1
|
Salem F, ElGamal A, Tang X, Yang J, Kong W. Transcriptional Dynamics of Receptor-Based Genes Reveal Immunity Hubs in Rice Response to Magnaporthe oryzae Infection. Int J Mol Sci 2025; 26:4618. [PMID: 40429762 PMCID: PMC12111697 DOI: 10.3390/ijms26104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Rice blast caused by Magnaporthe oryzae (MOR) reigns as the top-most devastating disease affecting global rice production. Pattern-triggered immunity (PTI) is crucial for mitigating plant responses to pathogens. However, the transcriptional dynamics of PTI-related genes in rice response to MOR infection remain largely unexplored. In this study, we performed a meta-analysis of 201 RNA sequencing and 217 microarray datasets to investigate the transcriptional dynamics of rice under MOR infection at various infection stages. The transcriptional dynamics of extracellular/cytoplasmic receptor kinase genes (RLKs, RLCKs, WAKs) and downstream signaling intermediates, including mitogen-activated protein kinases (MAPKs) and Ca2+-related signaling genes, were identified as immunity hubs for PTI. Extracellular/cytoplasmic receptors were predominantly induced, in contrast to a marked decrease in the repression of these genes. Notably, a maximum of 141 and 154 receptor-based genes were frequently induced from the microarray and RNA-seq datasets, respectively. Moreover, 31 genes were consistently induced across all the transcriptomic profiles, highlighting their pivotal role in PTI-activating immunity regulation in rice under MOR stress. Furthermore, protein-protein interaction (PPI) analysis revealed that cytoplasmic receptor-based genes (RLCKs) and MAPK(K)s were highly interconnected. Among them, four core MAPKK genes, including SMG1, MKK1, MKK6, and MPKK10.2, were identified as the most frequently interconnected with receptor-based genes or other MAPKs under MOR infection, suggesting their critical role as intermediates during downstream signaling networks in response to MOR infection. Together, our comprehensive analysis provides insights into the transcriptional dynamics of receptor-based genes and downstream signaling intermediates as core PTI-related genes that can play crucial roles in modulating rice immune responses to MOR infection.
Collapse
Affiliation(s)
- Fatma Salem
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (F.S.); (X.T.)
- Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed ElGamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Xiaoya Tang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (F.S.); (X.T.)
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Weiwen Kong
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (F.S.); (X.T.)
| |
Collapse
|
2
|
Jwa NS, Hwang BK. Ferroptosis in plant immunity. PLANT COMMUNICATIONS 2025; 6:101299. [PMID: 40057824 DOI: 10.1016/j.xplc.2025.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/13/2025]
Abstract
Plant cell death is mediated by calcium, iron, and reactive oxygen species (ROS) signaling in plant immunity. The reconstruction of a nucleotide-binding leucine-rich-repeat receptor (NLR) supramolecular structure, called the resistosome, is intimately involved in the hypersensitive response (HR), a type of cell death involved in effector-triggered immunity (ETI). Iron is a crucial redox catalyst in various cellular reactions. Ferroptosis is a regulated, non-apoptotic form of iron- and ROS-dependent cell death in plants. Pathogen infections trigger iron accumulation and ROS bursts in plant cells, leading to lipid peroxidation via the Fenton reaction and subsequent ferroptosis in plant cells similar to that in mammalian cells. The small-molecule inducer erastin triggers iron-dependent lipid ROS accumulation and glutathione depletion, leading to HR cell death in plant immunity. Calcium (Ca2+) is another major mediator of plant immunity. Cytoplasmic Ca2+ influx through calcium-permeable channels, the resistosomes, mediates iron- and ROS-dependent ferroptotic cell death under reduced glutathione reductase (GR) expression levels in the ETI response. Acibenzolar-S-methyl (ASM), a plant defense activator, enhances Ca2+ influx, ROS and iron accumulation, and lipid peroxidation to trigger ferroptotic cell death. These breakthroughs suggest a potential role for Ca2+ signaling in ferroptosis and its coordination with iron and ROS signaling in plant immunity. In this review, we highlight the essential roles of calcium, iron, and ROS signaling in ferroptosis during plant immunity and discuss advances in the understanding of how Ca2+-mediated ferroptotic cell death orchestrates effective plant immune responses against invading pathogens.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea.
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
3
|
Salem F, ElGamal A, Zhang Z, Kong W. Integrative multi-transcriptomic analysis uncovers core genes and potential defense mechanisms in rice-Magnoporthe oryzae interaction. PLANT CELL REPORTS 2025; 44:114. [PMID: 40332586 DOI: 10.1007/s00299-025-03490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
KEY MESSAGE Multiple transcriptomic comprehensive analyses highlight key genes and cast new light on multifaceted pathways that may be important arenas in rice innate immunity against Magnoporthe oryzae blast disease. Magnaporthe oryzae (MOR) poses a significant threat to rice production worldwide. However, defense mechanisms in rice against MOR remain inadequately defined. In this study, a multi-transcriptomic integrative analysis on 441 samples from diverse microarrays and RNA-seq sets was conducted to reveal critical factors in rice defense against MOR infection. A robust pattern of 3534 upregulated genes and 2920 repressed genes was commonly identified across all MOR-infected arrays and RNA-seq profiles. Interestingly, enrichment analysis revealed a consistent triggering of endoplasmic reticulum (ER)-related mechanisms and citric acid cycle (TCA) influx in rice response to MOR infection across all the transcriptome profiles, suggesting their critical role in modulating rice immunity against the pathogen. By contrast, chloroplast and photosynthesis pathways were frequently repressed across all the profiles. Among ER-related mechanisms, the phagosome pathway involved in the activation of NADPH oxidase was highly triggered in early response to MOR infection. Moreover, WGCNA analysis highlighted four key co-expressed gene modules and 80 significant hub genes associated with MOR infection. Among the core genes, Sec61 gene involved in the ER-translocation process was identified along with OsMFP (peroxisomal oxidation gene) and OSAHH gene (involved in cyclic-trans-methylation). Furthermore, MPK6, WRKY24, NUP35, and NPR1 genes were observed as core co-expressed genes, suggesting their significance in regulating rice immunity against MOR. Our findings elucidate key genes and multifaceted mechanisms in rice-MOR interaction, proposing new informative clues that can be exploited to improve rice resistance against blast disease.
Collapse
Affiliation(s)
- Fatma Salem
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ahmed ElGamal
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zujian Zhang
- College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Weiwen Kong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Tian H, Xu L, Li X, Zhang Y. Salicylic acid: The roles in plant immunity and crosstalk with other hormones. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:773-785. [PMID: 39714102 PMCID: PMC11951402 DOI: 10.1111/jipb.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.
Collapse
Affiliation(s)
- Hainan Tian
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| | - Lu Xu
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Xin Li
- Department of BotanyUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverV6T 1Z4BCCanada
| | - Yuelin Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of EducationThe College of Life SciencesSichuan UniversityChengdu610064SichuanChina
| |
Collapse
|
5
|
Wang SS, Chang WB, Hsieh MC, Chen SY, Liao DJ, Liao CY, Shen WC, Chen HH, Chen CY, Chen YC, Lin YL, Tung CW, Chen RS, Chung CL. PtrA, Piz-t, and a novel minor-effect QTL (qBR12_3.3-4.4) collectively contribute to the durable blast-resistance of rice cultivar Tainung 84. BOTANICAL STUDIES 2024; 65:37. [PMID: 39692953 DOI: 10.1186/s40529-024-00444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Rice blast caused by Pyricularia oryzae is a major threat to rice production worldwide. Tainung 84 (TNG84) is an elite japonica rice cultivar developed through the traditional pedigree method. It has maintained superior blast resistance since its release in 2010. This study aimed to investigate the genetic factors underlying the durable resistance of TNG84 in Taiwan. RESULTS Quantitative trait locus (QTL) mapping was conducted using 122 F2 individuals and F2:3 families derived from the cross of TNG84 and a susceptible japonica cultivar Tainan 11 (TN11). Using 733 single nucleotide polymorphisms (SNPs) obtained through genotyping-by-sequencing and three P. oryzae isolates (D41-2, 12CY-MS1-2, and 12YL-TT4-1) belonging to different physiological races and Pot2 lineages, a major QTL was identified in the region of 52-54 cM (9.54-15.16 Mb) on chromosome 12. Fine-mapping using 21 F5:6 recombinants delimited the QTL to a 140.4-kb region (10.78 to 10.93 Mb) containing the known resistance gene Ptr. Sequencing analysis indicated that TNG84 carries the resistant PtrA allele and TN11 carries the susceptible PtrD allele. Investigation of the Ptr haplotypes in 41 local japonica rice cultivars revealed that eight PtrA-containing cultivars (19.5%) consistently exhibited good field resistance in Taiwan from 2008 to 2024. Subsequently, a few F5:6 lines (P026, P044, P092, and P167) lacking the resistant Ptr allele were observed to exhibit a resistant phenotype against P. oryzae 12YL-TT4-1-lab. Trait-marker association analyses using eight F6:7 homozygous recombinants, 378 BC1F2 from P044 backcrossed to TN11, and 180 BC1F2 from P092 backcrossed to TN11, identified Piz-t on chromosome 6 and a new QTL located between 3.3 Mb and 4.4 Mb on chromosome 12 (designated as qBR12_3.3-4.4). Analysis of 12 selected BC1F2:3 lines derived from P044 demonstrated that in the absence of Ptr and Piz-t, qBR12_3.3-4.4 alone reduced the disease severity index from approximately 6.3 to 3.9. CONCLUSIONS PtrA is likely the primary gene responsible for the broad-spectrum and durable resistance of TNG84. Piz-t confers narrow-spectrum resistance, while qBR12_3.3-4.4 contributes partial resistance. The discovery of qBR12_3.3-4.4 has provided a new source of blast resistance, and the markers developed in this study can be utilized in future breeding programs.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Wei-Bin Chang
- Tainan District Agricultural Research and Extension Station, Ministry of Agriculture, No. 70, Muchang, Xinhua, Tainan, 712009, Taiwan
| | - Ming-Chien Hsieh
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Szu-Yu Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Agricultural Research Institute, Ministry of Agriculture, No. 2, Minquan Rd., Chiayi City, 600015, Taiwan
| | - Ching-Ying Liao
- Taitung District Agricultural Research and Extension Station, Ministry of Agriculture, No. 675, Chunghua Rd., Sec. 1, Taitung City, 950244, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Hong-Hua Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chieh-Yi Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yi-Chia Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Yueh-Lin Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 600355, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City, 106319, Taiwan.
| |
Collapse
|
6
|
Xie P, Liu F, Xie Q. Manipulating hormones to mitigate trade-offs in crops. PLANT, CELL & ENVIRONMENT 2024; 47:4903-4907. [PMID: 39101664 DOI: 10.1111/pce.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Summary statementAddressing trait coupling due to gene pleiotropy presents challenges in conventional breeding system. However, targeted hormonal manipulation and precise genetic engineering designs hold promise to alleviate trade‐offs and unlock the potential of crops for multiple desirable traits.
Collapse
Affiliation(s)
- Peng Xie
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Fangyuan Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, PR China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing, China
| |
Collapse
|
7
|
Zhang F, Wang J, Chen Y, Huang J, Liang W. Genome-Wide Identification of MKK Gene Family and Response to Hormone and Abiotic Stress in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2922. [PMID: 39458871 PMCID: PMC11510841 DOI: 10.3390/plants13202922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly of rice without gaps, T2T (Telomere-to-Telomere)-NIP (version AGIS-1.0), has recently been released. In this study, we used bioinformatic approaches to identify and analyze the rice MPK kinases (MKKs) based on the complete genome. A total of seven OsMKKs were identified, and their physical and chemical properties, chromosome localization, gene structure, subcellular localization, phylogeny, family evolution, and cis-acting elements were evaluated. OsMKKs can be divided into four subgroups based on phylogenetic relationships, and the family members located in the same evolutionary branch have relatively similar gene structures and conserved domains. Quantitative real-time PCR (qRT-PCR) revealed that all OsMKKs were highly expressed in rice seedling leaves. The expression levels of all OsMKKs were more or less altered under exogenous hormone and abiotic stress treatments, with OsMKK1, OsMKK6, and OsMKK3 being induced under almost all treatments, while the expression of OsMKK4 and OsMKK10-2 was repressed under salt and drought treatments and IAA treatment, respectively. In this study, we also summarized the recent progress in rice MPK cascades, highlighted their diverse functions, and outlined the potential MPK signaling network, facilitating further studies on OsMKK genes and rice MPK cascades.
Collapse
Affiliation(s)
- Fan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Jingjing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Yiwei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| |
Collapse
|
8
|
Yoshimura S, Yoshihisa A, Okamoto Y, Hirano H, Nakai Y, Yamaguchi K, Kawasaki T. Rice SRO1a Contributes to Xanthomonas TAL Effector-mediated Expression of Host Susceptible Genes. PLANT & CELL PHYSIOLOGY 2024; 65:1261-1270. [PMID: 38757819 DOI: 10.1093/pcp/pcae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Xanthomonas species infect many important crops and cause huge yield loss. These pathogens deliver transcription activator-like (TAL) effectors into the cytoplasm of plant cells. TAL effectors move to host nuclei, directly bind to the promoters of host susceptible genes, and activate their transcription. However, the molecular mechanisms by which TAL effectors induce host transcription remain unclear. We herein demonstrated that TAL effectors interacted with the SIMILAR TO RCD ONE (SRO) family proteins OsSRO1a and OsSRO1b in nuclei. A transactivation assay using rice protoplasts indicated that OsSRO1a and OsSRO1b enhanced the activation of the OsSWEET14 promoter by the TAL effector AvrXa7. The AvrXa7-mediated expression of OsSWEET14 was significantly reduced in ossro1a mutants. However, the overexpression of OsSRO1a increased disease resistance by up-regulating the expression of defense-related genes, such as WRKY62 and PBZ1. This was attributed to OsSRO1a and OsSRO1b also enhancing the transcriptional activity of WRKY45, a direct regulator of WRKY62 expression. Therefore, OsSRO1a and OsSRO1b appear to positively contribute to transcription mediated by bacterial TAL effectors and rice transcription factors.
Collapse
Affiliation(s)
- Satomi Yoshimura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Ayaka Yoshihisa
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Yusei Okamoto
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Haruna Hirano
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Yuina Nakai
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
9
|
Spoel SH, Dong X. Salicylic acid in plant immunity and beyond. THE PLANT CELL 2024; 36:1451-1464. [PMID: 38163634 PMCID: PMC11062473 DOI: 10.1093/plcell/koad329] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.
Collapse
Affiliation(s)
- Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Xinnian Dong
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Mahiwal S, Pahuja S, Pandey GK. Review: Structural-functional relationship of WRKY transcription factors: Unfolding the role of WRKY in plants. Int J Biol Macromol 2024; 257:128769. [PMID: 38096937 DOI: 10.1016/j.ijbiomac.2023.128769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
WRKY as the name suggests, are the transcription factors (TFs) that contain the signature WRKY domains, hence named after it. Since their discovery in 1994, they have been well studied in plants with exploration of approximately 74 WRKY genes in the model plant, Arabidopsis alone. However, the study of these transcription factors (TFs) is not just limited to model plant now. They have been studied widely in crop plants as well, because of their tremendous contribution in stress as well as in growth and development. Here, in this review, we describe the story of WRKY TFs from their identification to their origin, the binding mechanisms, structure and their contribution in regulating plant development and stress physiology. High throughput transcriptomics-based data also opened a doorway to understand the comprehensive and detailed functioning of WRKY TFs in plants. Indeed, the detailed functional role of each and every WRKY member in regulating the gene expression is required to pave the path to develop holistic understanding of their role in stress physiology and developmental processes in plants.
Collapse
Affiliation(s)
- Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
11
|
Yang X, Yan S, Li Y, Li G, Sun S, Li J, Cui Z, Huo J, Sun Y, Wang X, Liu F. Comparison of Transcriptome between Tolerant and Susceptible Rice Cultivar Reveals Positive and Negative Regulators of Response to Rhizoctonia solani in Rice. Int J Mol Sci 2023; 24:14310. [PMID: 37762614 PMCID: PMC10532033 DOI: 10.3390/ijms241814310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Rice (Oryza sativa L.) is one of the world's most crucial food crops, as it currently supports more than half of the world's population. However, the presence of sheath blight (SB) caused by Rhizoctonia solani has become a significant issue for rice agriculture. This disease is responsible for causing severe yield losses each year and is a threat to global food security. The breeding of SB-resistant rice varieties requires a thorough understanding of the molecular mechanisms involved and the exploration of immune genes in rice. To this end, we conducted a screening of rice cultivars for resistance to SB and compared the transcriptome based on RNA-seq between the most tolerant and susceptible cultivars. Our study revealed significant transcriptomic differences between the tolerant cultivar ZhengDao 22 (ZD) and the most susceptible cultivar XinZhi No.1 (XZ) in response to R. solani invasion. Specifically, the tolerant cultivar showed 7066 differentially expressed genes (DEGs), while the susceptible cultivar showed only 60 DEGs. In further analysis, we observed clear differences in gene category between up- and down-regulated expression of genes (uDEGs and dDEGs) based on Gene Ontology (GO) classes in response to infection in the tolerant cultivar ZD, and then identified uDEGs related to cell surface pattern recognition receptors, the Ca2+ ion signaling pathway, and the Mitogen-Activated Protein Kinase (MAPK) cascade that play a positive role against R. solani. In addition, DEGs of the jasmonic acid and ethylene signaling pathways were mainly positively regulated, whereas DEGs of the auxin signaling pathway were mainly negatively regulated. Transcription factors were involved in the immune response as either positive or negative regulators of the response to this pathogen. Furthermore, our results showed that chloroplasts play a crucial role and that reduced photosynthetic capacity is a critical feature of this response. The results of this research have important implications for better characterization of the molecular mechanism of SB resistance and for the development of resistant cultivars through molecular breeding methods.
Collapse
Affiliation(s)
- Xiurong Yang
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuangyong Yan
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yuejiao Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Guangsheng Li
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Shuqin Sun
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Junling Li
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhongqiu Cui
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Jianfei Huo
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yue Sun
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xiaojing Wang
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Fangzhou Liu
- Institute of Crop Research, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
12
|
Jiang R, Zhou S, Da X, Yan P, Wang K, Xu J, Mo X. OsMKK6 Regulates Disease Resistance in Rice. Int J Mol Sci 2023; 24:12678. [PMID: 37628859 PMCID: PMC10454111 DOI: 10.3390/ijms241612678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitogen-activated protein kinase cascades play important roles in various biological programs in plants, including immune responses, but the underlying mechanisms remain elusive. Here, we identified the lesion mimic mutant rsr25 (rust spots rice 25) and determined that the mutant harbored a loss-of-function allele for OsMKK6 (MITOGEN-ACTIVATED KINASE KINASE 6). rsr25 developed reddish-brown spots on its leaves at the heading stage, as well as on husks. Compared to the wild type, the rsr25 mutant exhibited enhanced resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae) and to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). OsMKK6 interacted with OsMPK4 (MITOGEN-ACTIVATED KINASE 4) in vivo, and OsMKK6 phosphorylated OsMPK4 in vitro. The Osmpk4 mutant is also a lesion mimic mutant, with reddish-brown spots on its leaves and husks. Pathogen-related genes were significantly upregulated in Osmpk4, and this mutant exhibited enhanced resistance to M. oryzae compared to the wild type. Our results indicate that OsMKK6 and OsMPK4 form a cascade that regulates immune responses in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China; (R.J.); (S.Z.); (X.D.); (P.Y.); (K.W.); (J.X.)
| |
Collapse
|
13
|
Wang S, Han S, Zhou X, Zhao C, Guo L, Zhang J, Liu F, Huo Q, Zhao W, Guo Z, Chen X. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. THE PLANT CELL 2023; 35:2391-2412. [PMID: 36869655 DOI: 10.1093/plcell/koad064] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xiangui Zhou
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changjiang Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Lina Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junqi Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fei Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qixin Huo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Singh A, Roychoudhury A. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. PLANT CELL REPORTS 2023; 42:961-974. [PMID: 37079058 DOI: 10.1007/s00299-023-03013-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Extensive crosstalk exists among ABA and different phytohormones that modulate plant tolerance against different abiotic stress. Being sessile, plants are exposed to a wide range of abiotic stress (drought, heat, cold, salinity and metal toxicity) that exert unwarranted threat to plant life and drastically affect growth, development, metabolism, and yield of crops. To cope with such harsh conditions, plants have developed a wide range of protective phytohormones of which abscisic acid plays a pivotal role. It controls various physiological processes of plants such as leaf senescence, seed dormancy, stomatal closure, fruit ripening, and other stress-related functions. Under challenging situations, physiological responses of ABA manifested in the form of morphological, cytological, and anatomical alterations arise as a result of synergistic or antagonistic interaction with multiple phytohormones. This review provides new insight into ABA homeostasis and its perception and signaling crosstalk with other phytohormones at both molecular and physiological level under critical conditions including drought, salinity, heavy metal toxicity, and extreme temperature. The review also reveals the role of ABA in the regulation of various physiological processes via its positive or negative crosstalk with phytohormones, viz., gibberellin, melatonin, cytokinin, auxin, salicylic acid, jasmonic acid, ethylene, brassinosteroids, and strigolactone in response to alteration of environmental conditions. This review forms a basis for designing of plants that will have an enhanced tolerance capability against different abiotic stress.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biotechnology, St. Xavier's College (Autonomous), 30 Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
15
|
Mizobuchi R, Sugimoto K, Tsushima S, Fukuoka S, Tsuiki C, Endo M, Mikami M, Saika H, Sato H. A MAPKKK gene from rice, RBG1res, confers resistance to Burkholderia glumae through negative regulation of ABA. Sci Rep 2023; 13:3947. [PMID: 36894555 PMCID: PMC9998638 DOI: 10.1038/s41598-023-30471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Burkholderia glumae causes bacterial seedling rot (BSR) of rice and is a threat to a consistent food supply. When previously screening for resistance against B. glumae in the resistant cultivar Nona Bokra (NB) versus the susceptible cultivar Koshihikari (KO), we detected a gene, Resistance to Burkholderia glumae 1 (RBG1), at a quantitative trait locus (QTL). Here, we found that RBG1 encodes a MAPKKK gene whose product phosphorylates OsMKK3. We also found that the kinase encoded by the RBG1 resistant (RBG1res) allele in NB presented higher activity than did that encoded by the RBG1 susceptible (RBG1sus) allele in KO. RBG1res and RBG1sus differ by three single-nucleotide polymorphisms (SNPs), and the G390T substitution is essential for kinase activity. Abscisic acid (ABA) treatment of inoculated seedlings of RBG1res-NIL (a near-isogenic line (NIL) expressing RBG1res in the KO genetic background) decreased BSR resistance, indicating that RBG1res conferred resistance to B. glumae through negative regulation of ABA. The results of further inoculation assays showed that RBG1res-NIL was also resistant to Burkholderia plantarii. Our findings suggest that RBG1res contributes to resistance to these bacterial pathogens at the seed germination stage via a unique mechanism.
Collapse
Affiliation(s)
- Ritsuko Mizobuchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Kazuhiko Sugimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Seiya Tsushima
- Strategic Planning Headquarters, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Shuichi Fukuoka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.,Core Technology Research Headquarters, NARO, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Chikako Tsuiki
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Masafumi Mikami
- Institute of Agrobiological Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hiroaki Saika
- Institute of Agrobiological Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hiroyuki Sato
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| |
Collapse
|
16
|
Li F, Chen X, Yang R, Zhang K, Shan W, Joosten MHAJ, Du Y. Potato protein tyrosine phosphatase StPTP1a is activated by StMKK1 to negatively regulate plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:646-661. [PMID: 36519513 PMCID: PMC9946141 DOI: 10.1111/pbi.13979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruixin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Kun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | | | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
17
|
Zhang M, Zhao R, Wang H, Ren S, Shi L, Huang S, Wei Z, Guo B, Jin J, Zhong Y, Chen M, Jiang W, Wu T, Du X. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice. PLANT CELL REPORTS 2023; 42:223-234. [PMID: 36350394 DOI: 10.1007/s00299-022-02950-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
OsWRKY28 confers salinity tolerance by directly binding to OsDREB1B promoter and increasing its transcriptional activity, and negatively regulates abscisic acid mediated seedling establishment in rice. WRKY transcription factors have been reported to play a vital role in plants growth, development, abiotic and biotic stress responses. In this study, we explored the functions of a transcription factor OsWRKY28 in rice. The transcript level of OsWRKY28 was strikingly increased under drought, chilling, salt and abscisic acid treatments. The OsWRKY28 overexpression lines showed enhanced salinity stress tolerance, whereas the oswrky28 mutants displayed salt sensitivity compared to wild-type plants. Under salt stress treatment, the expression levels of OsbZIP05, OsHKT1;1 and OsDREB1B were significantly lower yet the level of OsHKT2;1 was significantly higher in oswrky28 mutants than those in wide type plants. Our data of yeast one-hybrid assay and dual-luciferase assay supported that OsWRKY28 could directly bind to the promoter of OsDREB1B to enhance salinity tolerance in rice. In addition, OsWRKY28 overexpression lines displayed hyposensitivity and the oswrky28 mutants showed hypersensitivity compared to wild-type plants under exogenous abscisic acid treatment. Based on the results of yeast two-hybrid assay and GAL4-dependent chimeric transactivation assay, OsWRKY28 physically interacts with OsMPK11 and its transcriptional activity could be regulated by OsMPK11. Together, OsWRKY28 confers salinity tolerance through directly targeting OsDREB1B promoter and further activating its transcription in rice.
Collapse
Affiliation(s)
- Mingxing Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Ranran Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Haitao Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Shule Ren
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Liyuan Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Zhiqi Wei
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Boya Guo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiuyan Jin
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yu Zhong
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Mojun Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
18
|
Becerra-García RE, Cruz-Valderrama JE, Cerbantez-Bueno VE, Marsch-Martínez N, de Folter S. A NanoLuc-Based Transactivation Assay in Plants. Methods Mol Biol 2023; 2686:553-565. [PMID: 37540377 DOI: 10.1007/978-1-0716-3299-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Protein-DNA interactions are determinant of the regulation of gene expression in living organisms. Luminescence studies have been used in a wide range of techniques to identify how gene transcription can be regulated by proteins such as transcription factors (TFs). Despite the great advances in the use of luciferases as reporters in the performance of this mechanism, some of them still have disadvantages that have been tried to be solved by the generation of new luciferases that induce a more stable and perfectly visualizable reaction. NanoLuc is a recently described luciferase that has been characterized by its efficient, stable, and powerful luminescence. These qualities have been considered to create a new and efficient reporter system to detect protein-DNA interactions. In this chapter, we take advantage of NanoLuc and describe its use in a reliable procedure to detect protein-DNA interactions in Nicotiana benthamiana extracts and entire leaves.
Collapse
Affiliation(s)
- Rosa Esmeralda Becerra-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - José Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico.
| |
Collapse
|
19
|
Mirza Z, Haque MM, Gupta M. WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 2022; 49:10895-10904. [PMID: 35941412 DOI: 10.1007/s11033-022-07772-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Mohammad Mahfuzul Haque
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India.
| |
Collapse
|
20
|
Ghate T, Soneji K, Barvkar V, Ramakrishnan P, Prusty D, Islam SR, Manna SK, Srivastava AK. Thiourea mediated ROS-metabolites reprogramming restores root system architecture under arsenic stress in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129020. [PMID: 35650738 DOI: 10.1016/j.jhazmat.2022.129020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a ubiquitous carcinogenic metalloid that enters into human food chain, through rice consumption. To unravel the conundrum of oxidative vs. reductive stress, the differential root-system architecture (RSA) was studied under As (a ROS producer) and thiourea (TU; a ROS scavenger) alone treatments, which indicated 0.80- and 0.74-fold reduction in the number of lateral roots (NLR), respectively compared with those of control. In case of As+TU treatment, NLR was increased by 4.35-fold compared with those of As-stress, which coincided with partial restoration of redox-status and auxin transport towards the root-tip. The expression levels of 16 ROS related genes, including RBOHC, UPB-1 C, SHR1, PUCHI, were quantified which provided the molecular fingerprint, in accordance with endogenous ROS signature. LC-MS based untargeted and targeted metabolomics data revealed that As-induced oxidative stress was metabolically more challenging than TU alone-induced reductive stress. Cis/trans-ferruloyl putrescine and γ-glutamyl leucine were identified as novel As-responsive metabolites whose levels were decreased and increased, respectively under As+TU than As-treated roots. In addition, the overall amino acid accumulation was increased in As+TU than As-treated roots, indicating the improved nutritional availability. Thus, the study revealed dynamic interplay between "ROS-metabolites-RSA", to the broader context of TU-mediated amelioration of As-stress in rice.
Collapse
Affiliation(s)
- Tejashree Ghate
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; School of Biological sciencesUM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidyanagari 400098, Mumbai
| | - Kanchan Soneji
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Division of crop production, ICAR- Indian Institute of Soybean Research, Khandwa Road, Indore 452001, (M.P), India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India
| | - Padma Ramakrishnan
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Debasish Prusty
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Sk Ramiz Islam
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Soumen Kanti Manna
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
21
|
Li M, Zhao S, Yang J, Ren Y, Su J, Zhao J, Ren X, Wang C, Chen S, Yu X, Chen F, Wang X. Exogenous expression of barley HvWRKY6 in wheat improves broad-spectrum resistance to leaf rust, Fusarium crown rot, and sharp eyespot. Int J Biol Macromol 2022; 218:1002-1012. [PMID: 35872316 DOI: 10.1016/j.ijbiomac.2022.07.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum plant defense phenomena controlled by the salicylic acid receptor NPR1. Key regulators of the SAR signaling pathway showed great potentials to improve crop resistance to various diseases. In our previous investigation, a barley transcription factor gene HvWRKY6 was identified as downstream of NPR1 during SAR. However, the broad-spectrum resistance features and molecular mechanisms of HvWRKY6 remain to be explored. In this study, a transgenic wheat line exogenously expressing HvWRKY6 showed improved resistance to leaf rust, Fusarium crown rot (FCR), and sharp eyespot. The model pathogen Pseudomonas syringae pv. tomato DC3000 was employed to induce the SAR response in wheat plants' leaf region adjacent to the infiltration area. Transcriptome sequencing revealed activation of broad-spectrum defense responses by expressing HvWRKY6 in a pathogen-independent manner. Based on the differentially expressed genes in plant hormone signal transduction, we speculated that the enhanced resistance in HvWRKY6-OE wheat transgenic line was associated with activation of the salicylic acid pathway and suppression of the abscisic acid and jasmonic acid pathways. These findings suggest that the transgenic line HvWRKY6-OE might be applied for the genetic improvement of wheat to several fungal diseases; the underlying resistance mechanism was clarified.
Collapse
Affiliation(s)
- Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Junyu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, PR China
| | - Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Weifang, PR China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, Agronomy College, Henan Agricultural University, Zhengzhou, PR China.
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, PR China.
| |
Collapse
|
22
|
Romeo-Oliván A, Chervin J, Breton C, Lagravère T, Daydé J, Dumas B, Jacques A. Comparative Transcriptomics Suggests Early Modifications by Vintec ® in Grapevine Trunk of Hormonal Signaling and Secondary Metabolism Biosynthesis in Response to Phaeomoniella chlamydospora and Phaeoacremonium minimum. Front Microbiol 2022; 13:898356. [PMID: 35655993 PMCID: PMC9152730 DOI: 10.3389/fmicb.2022.898356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Given their well-known antifungal abilities, species of the genus Trichoderma are of significant interest in modern agriculture. Recent studies have shown that Trichoderma species can induce plant resistance against different phytopathogens. To further extend this line of investigation, we investigate herein the transcriptomic response of grapevine trunk to Vintec®, which is a Trichoderma atroviride SC1-based commercial formulation for biological control of grapevine trunk diseases and which reduces wood colonization. The aim of the study is to understand whether the biocontrol agent Vintec® modifies the trunk response to Phaeoacremonium minimum and Phaeomoniella chlamydospora, which are two esca-associated fungal pathogens. An analysis of transcriptional regulation identifies clusters of co-regulated genes whose transcriptomic reprogramming in response to infection depends on the absence or presence of Vintec®. On one hand, the results show that Vintec® differentially modulates the expression of putative genes involved in hormonal signaling, especially those involved in auxin signaling. On the other hand, most significant gene expression modifications occur among secondary-metabolism-related genes, especially regarding phenylpropanoid metabolism and stilbene biosynthesis. Taken together, these results suggest that the biocontrol agent Vintec® induces wood responses that counteract disease development.
Collapse
Affiliation(s)
- Ana Romeo-Oliván
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Justine Chervin
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France.,Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, LRSV, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Coralie Breton
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Thierry Lagravère
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Jean Daydé
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France
| | - Alban Jacques
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Zeng H, Wu H, Wang G, Dai S, Zhu Q, Chen H, Yi K, Du L. Arabidopsis CAMTA3/SR1 is involved in drought stress tolerance and ABA signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111250. [PMID: 35487659 DOI: 10.1016/j.plantsci.2022.111250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/12/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Calcium/calmodulin signals are important for various cellular and physiological activities in plants. Calmodulin binding transcription activators also named Signal Responsive (SR) proteins belong to an important calcium/calmodulin-dependent transcription factor family that plays critical roles in stress responses. However, the role of SRs in abscisic acid (ABA) regulated plant responses to drought stress is largely unknown. Here, we characterized the role of Arabidopsis SR1 in drought stress tolerance and ABA response by analyzing the phenotypes of SR1 knockout and SR1-overexpression plants. sr1 mutants which accumulate salicylic acid (SA) were found more sensitive to drought stress and showed a higher water loss rate as compared with wild-type. By contrast, SR1-overexpression lines exhibited increased drought tolerance and less water loss than wild-type. Furthermore, sr1 mutants showed reduced ABA response in seed germination, root elongation, and stomatal closure, while SR1-overexpression lines displayed more sensitive to ABA than wild-type. In addition, the drought-sensitive and ABA-insensitive phenotypes of sr1 mutants were recovered by diminishing SA accumulation via knockouts of SA synthesizer ICS1 or activator PAD4, or through expression of SA-degrading enzyme NahG. Some drought/ABA-responsive genes exhibited differentially expressed in sr1 mutants and SR1-overexpression plants. These results suggest that SR1 plays a positive role in drought stress tolerance and ABA response, and drought/ABA responses are antagonized by SA accumulation that is negatively regulated by SR1.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Guoping Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Senhuan Dai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiying Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Kharkiv Institute at Hangzhou Normal University, Hangzhou 311121, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
24
|
Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity. Nat Commun 2022; 13:2397. [PMID: 35577789 PMCID: PMC9110426 DOI: 10.1038/s41467-022-30131-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here, we identify PBI1, a protein that interacts with PUB44. Crystal structure analysis indicates that PBI1 forms a four-helix bundle structure. PBI1 also interacts with WRKY45, a master transcriptional activator of rice immunity, and negatively regulates its activity. PBI1 is degraded upon perception of chitin, and this is suppressed by silencing of PUB44 or expression of XopP, indicating that PBI1 degradation depends on PUB44. These data suggest that PBI1 suppresses WRKY45 activity when cells are in an unelicited state, and during chitin signaling, PUB44-mediated degradation of PBI1 leads to activation of WRKY45. In addition, chitin-induced MAP kinase activation is required for WRKY45 activation and PBI1 degradation. These results demonstrate that chitin-induced activation of WRKY45 is regulated by the cooperation between MAP kinase-mediated phosphorylation and PUB44-mediated PBI1 degradation. The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here the authors identify a PUB44 substrate whose degradation is required for activation of the WRKY45 transcription factor upon immune elicitation.
Collapse
|
25
|
Nguyen HT, Mantelin S, Ha CV, Lorieux M, Jones JT, Mai CD, Bellafiore S. Insights Into the Genetics of the Zhonghua 11 Resistance to Meloidogyne graminicola and Its Molecular Determinism in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:854961. [PMID: 35599898 PMCID: PMC9116194 DOI: 10.3389/fpls.2022.854961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Meloidogyne graminicola is a widely spread nematode pest of rice that reduces crop yield up to 20% on average in Asia, with devastating consequences for local and global rice production. Due to the ban on many chemical nematicides and the recent changes in water management practices in rice agriculture, an even greater impact of M. graminicola can be expected in the future, stressing the demand for the development of new sustainable nematode management solutions. Recently, a source of resistance to M. graminicola was identified in the Oryza sativa japonica rice variety Zhonghua 11 (Zh11). In the present study, we examine the genetics of the Zh11 resistance to M. graminicola and provide new insights into its cellular and molecular mechanisms. The segregation of the resistance in F2 hybrid populations indicated that two dominant genes may be contributing to the resistance. The incompatible interaction of M. graminicola in Zh11 was distinguished by a lack of swelling of the root tips normally observed in compatible interactions. At the cellular level, the incompatible interaction was characterised by a rapid accumulation of reactive oxygen species in the vicinity of the nematodes, accompanied by extensive necrosis of neighbouring cells. The expression profiles of several genes involved in plant immunity were analysed at the early stages of infection during compatible (susceptible plant) and incompatible (resistant plant) interactions. Notably, the expression of OsAtg4 and OsAtg7, significantly increased in roots of resistant plants in parallel with the cell death response, suggesting that autophagy is activated and may contribute to the resistance-mediated hypersensitive response. Similarly, transcriptional regulation of genes involved in hormonal pathways in Zh11 indicated that salicylate signalling may be important in the resistance response towards M. graminicola. Finally, the nature of the resistance to M. graminicola and the potential exploitation of the Zh11 resistance for breeding are discussed.
Collapse
Affiliation(s)
- Hue Thi Nguyen
- LMI RICE-2, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam
| | - Sophie Mantelin
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) UMR 1355 Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Cuong Viet Ha
- Research Center of Tropical Plant Disease, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | - Mathias Lorieux
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - John T. Jones
- The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Chung Duc Mai
- LMI RICE-2, Agricultural Genetics Institute (AGI), Hanoi, Vietnam
| | - Stéphane Bellafiore
- PHIM Plant Health Institute, University of Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
26
|
Wang L, Chen J, Zhao Y, Wang S, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1116-1130. [PMID: 35293133 DOI: 10.1111/jipb.13249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Rice OsLIC encoding a CCCH zinc finger transcription factor plays an important role in immunity. However, the immune signaling pathways that OsLIC-involved and the underlying mechanisms that OsLIC-conferred resistance against pathogens are largely unclear. Here, we show that OsLIC, as a substrate for OsMAPK6, negatively regulates resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) by directly suppressing OsWRKY30 transcription. Biochemical assays showed that OsLIC bound to OsWRKY30 promoter and suppressed its transcription. Genetic assays confirmed that the osilc knockout mutants and OsWRKY30-overexpressing plants exhibited enhanced resistance to Xoo and Xoc, knocking out OsWRKY30 in the oslic mutants attenuated the resistance against bacterial pathogens. OsMAPK6 physically interacted with and phosphorylated OsLIC leading to decreased OsLIC DNA-binding activity, therefore, overexpression of OsLIC partially suppressed OsMAPK6-mediated rice resistance. In addition, both OsMAPK6-phosphorylated activation of OsLIC and phosphorylation-mimic OsLIC5D had reduced DNA-binding activity towards OsWRKY30 promoter, thereby promoting OsWRKY30 transcription. Collectively, these results reveal that OsMAPK6-mediated phosphorylation of OsLIC positively regulates rice resistance to Xoo and Xoc by modulating OsWRKY30 transcription, suggesting that OsMAPK6-OsLIC-OsWRKY30 module is an immune signaling pathway in response to the bacterial pathogens.
Collapse
Affiliation(s)
- Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
27
|
Ollivier R, Glory I, Cloteau R, Le Gallic JF, Denis G, Morlière S, Miteul H, Rivière JP, Lesné A, Klein A, Aubert G, Kreplak J, Burstin J, Pilet-Nayel ML, Simon JC, Sugio A. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1511-1528. [PMID: 35192006 DOI: 10.1007/s00122-022-04050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.
Collapse
Affiliation(s)
- Rémi Ollivier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Romuald Cloteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Gaëtan Denis
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
| |
Collapse
|
28
|
Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23052744. [PMID: 35269886 PMCID: PMC8911294 DOI: 10.3390/ijms23052744] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.
Collapse
|
29
|
Yao Y, Zhou J, Cheng C, Niu F, Zhang A, Sun B, Tu R, Wan J, Li Y, Huang Y, Xie K, Dai Y, Zhang H, Hong JH, Pan X, Zhu J, Zhou H, Liu Z, Cao L, Chu H. A conserved clathrin-coated vesicle component, OsSCYL2, regulates plant innate immunity in rice. PLANT, CELL & ENVIRONMENT 2022; 45:542-555. [PMID: 34866195 PMCID: PMC9305246 DOI: 10.1111/pce.14240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Clathrin-mediated vesicle trafficking (CMVT) is a fundamental process in all eukaryotic species, and indispensable to organism's growth and development. Recently, it has been suggested that CMVT also plays important roles in the regulation of plant immunity. However, the molecular link between CMVT and plant immunity is largely unknown. SCY1-LIKE2 (SCYL2) is evolutionally conserved among the eukaryote species. Loss-of-function of SCYL2 in Arabidopsis led to severe growth defects. Here, we show that mutation of OsSCYL2 in rice gave rise to a novel phenotype-hypersensitive response-like (HR) cell death in a light-dependent manner. Although mutants of OsSCYL2 showed additional defects in the photosynthetic system, they exhibited enhanced resistance to bacterial pathogens. Subcellular localisation showed that OsSCYL2 localized at Golgi, trans-Golgi network and prevacuolar compartment. OsSCYL2 interacted with OsSPL28, subunit of a clathrin-associated adaptor protein that is known to regulate HR-like cell death in rice. We further showed that OsSCYL2-OsSPL28 interaction is mediated by OsCHC1. Collectively, we characterized a novel component of the CMVT pathway in the regulation of plant immunity. Our work also revealed unidentified new functions of the very conserved SCYL2. It thus may provide new breeding targets to achieve both high yield and enhanced resistance in crops.
Collapse
Affiliation(s)
- Yao Yao
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Jihua Zhou
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Can Cheng
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Fuan Niu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Anpeng Zhang
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Bin Sun
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Rongjian Tu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Jianing Wan
- Institute of Edible FungiShanghai Academy of Agricultural SciencesShanghaiChina
| | - Yao Li
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of Fisheries and LifeShanghai Ocean UniversityShanghaiChina
| | - Yiwen Huang
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Kaizhen Xie
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of Fisheries and LifeShanghai Ocean UniversityShanghaiChina
| | - Yuting Dai
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Hui Zhang
- College of Life ScienceShanghai Normal UniversityShanghaiChina
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiaohua Pan
- College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Jiaojiao Zhu
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hong Zhou
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zhenhua Liu
- School of Agriculture and Biology, Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Liming Cao
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| | - Huangwei Chu
- Institute of Crop Breeding and CultivationShanghai Academy of Agricultural SciencesShanghaiChina
| |
Collapse
|
30
|
Wang P, Li J, Zhang Z, Zhang Q, Li X, Xiao J, Ma H, Wang S. OsVQ1 links rice immunity and flowering via interaction with a mitogen-activated protein kinase OsMPK6. PLANT CELL REPORTS 2021; 40:1989-1999. [PMID: 34368900 DOI: 10.1007/s00299-021-02766-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Knocking out OsVQ1 in rice released OsMPK6 for activation and in turn promoted H2O2 accumulation, which repressed the expression of flowering-promoting genes, thus delaying rice flowering but enhancing disease resistance. The valine-glutamine (VQ) protein family, which contains the conserved motif FxxxVQxLTG ("x" represents any amino acid), plays a crucial role in plant growth and immunity along with mitogen-activated protein kinase (MAPK) cascades. However, only a few rice VQ proteins have been functionally characterized, and the roles of the MAPK-VQ module in rice biological processes are not fully understood. Here, we investigated the role of OsVQ1 in rice disease resistance and the control of flowering time. The OsVQ1-knock out (KO) mutants exhibited increased resistance to Xanthomonas oryzae pathovars, accumulated high levels of hydrogen peroxide (H2O2), and showed a late flowering phenotype under natural long-day conditions, while the OsVQ1-overexpressing plants showed phenotypes similar to that of the wild type. Further studies revealed that OsVQ1 physically interacted with and inhibited OsMPK6 activity. In addition, OsVQ1 expression was downregulated by the pathogen-induced OsMPKK10.2-OsMPK6-OsWRKY45 cascade, suggesting a feedback loop between OsVQ1 and OsMPK6. Moreover, the OsVQ1-KO/osmpk6 double-mutant exhibited increased susceptibility to X. oryzae infection and showed an early flowering phenotype, which may partially be attributed to the reduced accumulation of H2O2 and the consequent up-expression of flowering-promoting genes. These results suggested that the OsVQ1-OsMPK6 module was involved in rice immunity and flowering.
Collapse
Affiliation(s)
- Peilun Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A. Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate. PLANTS (BASEL, SWITZERLAND) 2021; 10:1910. [PMID: 34579441 PMCID: PMC8471759 DOI: 10.3390/plants10091910] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022]
Abstract
Drought and salinity are the major environmental abiotic stresses that negatively impact crop development and yield. To improve yields under abiotic stress conditions, drought- and salinity-tolerant crops are key to support world crop production and mitigate the demand of the growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and controlled by networks of genetic and ecological factors that are the main targets of crop breeding programs. Several genomics strategies are employed to improve crop productivity under abiotic stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in productivity. Within the last decade, modern genomics studies have advanced our capabilities of improving crop genetics, especially those traits relevant to abiotic stress management. This review provided updated and comprehensive knowledge concerning all possible combinations of advanced genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the appropriate planning of future breeding programs, which will assist sustainable crop production under salinity and drought conditions.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Shirin Aktar
- Institute of Tea Research, Chinese Academy of Agricultural Sciences, South Meiling Road, Hangzhou 310008, China;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | | | - Md. Shalim Uddin
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Shamim Ara Bagum
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; (A.B.M.K.); (M.S.U.); (S.A.B.)
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong St., Tai’an 271000, China;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Teame Gereziher Mehari
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.B.); (T.G.M.)
| | - Sagar Maitra
- Department of Agronomy, Centurion University of Technology and Management, Village Alluri Nagar, R.Sitapur 761211, Odisha, India;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
32
|
Dangol S, Nguyen NK, Singh R, Chen Y, Wang J, Lee HG, Hwang BK, Jwa NS. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice- Magnaporthe oryzae Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:710794. [PMID: 34408766 PMCID: PMC8365360 DOI: 10.3389/fpls.2021.710794] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death occurs in rice (Oryza sativa) during an incompatible rice-Magnaporthe oryzae interaction. Here, we show that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection using OsMEK2 knock-out mutant and OsMEK2 and OsMPK1 overexpression rice plants. The OsMPK1:GFP and OsWRKY90:GFP transcription factor were localized to the nuclei, suggesting that OsMPK1 in the cytoplasm moves into the nuclei to interact with the WRKY90. M. oryzae infection in ΔOsmek2 knock-out plants did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, 35S:OsMEK2 overexpression induced ROS- and iron-dependent cell death in rice. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death response to virulent M. oryzae infection. The small-molecule ferroptosis inhibitor ferrostatin-1 suppressed iron- and ROS-dependent ferroptotic cell death in 35S:OsMPK1 overexpression plants. However, the small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death during M. oryzae infection. Disease (susceptibility)-related cell death was lipid ROS-dependent, but iron-independent in the ΔOsmek2 knock-out mutant during the late M. oryzae infection stage. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Sarmina Dangol
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Raksha Singh
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Crop Production and Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service, Purdue University, West Lafayette, IN, United States
| | - Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Hyeon-Gu Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung KooK Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
33
|
Winkelmüller TM, Entila F, Anver S, Piasecka A, Song B, Dahms E, Sakakibara H, Gan X, Kułak K, Sawikowska A, Krajewski P, Tsiantis M, Garrido-Oter R, Fukushima K, Schulze-Lefert P, Laurent S, Bednarek P, Tsuda K. Gene expression evolution in pattern-triggered immunity within Arabidopsis thaliana and across Brassicaceae species. THE PLANT CELL 2021; 33:1863-1887. [PMID: 33751107 PMCID: PMC8290292 DOI: 10.1093/plcell/koab073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.
Collapse
Affiliation(s)
- Thomas M Winkelmüller
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Frederickson Entila
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Shajahan Anver
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Baoxing Song
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present address: Institute for Genomic Diversity, Cornell University, Ithaca, New York
| | - Eik Dahms
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 230-0045 Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Present address: Department of Computational Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Aneta Sawikowska
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-628 Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ruben Garrido-Oter
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Paul Schulze-Lefert
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Interdisciplinary Science Research Institute, Huazhong Agricultural University, 430070 Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, 430070 Wuhan, China
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Author for correspondence:
| |
Collapse
|
34
|
Shin K, Paudyal DP, Lee SC, Hyun JW. Different Phytohormonal Responses on Satsuma Mandarin (Citrus unshiu) Leaves Infected with Host-Compatible or Host-Incompatible Elsinoë fawcettii. THE PLANT PATHOLOGY JOURNAL 2021; 37:268-279. [PMID: 34111916 PMCID: PMC8200574 DOI: 10.5423/ppj.oa.12.2020.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Citrus scab, caused by the fungal pathogen Elsinoë fawcettii, is one of the most important fungal diseases affecting Citrus spp. Citrus scab affects young tissues, including the leaves, twigs, and fruits, and produces severe fruit blemishes that reduce the market value of fresh fruits. To study the molecular responses of satsuma mandarin (C. unshiu) to E. fawcettii, plant hormone-related gene expression was analyzed in response to host-compatible (SM16-1) and host-incompatible (DAR70024) isolates. In the early phase of infection by E. fawcettii, jasmonic acid- and salicylic acid-related gene expression was induced in response to infection with the compatible isolate. However, as symptoms advanced during the late phase of the infection, the jasmonic acid- and salicylic acid-related gene expression was downregulated. The gene expression patterns were compared between compatible and incompatible interactions. As scabs were accompanied by altered tissue growth surrounding the infection site, we conducted gibberellic acid- and abscisic acid-related gene expression analysis and assessed the content of these acids during scab symptom development. Our results showed that gibberellic and abscisic acid-related gene expression and hormonal changes were reduced and induced in response to the infection, respectively. Accordingly, we propose that jasmonic and salicylic acids play a role in the early response to citrus scab, whereas gibberellic and abscisic acids participate in symptom development.
Collapse
Affiliation(s)
- Kihye Shin
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Dilli Prasad Paudyal
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
- Current address: miniPCR, Amplyus LLC, Arlington, MA 02474, USA
| | - Seong Chan Lee
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Jae Wook Hyun
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| |
Collapse
|
35
|
Li N, Yang Z, Li J, Xie W, Qin X, Kang Y, Zhang Q, Li X, Xiao J, Ma H, Wang S. Two VQ Proteins are Substrates of the OsMPKK6-OsMPK4 Cascade in Rice Defense Against Bacterial Blight. RICE (NEW YORK, N.Y.) 2021; 14:39. [PMID: 33913048 PMCID: PMC8081811 DOI: 10.1186/s12284-021-00483-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant-specific valine-glutamine (VQ) protein family with the conserved motif FxxxVQxLTG reportedly functions with the mitogen-activated protein kinase (MAPK) in plant immunity. However, the roles of VQ proteins in MAPK-mediated resistance to disease in rice remain largely unknown. RESULTS In this study, two rice VQ proteins OsVQ14 and OsVQ32 were newly identified to function as the signaling components of a MAPK cascade, OsMPKK6-OsMPK4, to regulate rice resistance to Xanthomonas oryzae pv. oryzae (Xoo). Both OsVQ14 and OsVQ32 positively regulated rice resistance to Xoo. In vitro and in vivo studies revealed that OsVQ14 and OsVQ32 physically interacted with and were phosphorylated by OsMPK4. OsMPK4 was highly phosphorylated in transgenic plants overexpressing OsMPKK6, which showed enhanced resistance to Xoo. Meanwhile, phosphorylated OsVQ14 and OsVQ32 were also markedly accumulated in OsMPKK6-overexpressing transgenic plants. CONCLUSIONS We discovered that OsVQ14 and OsVQ32 functioned as substrates of the OsMPKK6-OsMPK4 cascade to enhance rice resistance to Xoo, thereby defining a more complete signal transduction pathway for induced defenses.
Collapse
Affiliation(s)
- Na Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
36
|
Rice Transcription Factor OsWRKY55 Is Involved in the Drought Response and Regulation of Plant Growth. Int J Mol Sci 2021; 22:ijms22094337. [PMID: 33919349 PMCID: PMC8122443 DOI: 10.3390/ijms22094337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing OsWRKY55 (OsWRKY55-OE) exhibited reduced drought resistance. The OsWRKY55-OE lines showed faster water loss and greater accumulation of hydrogen peroxide (H2O2) and superoxide radical (O2−·) compared to wild-type (WT) plants under drought conditions. OsWRKY55 was expressed in various tissues and was induced by drought and abscisic acid (ABA) treatments. Through yeast two-hybrid assays, we found that OsWRKY55 interacted with four mitogen-activated protein kinases (MAPKs) that could be induced by drought, including OsMPK7, OsMPK9, OsMPK20-1, and OsMPK20-4. The activation effects of the four OsMPKs on OsWRKY55 transcriptional activity were demonstrated by a GAL4-dependent chimeric transactivation assay in rice protoplasts. Furthermore, OsWRKY55 was able to reduce plant height under normal conditions by decreasing the cell size. In addition, based on a dual luciferase reporter assay, OsWRKY55 was shown to bind to the promoter of OsAP2-39 through a yeast one-hybrid assay and positively regulate OsAP2-39 expression. These results suggest that OsWRKY55 plays a critical role in responses to drought stress and the regulation of plant height in rice, further providing valuable information for crop improvement.
Collapse
|
37
|
Ma H, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J, Wang S. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. MOLECULAR PLANT 2021; 14:620-632. [PMID: 33450368 DOI: 10.1016/j.molp.2021.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 05/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades regulate a myriad of plant biological processes, including disease resistance. Plant genomes encode a large number of MAPK kinase kinases (MAPKKKs) that can be divided into two subfamilies, namely MEKK-like kinases and Raf-like kinases. Thus far, the functions of MEKK-like MAPKKKs have been relatively well characterized, but the roles of Raf-like MAPKKKs in plant MAPK cascades remain less understood. Here, we report the role of OsEDR1, a Raf-like MAPKKK, in the regulation of the MAPK cascade in rice response to the bacterial pathogen Xanthomonas oryzae pv. oryzicola (Xoc). We found that OsEDR1 inhibits OsMPKK10.2 (a MAPK kinase) activity through physical interaction. Upon Xoc infection, OsMPKK10.2 is phosphorylated at S304 to activate OsMPK6 (a MAPK). Interestingly, activated OsMPK6 phosphorylates OsEDR1 at S861, which destabilizes OsEDR1 and thus releases the inhibition of OsMPKK10.2, leading to increased OsMPKK10.2 activity and enhanced resistance of rice plants to Xoc. Taken together, these results provide new insights into the functions of Raf-like kinases in the regulation of the MAPK cascade in plant immunity.
Collapse
Affiliation(s)
- Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Peilun Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Xue
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Dehydration-Induced WRKY Transcriptional Factor MfWRKY70 of Myrothamnus flabellifolia Enhanced Drought and Salinity Tolerance in Arabidopsis. Biomolecules 2021; 11:biom11020327. [PMID: 33671480 PMCID: PMC7926768 DOI: 10.3390/biom11020327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
The resurrection plants Myrothamnus flabellifolia can survive long term severe drought and desiccation conditions and soon recover after rewatering. However, few genes related to such excellent drought tolerance and underlying molecular mechanism have been excavated. WRKY transcription factors play critical roles in biotic and abiotic stress signaling, in which WRKY70 functions as a positive regulator in biotic stress response but a negative regulator in abiotic stress signaling in Arabidopsis and some other plant species. In the present study, the functions of a dehydration-induced MfWRKY70 of M. flabellifolia participating was investigated in the model plant Arabidopsis. Our results indicated that MfWRKY70 was localized in the nucleus and could significantly increase tolerance to drought, osmotic, and salinity stresses by promoting root growth and water retention, as well as enhancing the antioxidant enzyme system and maintaining reactive oxygen species (ROS) homeostasis and membrane-lipid stability under stressful conditions. Moreover, the expression of stress-associated genes (P5CS, NCED3 and RD29A) was positively regulated in the overexpression of MfWRKY70 Arabidopsis. We proposed that MfWRKY70 may function as a positive regulator for abiotic stress responses and can be considered as a potential gene for improvement of drought and salinity tolerance in plants.
Collapse
|
39
|
Genome-Wide Analysis of Ribosomal Protein GhRPS6 and Its Role in Cotton Verticillium Wilt Resistance. Int J Mol Sci 2021; 22:ijms22041795. [PMID: 33670294 PMCID: PMC7918698 DOI: 10.3390/ijms22041795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Verticillium wilt is threatening the world’s cotton production. The pathogenic fungus Verticillium dahliae can survive in the soil in the form of microsclerotia for a long time, colonize through the root of cotton, and invade into vascular bundles, causing yellowing and wilting of cotton leaves, and in serious cases, leading to plant death. Breeding resistant varieties is the most economical and effective method to control Verticillium wilt. In previous studies, proteomic analysis was carried out on different cotton varieties inoculated with V. dahliae strain Vd080. It was found that GhRPS6 was phosphorylated after inoculation, and the phosphorylation level in resistant cultivars was 1.5 times than that in susceptible cultivars. In this study, knockdown of GhRPS6 expression results in the reduction of SA and JA content, and suppresses a series of defensive response, enhancing cotton plants susceptibility to V. dahliae. Overexpression in Arabidopsis thaliana transgenic plants was found to be more resistant to V. dahliae. Further, serines at 237 and 240 were mutated to phenylalanine, respectively and jointly. The transgenic Arabidopsis plants demonstrated that seri-237 compromised the plant resistance to V. dahliae. Subcellular localization in Nicotiana benthamiana showed that GhRPS6 was localized in the nucleus. Additionally, the pathogen inoculation and phosphorylation site mutation did not change its localization. These results indicate that GhRPS6 is a potential molecular target for improving resistance to Verticillium wilt in cotton. This lays a foundation for breeding disease-resistant varieties.
Collapse
|
40
|
Update on the Roles of Rice MAPK Cascades. Int J Mol Sci 2021; 22:ijms22041679. [PMID: 33562367 PMCID: PMC7914530 DOI: 10.3390/ijms22041679] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades have been validated playing critical roles in diverse aspects of plant biology, from growth and developmental regulation, biotic and abiotic stress responses, to phytohormone signal transduction or responses. A classical MAPK cascade consists of a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and a MAPK. From the 75 MAPKKKs, eight MAPKKs, and 15 MAPKs of rice, a number of them have been functionally deciphered. Here, we update recent advances in knowledge of the roles of rice MAPK cascades, including their components and complicated action modes, their diversified functions controlling rice growth and developmental responses, coordinating resistance to biotic and abiotic stress, and conducting phytohormone signal transduction. Moreover, we summarize several complete MAPK cascades that harbor OsMAPKKK-OsMAPKK-OsMAPK, their interaction with different upstream components and their phosphorylation of diverse downstream substrates to fulfill their multiple roles. Furthermore, we state a comparison of networks of rice MAPK cascades from signal transduction crosstalk to the precise selection of downstream substrates. Additionally, we discuss putative concerns for elucidating the underlying molecular mechanisms and molecular functions of rice MAPK cascades in the future.
Collapse
|
41
|
Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 229:501-515. [PMID: 32772378 DOI: 10.1111/nph.16861] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalu Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Houxiao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Weixing Shan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
42
|
Ye M, Kuai P, Hu L, Ye M, Sun H, Erb M, Lou Y. Suppression of a leucine-rich repeat receptor-like kinase enhances host plant resistance to a specialist herbivore. PLANT, CELL & ENVIRONMENT 2020; 43:2571-2585. [PMID: 32598036 DOI: 10.1111/pce.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/14/2023]
Abstract
The mechanisms by which herbivores induce plant defenses are well studied. However, how specialized herbivores suppress plant resistance is still poorly understood. Here, we discovered a rice (Oryza sativa) leucine-rich repeat receptor-like kinase, OsLRR-RLK2, which is induced upon attack by gravid females of a specialist piercing-sucking herbivore, the brown planthopper (BPH, Nilaparvata lugens). Silencing OsLRR-RLK2 decreases the constitutive activity of mitogen-activated protein kinase (OsMPK6) and alters BPH-induced transcript levels of several defense-related WRKY transcription factors. Moreover, silencing OsLRR-RLK2 reduces BPH-induction of jasmonic acid and ethylene but promotes the biosynthesis of both elicited salicylic acid and H2 O2 ; silencing also enhances the production of volatiles emitted from rice plants infested with gravid BPH females. These changes decrease BPH preference and performance in the glasshouse and the field. These findings suggest that OsLRR-RLK2, by regulating the plant's defense-related signaling profile, increases the susceptibility of rice to BPH, and that BPH infestation influences the expression of OsLRR-RLK2, suppressing the resistance of rice to BPH.
Collapse
Affiliation(s)
- Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Guo T, Lu ZQ, Shan JX, Ye WW, Dong NQ, Lin HX. ERECTA1 Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. THE PLANT CELL 2020; 32:2763-2779. [PMID: 32616661 PMCID: PMC7474279 DOI: 10.1105/tpc.20.00351] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 05/20/2023]
Abstract
Grain number is a flexible trait that strongly contributes to grain yield. In rice (Oryza sativa), the OsMKKK10-OsMKK4-OsMPK6 cascade, which is negatively regulated by the dual-specificity phosphatase GSN1, coordinates the trade-off between grain number and grain size. However, the specific components upstream and downstream of the GSN1-MAPK module that regulate spikelet number per panicle remain obscure. Here, we report that ERECTA1 (OsER1), a negative regulator of spikelet number per panicle, acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade and that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway is required to maintain cytokinin homeostasis. OsMPK6 directly interacts with and phosphorylates the zinc finger transcription factor DST to enhance its transcriptional activation of CYTOKININ OXIDASE2 (OsCKX2), indicating that the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle morphology by regulating cytokinin metabolism. Furthermore, overexpression of either DST or OsCKX2 rescued the spikelet number phenotype of the oser1, osmkkk10, osmkk4, and osmpk6 mutants, suggesting that the DST-OsCKX2 module genetically functions downstream of the OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway. These findings reveal specific crosstalk between a MAPK signaling pathway and cytokinin metabolism, shedding light on how developmental signals modulate phytohormone homeostasis to shape the inflorescence.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Han X, Zhang L, Zhao L, Xue P, Qi T, Zhang C, Yuan H, Zhou L, Wang D, Qiu J, Shen QH. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. PLANT COMMUNICATIONS 2020; 1:100083. [PMID: 33367247 PMCID: PMC7747994 DOI: 10.1016/j.xplc.2020.100083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.
Collapse
Affiliation(s)
- Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Chunlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
45
|
Manan S. Current status of crops genetic transformation. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Sruthilaxmi CB, Babu S. Proteome Responses to Individual Pathogens and Abiotic Conditions in Rice Seedlings. PHYTOPATHOLOGY 2020; 110:1326-1341. [PMID: 32175828 DOI: 10.1094/phyto-11-19-0425-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice plants under field conditions experience various biotic and abiotic stresses and are adapted to survive using a molecular cross-talk of genes and their protein products based on the severity of a given stress. Seedlings of cultivated variety ASD16 (resistant to fungal disease, blast; tolerant to abiotic stress, salinity) were subjected to salt, drought, high temperature and low temperature stress as well as infection by Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (causing reemerging diseases such as sheath blight and leaf blight), respectively, the sheath blight and bacterial leaf blight pathogens. Leaf proteome was analyzed using two-dimensional electrophoresis and differentially expressed proteins were identified using mass spectrometry. In addition to many other differentially expressed proteins, acidic endochitinase was found to be upregulated during fungal infection and drought treatment, and a germin-like protein upregulated during fungal infection and high temperature stress. These two proteins were further validated at the gene expression level using reverse transcription-PCR in dual stress experiments. Pot culture plants were subjected to fungal infection followed by drought and drought followed by fungal infection to validate chitinase gene expression. Similarly, plants subjected to fungal infections followed by high temperature stress and vice versa were used to validate the expression of germin-like protein-coding gene. The results of the present study indicate that chitinase and germin-like protein are potential targets for further exploration to develop rice plants resistant or tolerant to biotic and abiotic stresses.
Collapse
Affiliation(s)
| | - Subramanian Babu
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
47
|
Quais MK, Munawar A, Ansari NA, Zhou WW, Zhu ZR. Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Sci Rep 2020; 10:8051. [PMID: 32415213 PMCID: PMC7229203 DOI: 10.1038/s41598-020-64925-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Salinity stress triggers changes in plant morphology, physiology and molecular responses which can subsequently influence plant-insect interactions; however, these consequences remain poorly understood. We analyzed plant biomass, insect population growth rates, feeding behaviors and plant gene expression to characterize the mechanisms of the underlying interactions between the rice plant and brown planthopper (BPH) under salinity stress. Plant bioassays showed that plant growth and vigor losses were higher in control and low salinity conditions compared to high salinity stressed TN1 (salt-planthopper susceptible cultivar) in response to BPH feeding. In contrast, the losses were higher in the high salinity treated TPX (salt-planthopper resistant cultivar). BPH population growth was reduced on TN1, but increased on TPX under high salinity condition compared to the control. This cultivar-specific effect was reflected in BPH feeding behaviors on the corresponding plants. Quantification of abscisic acid (ABA) and salicylic acid (SA) signaling transcripts indicated that salinity-induced down-regulation of ABA signaling increased SA-dependent defense in TN1. While, up-regulation of ABA related genes in salinity stressed TPX resulted in the decrease in SA-signaling genes. Thus, ABA and SA antagonism might be a key element in the interaction between BPH and salinity stress. Taken together, we concluded that plant-planthopper interactions are markedly shaped by salinity and might be cultivar specific.
Collapse
Affiliation(s)
- Md Khairul Quais
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Naved Ahmad Ansari
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture; Key Laboratory of Molecular Biology of Crop Pathogens and Insects; Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
48
|
Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D. MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:747-760. [PMID: 31863495 DOI: 10.1111/tpj.14660] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play vital roles in regulating plant growth, development, and stress responses. MAPK-like (MPKL) proteins are a group of kinases containing the MAPK signature TxY motif and showing sequence similarity to MAPKs. However, the functions of plant MPKL proteins are currently unknown. The maize (Zea mays) genome contains four genes encoding MPKL proteins, here named ZmMPKL1 to ZmMPKL4. In this study, we show that ZmMPKL1 possesses kinase activity and that drought-induced ZmMPKL1 expression, ZmMPKL1 overexpression and knockout maize seedlings exhibited no visible morphological difference from wild-type B73 seedlings when grown under normal conditions. By contrast, under drought conditions, ZmMPKL1-overexpressing seedlings showed increased stomatal aperture, water loss, and leaf wilting and knockout seedlings showed the opposite phenotypes. Moreover, these drought-sensitive phenotypes in ZmMPKL1-overexpressing seedlings were restored by exogenous abscisic acid (ABA). ZmMPKL1 overexpression reduced drought-induced ABA production in seedlings and the knockout showed enhanced ABA production. Drought-induced transcription of ABA biosynthetic genes were suppressed and ABA catabolic genes were enhanced in ZmMPKL1-overexpressing seedlings, while their transcription were reversely regulated in knockout seedlings. These results suggest that ZmMPKL1 positively regulates seedlings drought sensitivity by altering the transcription of ABA biosynthetic and catabolic genes, and ABA homeostasis.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Chang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Ting Pei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiuyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junhong Zhuang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475001, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
49
|
Shan W, Guo YF, Wei W, Chen JY, Lu WJ, Yuan DB, Su XG, Kuang JF. Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening. PLANT CELL REPORTS 2020; 39:35-46. [PMID: 31501956 DOI: 10.1007/s00299-019-02471-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Banana MaBZR1/2 interact with MaMPK14 to enhance the transcriptional inhibition of cell wall modifying genes including MaEXP2, MaPL2 and MaXET5. Fruit ripening and softening, the major attributes to perishability in fleshy fruits, are modulated by various plant hormones and gene expression. Banana MaBZR1/2, the central transcription factors of brassinosteroid (BR) signaling, mediate fruit ripening through regulation of ethylene biosynthesis, but their possible roles in fruit softening as well as the underlying mechanisms remain to be determined. In this work, we found that MaBZR1/2 directly bound to and repressed the promoters of several cell wall modifying genes such as MaEXP2, MaPL2 and MaXET5, whose transcripts were elevated concomitant with fruit ripening. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that MaBZR1/2 physically interacted with a mitogen-activated protein kinase MaMPK14, and this interaction strengthened the MaBZR1/2-mediated transcriptional inhibitory abilities. Collectively, our study provides insight into the mechanism of MaBZR1/2 contributing to fruit ripening and softening, which may have potential for banana molecular improvement.
Collapse
Affiliation(s)
- Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yu-Fan Guo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - De-Bao Yuan
- Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, People's Republic of China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou, 510520, People's Republic of China.
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
50
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|