Open
Abstract
Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Benjamin Gourbal
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
29
|
Liu C, Ji P, Timper P. Maternal Stress Reduces the Susceptibility of Root-Knot Nematodes to Pasteuria Penetrans. J Nematol 2019; 51:e2019-40. [PMID: 34179816 PMCID: PMC6916145 DOI: 10.21307/jofnem-2019-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/11/2022] Open
Abstract
Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and complete their life cycle within the nematode female body. Infected females will be filled with spores and will be sterilized. Studies with Daphnia magna and its parasite Pasteuria ramosa showed that a poor maternal environment can lead to offspring resistant to P. ramosa. Therefore, we hypothesized that Meloidogyne arenaria females raised under a stressed environment would produce offspring that were more resistant to P. penetrans. Females were exposed to a stressed environment created by crowding and low-food supply, or a non-stressed environment and their offspring evaluated for endospore attachment and infection by P. penetrans. No difference in spore attachment was observed between the two treatments. However, infection rate of P. penetrans in the stressed treatment was significantly lower than that in the non-stressed treatment (8 vs 18%). Mothers raised under stressed conditions appeared to produce more resistant offspring than did mothers raised under favorable conditions. Under stressful conditions, M. arenaria mothers may provide their progeny with enhanced survival traits. In the field, when nematode populations are not managed, they often reach the carrying capacity of their host plant by the end of the season. This study suggests that the next generation of inoculum may be more resistant to infection by P. penetrans.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
- Entomology and Nematology Department, 1881 Natural Area Dr, Gainesville, FL 32611
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
| | | |
Collapse
|
30
|
Vigneron A, Jehan C, Rigaud T, Moret Y. Immune Defenses of a Beneficial Pest: The Mealworm Beetle, Tenebrio molitor. Front Physiol 2019; 10:138. [PMID: 30914960 PMCID: PMC6422893 DOI: 10.3389/fphys.2019.00138] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/04/2022] Open
Abstract
The mealworm beetle, Tenebrio molitor, is currently considered as a pest when infesting stored grains or grain products. However, mealworms are now being promoted as a beneficial insect because their high nutrient content makes them a viable food source and because they are capable of degrading polystyrene and plastic waste. These attributes make T. molitor attractive for mass rearing, which may promote disease transmission within the insect colonies. Disease resistance is of paramount importance for both the control and the culture of mealworms, and several biotic and abiotic environmental factors affect the success of their anti-parasitic defenses, both positively and negatively. After providing a detailed description of T. molitor's anti-parasitic defenses, we review the main biotic and abiotic environmental factors that alter their presentation, and we discuss their implications for the purpose of controlling the development and health of this insect.
Collapse
Affiliation(s)
- Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Charly Jehan
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Thierry Rigaud
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
31
|
Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas A. Epigenetic Mechanisms Are Involved in Sex-Specific Trans-Generational Immune Priming in the Lepidopteran Model Host Manduca sexta. Front Physiol 2019; 10:137. [PMID: 30886585 PMCID: PMC6410660 DOI: 10.3389/fphys.2019.00137] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Parents invest in their offspring by transmitting acquired resistance against pathogens that only the parents have encountered, a phenomenon known as trans-generational immune priming (TGIP). Examples of TGIP are widespread in the animal kingdom. Female vertebrates achieve TGIP by passing antibodies to their offspring, but the mechanisms of sex-specific TGIP in invertebrates are unclear despite increasing evidence suggesting that both male-specific and female-specific TGIP occurs in insects. We used the tobacco hornworm (Manduca sexta) to investigate sex-specific TGIP in insects because it is a model host for the analysis of insect immunity and the complete genome sequence is available. We found that feeding larvae with non-pathogenic Escherichia coli or the entomopathogen Serratia entomophila triggered immune responses in the infected host associated with shifts in both DNA methylation and histone acetylation. Maternal TGIP was mediated by the translocation of bacterial structures from the gut lumen to the eggs, resulting in the microbe-specific transcriptional reprogramming of genes encoding immunity-related effector molecules and enzymes involved in the regulation of histone acetylation as well as DNA methylation in larvae of the F1 generation. The third-instar F1 larvae displayed sex-specific differences in the expression profiles of immunity-related genes and DNA methylation. We observed crosstalk between histone acetylation and DNA methylation, which mediated sex-specific immune responses in the F1 generation derived from parents exposed to a bacterial challenge. Multiple routes for TGIP seem to exist in M. sexta and – partially sex-specific – effects in the offspring depend on the microbial exposure history of their parents. Crucially, the entomopathogen S. entomophila appears to be capable of interfering with TGIP in the host.
Collapse
Affiliation(s)
- Jasmin Gegner
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Arne Baudach
- Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| | - Krishnendu Mukherjee
- Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| | - Rayko Halitschke
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Faculty of Agricultural Sciences, Nutritional Sciences, and Environmental Management, Justus-Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
32
|
Fukuda A, Usui M, Okamura M, Dong-Liang H, Tamura Y. Role of Flies in the Maintenance of Antimicrobial Resistance in Farm Environments. Microb Drug Resist 2019; 25:127-132. [DOI: 10.1089/mdr.2017.0371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Masashi Okamura
- Laboratory of Zoonoses, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Hu Dong-Liang
- Laboratory of Zoonoses, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| |
Collapse
|
33
|
Zirbel KE, Alto BW. Maternal and paternal nutrition in a mosquito influences offspring life histories but not infection with an arbovirus. Ecosphere 2018. [DOI: 10.1002/ecs2.2469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kylie E. Zirbel
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| |
Collapse
|
34
|
Interaction between Insects, Toxins, and Bacteria: Have We Been Wrong So Far? Toxins (Basel) 2018; 10:toxins10070281. [PMID: 29986377 PMCID: PMC6070883 DOI: 10.3390/toxins10070281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Toxins are a major virulence factor produced by many pathogenic bacteria. In vertebrates, the response of hosts to the bacteria is inseparable from the response to the toxins, allowing a comprehensive understanding of this tripartite host-pathogen-toxin interaction. However, in invertebrates, this interaction has been investigated by two complementary but historically distinct fields of research: toxinology and immunology. In this article, I highlight how such dichotomy between these two fields led to a biased, or even erroneous view of the ecology and evolution of the interaction between insects, toxins, and bacteria. I focus on the reason behind such a dichotomy, on how to bridge the fields together, and on confounding effects that could bias the outcome of the experiments. Finally, I raise four questions at the border of the two fields on the cross-effects between toxins, bacteria, and spores that have been largely underexplored to promote a more comprehensive view of this interaction.
Collapse
|
35
|
Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity (Edinb) 2018; 121:225-238. [PMID: 29915335 DOI: 10.1038/s41437-018-0101-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Parental experience with parasites and pathogens can lead to increased offspring resistance to infection, through a process known as transgenerational immune priming (TGIP). Broadly defined, TGIP occurs across a wide range of taxa, and can be viewed as a type of phenotypic plasticity, with hosts responding to the pressures of relevant local infection risk by altering their offspring's immune defenses. There are ever increasing examples of both invertebrate and vertebrate TGIP, which go beyond classical examples of maternal antibody transfer. Here we critically summarize the current evidence for TGIP in both invertebrates and vertebrates. Mechanisms underlying TGIP remain elusive in many systems, but while it is unlikely that they are conserved across the range of organisms with TGIP, recent insight into epigenetic modulation may challenge this view. We place TGIP into a framework of evolutionary ecology, discussing costs and relevant environmental variation. We highlight how the ecology of species or populations should affect if, where, when, and how TGIP is realized. We propose that the field can progress by incorporating evolutionary ecology focused designs to the study of the so far well chronicled, but mostly descriptive TGIP, and how rapidly developing -omic methods can be employed to further understand TGIP across taxa.
Collapse
|
36
|
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective. Immunol Rev 2018; 283:21-40. [DOI: 10.1111/imr.12647] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin Gourbal
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | - Silvain Pinaud
- Interactions Hosts Pathogens Environments UMR 5244; University of Perpignan Via Domitia; CNRS; IFREMER, Univ. Montpellier; Perpignan France
| | | | - Jos W. M. Van Der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
| | - Uwe Conrath
- Department of Plant Physiology; RWTH Aachen University; Aachen Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases; Radboud University Medical Center; Nijmegen The Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES); University of Bonn; Bonn Germany
| |
Collapse
|
37
|
Grau T, Vilcinskas A, Joop G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. ACTA ACUST UNITED AC 2018; 72:337-349. [PMID: 28525347 DOI: 10.1515/znc-2017-0033] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023]
Abstract
The farming of edible insects is an alternative strategy for the production of protein-rich food and feed with a low ecological footprint. The industrial production of insect-derived protein is more cost-effective and energy-efficient than livestock farming or aquaculture. The mealworm Tenebrio molitor is economically among the most important species used for the large-scale conversion of plant biomass into protein. Here, we review the mass rearing of this species and its conversion into food and feed, focusing on challenges such as the contamination of food/feed products with bacteria from the insect gut and the risk of rapidly spreading pathogens and parasites. We propose solutions to prevent the outbreak of infections among farmed insects without reliance on antibiotics. Transgenerational immune priming and probiotic bacteria may provide alternative strategies for sustainable insect farming.
Collapse
|
38
|
Dhinaut J, Chogne M, Moret Y. Trans-generational immune priming in the mealworm beetle protects eggs through pathogen-dependent mechanisms imposing no immediate fitness cost for the offspring. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:105-112. [PMID: 29106988 DOI: 10.1016/j.dci.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Immune-challenged mothers can improve their offspring immunity through trans-generational immune priming (TGIP). In insects, TGIP endows the offspring with lifetime immunity, including the eggs, which are likely exposed soon after maternal infection. Egg protection may rely on the transfer of maternal immune effectors to the egg or/and the induction of egg immune genes. These respective mechanisms are assumed to have early-life fitness costs of different magnitude for the offspring. We provide evidence in the mealworm beetle Tenebrio molitor that enhanced egg immunity following a maternal immune challenge is achieved by both of these mechanisms but in a pathogen-dependent manner. While previously found having late-life fitness costs for the offspring, TGIP here improved egg hatching success and early larval survival, in addition of improving offspring immunity. These results suggest that early-life of primed offspring is critical in the optimization of life history trajectory of this insect under trans-generational pathogenic threats.
Collapse
Affiliation(s)
- Julien Dhinaut
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, équipe Ecologie Evolutive, 6 Boulevard Gabriel, Dijon, France.
| | - Manon Chogne
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, équipe Ecologie Evolutive, 6 Boulevard Gabriel, Dijon, France
| | - Yannick Moret
- Université de Bourgogne Franche-Comté, UMR CNRS 6282 Biogéosciences, équipe Ecologie Evolutive, 6 Boulevard Gabriel, Dijon, France
| |
Collapse
|
39
|
Dhinaut J, Balourdet A, Teixeira M, Chogne M, Moret Y. A dietary carotenoid reduces immunopathology and enhances longevity through an immune depressive effect in an insect model. Sci Rep 2017; 7:12429. [PMID: 28963510 PMCID: PMC5622072 DOI: 10.1038/s41598-017-12769-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/15/2017] [Indexed: 11/09/2022] Open
Abstract
Immunopathology corresponds to self-damage of the inflammatory response, resulting from oxidizing molecules produced when the immune system is activated. Immunopathology often contributes to age-related diseases and is believed to accelerate ageing. Prevention of immunopathology relies on endogenous antioxidant enzymes and the consumption of dietary antioxidants, including carotenoids such as astaxanthin. Astaxanthin currently raises considerable interest as a powerful antioxidant and for its potential in alleviating age-related diseases. Current in vitro and short-term in vivo studies provide promising results about immune-stimulating and antioxidant properties of astaxanthin. However, to what extent dietary supplementation with astaxanthin can prevent long-term adverse effects of immunopathology on longevity is unknown so far. Here, using the mealworm beetle, Tenebrio molitor, as biological model we tested the effect of lifetime dietary supplementation with astaxanthin on longevity when exposed to early life inflammation. While supplementation with astaxanthin was found to lessen immunopathology cost on larval survival and insect longevity, it was also found to reduce immunity, growth rate and the survival of non immune-challenged larvae. This study therefore reveals that astaxanthin prevents immunopathology through an immune depressive effect and can have adverse consequences on growth.
Collapse
Affiliation(s)
- Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Aude Balourdet
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Maria Teixeira
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Manon Chogne
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences, Équipe Écologie Évolutive, Université Bourgogne-Franche Comté, Dijon, France.
| |
Collapse
|
40
|
Monceau K, Dechaume-Moncharmont FX, Moreau J, Lucas C, Capoduro R, Motreuil S, Moret Y. Personality, immune response and reproductive success: an appraisal of the pace-of-life syndrome hypothesis. J Anim Ecol 2017; 86:932-942. [PMID: 28425582 DOI: 10.1111/1365-2656.12684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/07/2017] [Indexed: 01/18/2023]
Abstract
The pace-of-life syndrome (POLS) hypothesis is an extended concept of the life-history theory that includes behavioural traits. The studies challenging the POLS hypothesis often focus on the relationships between a single personality trait and a physiological and/or life-history trait. While pathogens represent a major selective pressure, few studies have been interested in testing relationships between behavioural syndrome, and several fitness components including immunity. The aim of this study was to address this question in the mealworm beetle, Tenebrio molitor, a model species in immunity studies. The personality score was estimated from a multidimensional syndrome based of four repeatable behavioural traits. In a first experiment, we investigated its relationship with two measures of fitness (reproduction and survival) and three components of the innate immunity (haemocyte concentration, and levels of activity of the phenoloxidase including the total proenzyme and the naturally activated one) to challenge the POLS hypothesis in T. molitor. Overall, we found a relationship between behavioural syndrome and reproductive success in this species, thus supporting the POLS hypothesis. We also showed a sex-specific relationship between behavioural syndrome and basal immune parameters. In a second experiment, we tested whether this observed relationship with innate immunity could be confirmed in term of differential survival after challenging by entomopathogenic bacteria, Bacillus thuringiensis. In this case, no significant relationship was evidenced. We recommend that future researchers on the POLS should control for differences in evolutionary trajectory between sexes and to pay attention to the choice of the proxy used, especially when looking at immune traits.
Collapse
Affiliation(s)
- Karine Monceau
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| | | | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| | - Camille Lucas
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| | - Rémi Capoduro
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| | - Sébastien Motreuil
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| | - Yannick Moret
- UMR CNRS 6282 Biogéosciences, Equipe Ecologie Evolutive, Université de Bourgogne Franche-Comté, 6 bd Gabriel, 21000, Dijon, France
| |
Collapse
|
41
|
Meister H, Tammaru T, Sandre SL, Freitak D. Sources of variance in immunological traits: evidence of congruent latitudinal trends across species. ACTA ACUST UNITED AC 2017; 220:2606-2615. [PMID: 28495866 DOI: 10.1242/jeb.154310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/04/2017] [Indexed: 11/20/2022]
Abstract
Among-population differences in immunological traits allow assessment of both evolutionary and plastic changes in organisms' resistance to pathogens. Such knowledge also provides information necessary to predict responses of such traits to environmental changes. Studies on latitudinal trends in insect immunity have so far yielded contradictory results, suggesting that multispecies approaches with highly standardised experimental conditions are needed. Here, we studied among-population differences of two parameters reflecting constitutive immunity-phenoloxidase (PO) and lytic activity, using common-garden design on three distantly related moth species represented by populations ranging from northern Finland to Georgia (Caucasus). The larvae were reared at different temperatures and on different host plants under a crossed factors experimental design. Haemolymph samples for measurement of immune status were taken from the larvae strictly synchronously. Clear among-population differences could be shown only for PO activity in one species (elevated activity in the northern populations). There was some indication that the cases of total absence of lytic activity were more common in southern populations. The effects of temperature, host and sex on the immunological traits studied remained highly species specific. Some evidence was found that lytic activity may be involved in mediating trade-offs between immunity and larval growth performance. In contrast, PO activity rarely covaried with fitness-related traits, and neither were the values of PO and lytic activity correlated with each other. The relatively inconsistent nature of the detected patterns suggests that studies on geographic differences in immunological traits should involve multiple species, and rely on several immunological indices if general trends are a point of interest.
Collapse
Affiliation(s)
- Hendrik Meister
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Siiri-Lii Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 51014 Tartu, Estonia
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
42
|
Cooper D, Eleftherianos I. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges. Front Immunol 2017; 8:539. [PMID: 28536580 PMCID: PMC5422463 DOI: 10.3389/fimmu.2017.00539] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/21/2017] [Indexed: 11/13/2022] Open
Abstract
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
Collapse
Affiliation(s)
- Dustin Cooper
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
43
|
Jacobs CGC, Gallagher JD, Evison SEF, Heckel DG, Vilcinskas A, Vogel H. Endogenous egg immune defenses in the yellow mealworm beetle (Tenebrio molitor). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:1-8. [PMID: 28034605 DOI: 10.1016/j.dci.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 05/28/2023]
Abstract
In order to survive microbe encounters, insects rely on both physical barriers as well as local and systemic immune responses. Most research focusses on adult or larval defenses however, whereas insect eggs are also in need of protection. Lately, the defense of eggs against microbes has received an increasing amount of attention, be it through endogenous egg defenses, trans-generational immune priming (TGIP) or parental investment. Here we studied the endogenous immune response in eggs and adults of Tenebrio molitor. We show that many immune genes are induced in both adults and eggs. Furthermore, we show that eggs reach comparable levels of immune gene expression as adults. These findings show that the eggs of Tenebrio are capable of an impressive endogenous immune response, and indicate that such inducible egg defenses are likely common in insects.
Collapse
Affiliation(s)
- Chris G C Jacobs
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany.
| | - Joe D Gallagher
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Sophie E F Evison
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
44
|
Dhinaut J, Chogne M, Moret Y. Immune priming specificity within and across generations reveals the range of pathogens affecting evolution of immunity in an insect. J Anim Ecol 2017; 87:448-463. [DOI: 10.1111/1365-2656.12661] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Julien Dhinaut
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| | - Manon Chogne
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| | - Yannick Moret
- UMR CNRS 6282 BioGéoSciences; Équipe Écologie Évolutive; Université Bourgogne-Franche Comté; Dijon France
| |
Collapse
|
45
|
Quispe RL, Justino EB, Vieira FN, Jaramillo ML, Rosa RD, Perazzolo LM. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:103-107. [PMID: 27637731 DOI: 10.1016/j.fsi.2016.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp.
Collapse
Affiliation(s)
- Ruth L Quispe
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Emily B Justino
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Felipe N Vieira
- Laboratory of Marine Shrimp, Department of Aquaculture, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Michael L Jaramillo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rafael D Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Luciane M Perazzolo
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
46
|
Khan I, Prakash A, Agashe D. Divergent immune priming responses across flour beetle life stages and populations. Ecol Evol 2016; 6:7847-7855. [PMID: 30128134 PMCID: PMC6093166 DOI: 10.1002/ece3.2532] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Growing evidence shows that low doses of pathogens may prime the immune response in many insects, conferring subsequent protection against infection in the same developmental stage (within‐life stage priming), across life stages (ontogenic priming), or to offspring (transgenerational priming). Recent work also suggests that immune priming is a costly response. Thus, depending on host and pathogen ecology and evolutionary history, tradeoffs with other fitness components may constrain the evolution of priming. However, the relative impacts of priming at different life stages and across natural populations remain unknown. We quantified immune priming responses of 10 natural populations of the red flour beetle Tribolium castaneum, primed and infected with the natural insect pathogen Bacillus thuringiensis. We found that priming responses were highly variable both across life stages and populations, ranging from no detectable response to a 13‐fold survival benefit. Comparing across stages, we found that ontogenic immune priming at the larval stage conferred maximum protection against infection. Finally, we found that various forms of priming showed sex‐specific associations that may represent tradeoffs or shared mechanisms. These results indicate the importance of sex‐, life stage‐, and population‐specific selective pressures that can cause substantial divergence in priming responses even within a species. Our work highlights the necessity of further work to understand the mechanistic basis of this variability.
Collapse
Affiliation(s)
- Imroze Khan
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Arun Prakash
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| | - Deepa Agashe
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bangalore India
| |
Collapse
|
47
|
Pigeault R, Garnier R, Rivero A, Gandon S. Evolution of transgenerational immunity in invertebrates. Proc Biol Sci 2016; 283:rspb.2016.1136. [PMID: 27683366 DOI: 10.1098/rspb.2016.1136] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/06/2016] [Indexed: 11/12/2022] Open
Abstract
Over a decade ago, the discovery of transgenerational immunity in invertebrates shifted existing paradigms on the lack of sophistication of their immune system. Nonetheless, the prevalence of this trait and the ecological factors driving its evolution in invertebrates remain poorly understood. Here, we develop a theoretical host-parasite model and predict that long lifespan and low dispersal should promote the evolution of transgenerational immunity. We also predict that in species that produce both philopatric and dispersing individuals, it may pay to have a plastic allocation strategy with a higher transgenerational immunity investment in philopatric offspring because they are more likely to encounter locally adapted pathogens. We review all experimental studies published to date, comprising 21 invertebrate species in nine different orders, and we show that, as expected, longevity and dispersal correlate with the transfer of immunity to offspring. The validity of our prediction regarding the plasticity of investment in transgenerational immunity remains to be tested in invertebrates, but also in vertebrate species. We discuss the implications of our work for the study of the evolution of immunity, and we suggest further avenues of research to expand our knowledge of the impact of transgenerational immune protection in host-parasite interactions.
Collapse
Affiliation(s)
- R Pigeault
- MIVEGEC (UMR CNRS 5290), Montpellier, France
| | - R Garnier
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - A Rivero
- MIVEGEC (UMR CNRS 5290), Montpellier, France
| | - S Gandon
- CEFE (UMR CNRS 5175), Montpellier, France
| |
Collapse
|
48
|
Immune priming in arthropods: an update focusing on the red flour beetle. ZOOLOGY 2016; 119:254-61. [DOI: 10.1016/j.zool.2016.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
|
49
|
Milutinović B, Kurtz J. Immune memory in invertebrates. Semin Immunol 2016; 28:328-42. [PMID: 27402055 DOI: 10.1016/j.smim.2016.05.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| |
Collapse
|
50
|
Vargas V, Moreno-García M, Duarte-Elguea E, Lanz-Mendoza H. Limited Specificity in the Injury and Infection Priming against Bacteria in Aedes aegypti Mosquitoes. Front Microbiol 2016; 7:975. [PMID: 27446016 PMCID: PMC4916184 DOI: 10.3389/fmicb.2016.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/06/2016] [Indexed: 12/29/2022] Open
Abstract
Injury and infection priming has been observed in several insect groups, reported as host immune protection against contact with a pathogen caused by a previous infection with the same. However, the specific response against a pathogen has not been demonstrated in all insect species. Investigating the specific priming response in insects is important because their immune strategies probably reflect particular selective pressures exerted by different pathogens. Here, we determined whether previous infection of Aedes aegypti would enhance survival and/or lead to greater and specific AMP expression after a second exposure to the same or a distinct bacterium. Mosquitoes previously immunized with a low dose of Escherichia coli, but not Staphylococcus aureus, showed increased survival. Although the host protection herein demonstrated was not specific, each bacterium elicited differential AMP expression. These results can be explained by the susceptible-primed-infected (SPI) epidemiological model, which poses that in the evolution of memory-like responses (priming), a pivotal role is played by pathogen virulence, associated host damage, and the host capacity of pathogen recognition.
Collapse
Affiliation(s)
- Valeria Vargas
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Miguel Moreno-García
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
- Department of Microbiology, Immunology and Pathology, Colorado State UniversityFort Collins, CO, USA
| | - Erika Duarte-Elguea
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud PúblicaCuernavaca, Mexico
| |
Collapse
|