1
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Zhuang Y, Wang H, Tan F, Wu B, Liu L, Qin H, Yang Z, He M. Rhizosphere metabolic cross-talk from plant-soil-microbe tapping into agricultural sustainability: Current advance and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108619. [PMID: 38604013 DOI: 10.1016/j.plaphy.2024.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.
Collapse
Affiliation(s)
- Yong Zhuang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| | - Hao Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Furong Tan
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Linpei Liu
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Han Qin
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - ZhiJuan Yang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, 610041, Chengdu, China.
| |
Collapse
|
3
|
Weisberg AJ, Wu Y, Chang JH, Lai EM, Kuo CH. Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:1-23. [PMID: 37164023 DOI: 10.1146/annurev-phyto-021622-125009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
5
|
Ryan ME, Damke PP, Bryant C, Sheedlo MJ, Shaffer CL. Architectural asymmetry enables DNA transport through the Helicobacter pylori cag type IV secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550604. [PMID: 37546756 PMCID: PMC10402047 DOI: 10.1101/2023.07.25.550604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural asymmetry within secretion system architecture is fundamentally important for apparatus diversification and biological function. However, the mechanism by which symmetry mismatch contributes to nanomachine assembly and interkingdom effector translocation are undefined. Here, we show that architectural asymmetry orchestrates dynamic substrate selection and enables trans-kingdom DNA conjugation through the Helicobacter pylori cag type IV secretion system (cag T4SS). Structural analyses of asymmetric units within the cag T4SS periplasmic ring complex (PRC) revealed intermolecular π-π stacking interactions that coordinate DNA binding and license trans-kingdom conjugation without disrupting the translocation of protein and peptidoglycan effector molecules. Additionally, we identified a novel proximal translocation channel gating mechanism that regulates cargo loading and governs substrate transport across the outer membrane. We thus propose a model whereby the organization and geometry of architectural symmetry mismatch exposes π-π interfaces within the PRC to facilitate DNA transit through the cag T4SS translocation channel.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Caitlynn Bryant
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
| | - Michael J. Sheedlo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, KY, 40546, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| |
Collapse
|
6
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
7
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Hooykaas PJJ. The Ti Plasmid, Driver of Agrobacterium Pathogenesis. PHYTOPATHOLOGY 2023; 113:594-604. [PMID: 37098885 DOI: 10.1094/phyto-11-22-0432-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens causes crown gall disease in plants, characterized by the formation of tumor-like galls where wounds were present. Nowadays, however, the bacterium and its Ti (tumor-inducing) plasmid is better known as an effective vector for the genetic manipulation of plants and fungi. In this review, I will briefly summarize some of the major discoveries that have led to this bacterium now playing such a prominent role worldwide in plant and fungal research at universities and research institutes and in agricultural biotechnology for the production of genetically modified crops. I will then delve a little deeper into some aspects of Agrobacterium biology and discuss the diversity among agrobacteria and the taxonomic position of these bacteria, the diversity in Ti plasmids, the molecular mechanism used by the bacteria to transform plants, and the discovery of protein translocation from the bacteria to host cells as an essential feature of Agrobacterium-mediated transformation.
Collapse
|
9
|
Mazoyon C, Hirel B, Pecourt A, Catterou M, Gutierrez L, Sarazin V, Dubois F, Duclercq J. Sphingomonas sediminicola Is an Endosymbiotic Bacterium Able to Induce the Formation of Root Nodules in Pea ( Pisum sativum L.) and to Enhance Plant Biomass Production. Microorganisms 2023; 11:microorganisms11010199. [PMID: 36677491 PMCID: PMC9861922 DOI: 10.3390/microorganisms11010199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The application of bacterial bio-inputs is a very attractive alternative to the use of mineral fertilisers. In ploughed soils including a crop rotation pea, we observed an enrichment of bacterial communities with Sphingomonas (S.) sediminicola. Inoculation experiments, cytological studies, and de novo sequencing were used to investigate the beneficial role of S. sediminicola in pea. S. sediminicola is able to colonise pea plants and establish a symbiotic association that promotes plant biomass production. Sequencing of the S. sediminicola genome revealed the existence of genes involved in secretion systems, Nod factor synthesis, and nitrogenase activity. Light and electron microscopic observations allowed us to refine the different steps involved in the establishment of the symbiotic association, including the formation of infection threads, the entry of the bacteria into the root cells, and the development of differentiated bacteroids in root nodules. These results, together with phylogenetic analysis, demonstrated that S. sediminicola is a non-rhizobia that has the potential to develop a beneficial symbiotic association with a legume. Such a symbiotic association could be a promising alternative for the development of more sustainable agricultural practices, especially under reduced N fertilisation conditions.
Collapse
Affiliation(s)
- Candice Mazoyon
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Bertrand Hirel
- Unité Mixte de Recherche 1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), 78026 Versailles, France
| | - Audrey Pecourt
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Manuella Catterou
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | | | - Fréderic Dubois
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
| | - Jérôme Duclercq
- Unité Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne (UPJV), 80000 Amiens, France
- Correspondence: ; Tel.: +33-3-22827612
| |
Collapse
|
10
|
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022; 11:3928. [PMID: 36497186 PMCID: PMC9736268 DOI: 10.3390/cells11233928] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Crossbreeding, mutation breeding, and traditional transgenic breeding take much time to improve desirable characters/traits. CRISPR/Cas-mediated genome editing (GE) is a game-changing tool that can create variation in desired traits, such as biotic and abiotic resistance, increase quality and yield in less time with easy applications, high efficiency, and low cost in producing the targeted edits for rapid improvement of crop plants. Plant pathogens and the severe environment cause considerable crop losses worldwide. GE approaches have emerged and opened new doors for breeding multiple-resistance crop varieties. Here, we have summarized recent advances in CRISPR/Cas-mediated GE for resistance against biotic and abiotic stresses in a crop molecular breeding program that includes the modification and improvement of genes response to biotic stresses induced by fungus, virus, and bacterial pathogens. We also discussed in depth the application of CRISPR/Cas for abiotic stresses (herbicide, drought, heat, and cold) in plants. In addition, we discussed the limitations and future challenges faced by breeders using GE tools for crop improvement and suggested directions for future improvements in GE for agricultural applications, providing novel ideas to create super cultivars with broad resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Yaxin Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Naeem Zafar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qurban Ali
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hakim Manghwar
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Ding
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Hong
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Lacroix B, Citovsky V. Genetic factors governing bacterial virulence and host plant susceptibility during Agrobacterium infection. ADVANCES IN GENETICS 2022; 110:1-29. [PMID: 37283660 PMCID: PMC10241481 DOI: 10.1016/bs.adgen.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Several species of the Agrobacterium genus represent unique bacterial pathogens able to genetically transform plants, by transferring and integrating a segment of their own DNA (T-DNA, transferred DNA) in their host genome. Whereas in nature this process results in uncontrolled growth of the infected plant cells (tumors), this capability of Agrobacterium has been widely used as a crucial tool to generate transgenic plants, for research and biotechnology. The virulence of Agrobacterium relies on a series of virulence genes, mostly encoded on a large plasmid (Ti-plasmid, tumor inducing plasmid), involved in the different steps of the DNA transfer to the host cell genome: activation of bacterial virulence, synthesis and export of the T-DNA and its associated proteins, intracellular trafficking of the T-DNA and effector proteins in the host cell, and integration of the T-DNA in the host genomic DNA. Multiple interactions between these bacterial encoded proteins and host factors occur during the infection process, which determine the outcome of the infection. Here, we review our current knowledge of the mechanisms by which bacterial and plant factors control Agrobacterium virulence and host plant susceptibility.
Collapse
|
12
|
Cho H, Moy Y, Rudnick NA, Klein TM, Yin J, Bolar J, Hendrick C, Beatty M, Castañeda L, Kinney AJ, Jones TJ, Chilcoat ND. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:977-990. [PMID: 35015927 PMCID: PMC9055811 DOI: 10.1111/pbi.13777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 05/03/2023]
Abstract
We have discovered a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), which is capable of efficient plant transformation. Ochrobactrum is a new host for Agrobacterium-derived vir and T-DNA-mediated transformation. Oh H1 is a unique, non-phytopathogenic species, categorized as a BSL-1 organism. We engineered Oh H1 with repurposed Agrobacterium virulence machinery and demonstrated Oh H1 can transform numerous dicot species and at least one monocot, sorghum. We generated a cysteine auxotrophic Oh H1-8 strain containing a binary vector system. Oh H1-8 produced transgenic soybean plants with an efficiency 1.6 times that of Agrobacterium strain AGL1 and 2.9 times that of LBA4404Thy-. Oh H1-8 successfully transformed several elite Corteva soybean varieties with T0 transformation frequency up to 35%. In addition to higher transformation efficiencies, Oh H1-8 generated high-quality, transgenic events with single-copy, plasmid backbone-free insertion at frequencies higher than AGL1. The SpcN selectable marker gene is excised using a heat shock-inducible excision system resulting in marker-free transgenic events. Approximately, 24.5% of the regenerated plants contained only a single copy of the transgene and contained no vector backbone. There were no statistically significant differences in yield comparing T3 null-segregant lines to wild-type controls. We have demonstrated that Oh H1-8, combined with spectinomycin selection, is an efficient, rapid, marker-free and yield-neutral transformation system for elite soybean.
Collapse
Affiliation(s)
- Hyeon‐Je Cho
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - York Moy
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Alpine Roads Inc.South San FranciscoCAUSA
| | - Nathan A. Rudnick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Relic Culture LLC.San LeandroCAUSA
| | - Theodore M. Klein
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
- Meristematic Inc.San FranciscoCAUSA
| | - Jiaming Yin
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Joy Bolar
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Carol Hendrick
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | - Mary Beatty
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | | | | - Todd J. Jones
- Research and DevelopmentCorteva AgriscienceJohnstonIAUSA
| | | |
Collapse
|
13
|
Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y. CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. PLANT MOLECULAR BIOLOGY 2022; 108:157-173. [PMID: 35032250 DOI: 10.1007/s11103-021-01229-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Domestication traits particularly fruit size and plant architecture and flowering are critical in transforming a progenitor's wild stature into a super improved plant. The latest advancements in the CRISPR system, as well as its rapid adoption, are speeding up plant breeding. Solanaceae has a varied range of important crops, with a few model crops, such as tomato and, more recently, groundcherry, serving as a foundation for developing molecular techniques, genome editing tools, and establishing standards for other crops. Domestication traits in agricultural plants are quantified and widely adopted under modern plant breeding to improve small-fruited and bushy crop species like goji berry. The molecular mechanisms of the FW2.2, FW3.2, FW11.3, FAS/CLV3, LC/WUS, SP, SP5G, and CRISPR genome editing technology have been described in detail here. Furthermore, special focus has been placed on CRISPR gene editing achievements for revolutionizing Solanaceae breeding and changing the overall crop landscape. This review seeks to provide a thorough overview of the CRISPR technique's ongoing advancements, particularly in Solanaceae, in terms of domesticated features, future prospects, and regulatory risks. We believe that this vigorous discussion will lead to a broader understanding of CRISPR gene editing as a tool for achieving key breeding goals in other Solanaceae minor crops with significant industrial value.
Collapse
Affiliation(s)
- Fazal Rehman
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Haiguang Gong
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yufei Bao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Hongwen Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- GNNU-SCBG Joint Laboratory of Modern Agricultural Technology, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
14
|
Weisberg AJ, Miller M, Ream W, Grünwald NJ, Chang JH. Diversification of plasmids in a genus of pathogenic and nitrogen-fixing bacteria. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200466. [PMID: 34839700 PMCID: PMC8628075 DOI: 10.1098/rstb.2020.0466] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Members of the agrobacteria-rhizobia complex (ARC) have multiple and diverse plasmids. The extent to which these plasmids are shared and the consequences of their interactions are not well understood. We extracted over 4000 plasmid sequences from 1251 genome sequences and constructed a network to reveal interactions that have shaped the evolutionary histories of oncogenic virulence plasmids. One newly discovered type of oncogenic plasmid is a mosaic with three incomplete, but complementary and partially redundant virulence loci. Some types of oncogenic plasmids recombined with accessory plasmids or acquired large regions not known to be associated with pathogenicity. We also identified two classes of partial virulence plasmids. One class is potentially capable of transforming plants, but not inciting disease symptoms. Another class is inferred to be incomplete and non-functional but can be found as coresidents of the same strain and together are predicted to confer pathogenicity. The modularity and capacity for some plasmids to be transmitted broadly allow them to diversify, convergently evolve adaptive plasmids and shape the evolution of genomes across much of the ARC. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marilyn Miller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Walt Ream
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Niklaus J. Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture and Agricultural Research Service, Corvallis, OR 97330, USA
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
15
|
Bellido AM, Souza Canadá ED, Permingeat HR, Echenique V. Genetic Transformation of Apomictic Grasses: Progress and Constraints. FRONTIERS IN PLANT SCIENCE 2021; 12:768393. [PMID: 34804102 PMCID: PMC8602796 DOI: 10.3389/fpls.2021.768393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/05/2021] [Indexed: 05/17/2023]
Abstract
The available methods for plant transformation and expansion beyond its limits remain especially critical for crop improvement. For grass species, this is even more critical, mainly due to drawbacks in in vitro regeneration. Despite the existence of many protocols in grasses to achieve genetic transformation through Agrobacterium or biolistic gene delivery, their efficiencies are genotype-dependent and still very low due to the recalcitrance of these species to in vitro regeneration. Many plant transformation facilities for cereals and other important crops may be found around the world in universities and enterprises, but this is not the case for apomictic species, many of which are C4 grasses. Moreover, apomixis (asexual reproduction by seeds) represents an additional constraint for breeding. However, the transformation of an apomictic clone is an attractive strategy, as the transgene is immediately fixed in a highly adapted genetic background, capable of large-scale clonal propagation. With the exception of some species like Brachiaria brizantha which is planted in approximately 100 M ha in Brazil, apomixis is almost non-present in economically important crops. However, as it is sometimes present in their wild relatives, the main goal is to transfer this trait to crops to fix heterosis. Until now this has been a difficult task, mainly because many aspects of apomixis are unknown. Over the last few years, many candidate genes have been identified and attempts have been made to characterize them functionally in Arabidopsis and rice. However, functional analysis in true apomictic species lags far behind, mainly due to the complexity of its genomes, of the trait itself, and the lack of efficient genetic transformation protocols. In this study, we review the current status of the in vitro culture and genetic transformation methods focusing on apomictic grasses, and the prospects for the application of new tools assayed in other related species, with two aims: to pave the way for discovering the molecular pathways involved in apomixis and to develop new capacities for breeding purposes because many of these grasses are important forage or biofuel resources.
Collapse
Affiliation(s)
- Andrés M. Bellido
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | | | | | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS – CCT – CONICET Bahía Blanca), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
16
|
Hooykaas MJG, Hooykaas PJJ. Complete genomic sequence and phylogenomics analysis of Agrobacterium strain AB2/73: a new Rhizobium species with a unique mega-Ti plasmid. BMC Microbiol 2021; 21:295. [PMID: 34711172 PMCID: PMC8554961 DOI: 10.1186/s12866-021-02358-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/06/2021] [Indexed: 01/18/2023] Open
Abstract
Background The Agrobacterium strain AB2/73 has a unique host range for the induction of crown gall tumors, and contains an exceptionally large, over 500 kbp mega Ti plasmid. We used whole genome sequencing to fully characterize and comparatively analyze the complex genome of strain AB2/73, including its Ti plasmid and virulence factors. Results We obtained a high-quality, full genomic sequence of AB2/73 by a combination of short-read Illumina sequencing and long-read Nanopore sequencing. The AB2/73 genome has a total size of 7,266,754 bp with 59.5% GC for which 7012 genes (6948 protein coding sequences) are predicted. Phylogenetic and comparative genomics analysis revealed that strain AB2/73 does not belong to the genus Agrobacterium, but to a new species in the genus Rhizobium, which is most related to Rhizobium tropici. In addition to the chromosome, the genome consists of 6 plasmids of which the largest two, of more than 1 Mbp, have chromid-like properties. The mega Ti plasmid is 605 kbp in size and contains two, one of which is incomplete, repABC replication units and thus appears to be a cointegrate consisting of about 175 kbp derived from an unknown Ti plasmid linked to 430 kbp from another large plasmid. In pTiAB2/73 we identified a complete set of virulence genes and two T-DNAs. Besides the previously described T-DNA we found a larger, second T-DNA containing a 6b-like onc gene and the acs gene for agrocinopine synthase. Also we identified two clusters of genes responsible for opine catabolism, including an acc-operon for agrocinopine degradation, and genes putatively involved in ridéopine catabolism. The plasmid also harbours tzs, iaaM and iaaH genes for the biosynthesis of the plant growth regulators cytokinin and auxin. Conclusions The comparative genomics analysis of the high quality genome of strain AB2/73 provided insight into the unusual phylogeny and genetic composition of the limited host range Agrobacterium strain AB2/73. The description of its unique genomic composition and of all the virulence determinants in pTiAB2/73 will be an invaluable tool for further studies into the special host range properties of this bacterium. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02358-0.
Collapse
|
17
|
Rao MJ, Wang L. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. PLANTA 2021; 254:68. [PMID: 34498163 DOI: 10.1007/s00425-021-03716-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this review, we have focused on the CRISPR/Cas9 technology for improving the agronomic traits in plants through point mutations, knockout, and single base editing, and we highlighted the recent progress in plant metabolic engineering. CRISPR/Cas9 technology has immense power to reproduce plants with desired characters and revolutionizing the field of genome engineering by erasing the barriers in targeted genome editing. Agriculture fields are using this advance genome editing tool to get the desired traits in the crops plants such as increase yield, improve product quality attributes, and enhance resistance against biotic and abiotic stresses by identifying and editing genes of interest. This review focuses on CRISPR/Cas-based gene knockout for trait improvement and single base editing to boost yield, quality, stress tolerance, and disease resistance traits in crops. Use of CRISPR/Cas9 system to facilitate crop domestication and hybrid breeding are also touched. We summarize recent developments and up-gradation of delivery mechanism (nanotechnology and virus particle-based delivery system) and progress in multiplex gene editing. We also shed lights in advances and challenges of engineering the important metabolic pathways that contain a variety of dietary metabolites and phytochemicals. In addition, we endorsed substantial technical hurdles and possible ways to overcome the unpredictability of CRISPR/Cas technology for broader application across various crop species. We speculated that by making a strong interconnection among all genomic fields will give a gigantic bunt of knowledge to develop crop expressing desired traits.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lingqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, Guangxi, 530004, People's Republic of China.
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., 8, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
18
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
19
|
Manan S. Current status of crops genetic transformation. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Li X, Zhu T, Tu H, Pan SQ. Agrobacterium VirE3 Uses Its Two Tandem Domains at the C-Terminus to Retain Its Companion VirE2 on the Cytoplasmic Side of the Host Plasma Membrane. FRONTIERS IN PLANT SCIENCE 2020; 11:464. [PMID: 32373148 PMCID: PMC7187210 DOI: 10.3389/fpls.2020.00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 05/30/2023]
Abstract
Agrobacterium tumefaciens is the causal agent of crown gall disease in nature; in the laboratory the bacterium is widely used for plant genetic modification. The bacterium delivers a single-stranded transferred DNA (T-DNA) and a group of crucial virulence proteins into host cells. A putative T-complex is formed inside host cells that is composed of T-DNA and virulence proteins VirD2 and VirE2, which protect the foreign DNA from degradation and guide its way into the host nucleus. However, little is known about how the T-complex is assembled inside host cells. We combined the split-GFP and split-sfCherry labeling systems to study the interaction of Agrobacterium-delivered VirE2 and VirE3 in host cells. Our results indicated that VirE2 co-localized with VirE3 on the cytoplasmic side of the host cellular membrane upon the delivery. We identified and characterized two tandem domains at the VirE3 C-terminus that interacted with VirE2 in vitro. Deletion of these two domains abolished the VirE2 accumulation on the host plasma membrane and affected the transformation. Furthermore, the two VirE2-interacting domains of VirE3 exhibited different affinities with VirE2. Collectively, this study demonstrates that the anchorage protein VirE3 uses the two tandem VirE2-interacting domains to facilitate VirE2 protection for T-DNA at the cytoplasmic side of the host cell entrance.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tingting Zhu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Haitao Tu
- School of Stomatology and Medicine, Foshan Institute of Molecular Bio-Engineering, Foshan University, Foshan, China
| | - Shen Q. Pan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Lucke M, Correa MG, Levy A. The Role of Secretion Systems, Effectors, and Secondary Metabolites of Beneficial Rhizobacteria in Interactions With Plants and Microbes. FRONTIERS IN PLANT SCIENCE 2020; 11:589416. [PMID: 33240304 PMCID: PMC7680756 DOI: 10.3389/fpls.2020.589416] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Beneficial rhizobacteria dwell in plant roots and promote plant growth, development, and resistance to various stress types. In recent years there have been large-scale efforts to culture root-associated bacteria and sequence their genomes to uncover novel beneficial microbes. However, only a few strains of rhizobacteria from the large pool of soil microbes have been studied at the molecular level. This review focuses on the molecular basis underlying the phenotypes of three beneficial microbe groups; (1) plant-growth promoting rhizobacteria (PGPR), (2) root nodulating bacteria (RNB), and (3) biocontrol agents (BCAs). We focus on bacterial proteins and secondary metabolites that mediate known phenotypes within and around plants, and the mechanisms used to secrete these. We highlight the necessity for a better understanding of bacterial genes responsible for beneficial plant traits, which can be used for targeted gene-centered and molecule-centered discovery and deployment of novel beneficial rhizobacteria.
Collapse
|
22
|
Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R. Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells 2019; 8:E1386. [PMID: 31689989 PMCID: PMC6912757 DOI: 10.3390/cells8111386] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/04/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
Genome-editing, a recent technological advancement in the field of life sciences, is one of the great examples of techniques used to explore the understanding of the biological phenomenon. Besides having different site-directed nucleases for genome editing over a decade ago, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) based genome editing approach has become a choice of technique due to its simplicity, ease of access, cost, and flexibility. In the present review, several CRISPR/Cas based approaches have been discussed, considering recent advances and challenges to implicate those in the crop improvement programs. Successful examples where CRISPR/Cas approach has been used to improve the biotic and abiotic stress tolerance, and traits related to yield and plant architecture have been discussed. The review highlights the challenges to implement the genome editing in polyploid crop plants like wheat, canola, and sugarcane. Challenges for plants difficult to transform and germline-specific gene expression have been discussed. We have also discussed the notable progress with multi-target editing approaches based on polycistronic tRNA processing, Csy4 endoribonuclease, intron processing, and Drosha ribonuclease. Potential to edit multiple targets simultaneously makes it possible to take up more challenging tasks required to engineer desired crop plants. Similarly, advances like precision gene editing, promoter bashing, and methylome-editing will also be discussed. The present review also provides a catalog of available computational tools and servers facilitating designing of guide-RNA targets, construct designs, and data analysis. The information provided here will be useful for the efficient exploration of technological advances in genome editing field for the crop improvement programs.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Virender Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Gunvant B Patil
- Department of Agronomy and Plant Genetics University of Minnesota, St. Paul, MN 55108-6026, USA.
| | - Trupti Joshi
- Department of Health Management and Informatics; Informatics Institute; Christopher S Bond Life Science Center, University of Missouri, Columbia, MO 65211-7310, USA.
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali Punjab 140306, India.
| |
Collapse
|
23
|
Douglas GM, Langille MGI. Current and Promising Approaches to Identify Horizontal Gene Transfer Events in Metagenomes. Genome Biol Evol 2019; 11:2750-2766. [PMID: 31504488 PMCID: PMC6777429 DOI: 10.1093/gbe/evz184] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
High-throughput shotgun metagenomics sequencing has enabled the profiling of myriad natural communities. These data are commonly used to identify gene families and pathways that were potentially gained or lost in an environment and which may be involved in microbial adaptation. Despite the widespread interest in these events, there are no established best practices for identifying gene gain and loss in metagenomics data. Horizontal gene transfer (HGT) represents several mechanisms of gene gain that are especially of interest in clinical microbiology due to the rapid spread of antibiotic resistance genes in natural communities. Several additional mechanisms of gene gain and loss, including gene duplication, gene loss-of-function events, and de novo gene birth are also important to consider in the context of metagenomes but have been less studied. This review is largely focused on detecting HGT in prokaryotic metagenomes, but methods for detecting these other mechanisms are first discussed. For this article to be self-contained, we provide a general background on HGT and the different possible signatures of this process. Lastly, we discuss how improved assembly of genomes from metagenomes would be the most straight-forward approach for improving the inference of gene gain and loss events. Several recent technological advances could help improve metagenome assemblies: long-read sequencing, determining the physical proximity of contigs, optical mapping of short sequences along chromosomes, and single-cell metagenomics. The benefits and limitations of these advances are discussed and open questions in this area are highlighted.
Collapse
Affiliation(s)
- Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
24
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Cervantes-De La Luz L, Girard L, Romero D, Brom S. Conjugative transfer between Rhizobium etli endosymbionts inside the root nodule. Environ Microbiol 2019; 21:3430-3441. [PMID: 31037804 DOI: 10.1111/1462-2920.14645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Since the discovery that biological nitrogen fixation ensues in nodules resulting from the interaction of rhizobia with legumes, nodules were thought to be exclusive for hosting nitrogen-fixing and plant growth promoting bacteria. In this work, we uncover a novel function of nodules, as a niche permissive to acquisition of plasmids via conjugative transfer. We used Rhizobium etli CFN42, which nodulates Phaseolus vulgaris. The genome of R. etli CFN42 contains a chromosome and six plasmids. pRet42a is a conjugative plasmid regulated by Quorum-Sensing (QS), and pRet42d is the symbiotic plasmid. Here, using confocal microscopy and flow cytometry, we show that pRet42a transfers on the root's surface, and unexpectedly, inside the nodules. Conjugation still took place inside nodules, even when it was restricted on the plant surface by placing the QS traI regulator under the promoter of the nitrogenase gene, which is only expressed inside the nodules, or by inhibiting the QS transcriptional induction of transfer genes with a traM antiactivator on an unstable vector maintained on the plant surface and lost inside the nodules. These results conclusively confirm the occurrence of conjugation in these structures, defining them as a protected environment for bacterial diversification.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura Cervantes-De La Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
25
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
26
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
27
|
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:667-697. [PMID: 30835493 DOI: 10.1146/annurev-arplant-050718-100049] [Citation(s) in RCA: 696] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China 100101;
- University of Chinese Academy of Sciences, Beijing, China 100864
| |
Collapse
|
28
|
Rathore DS, Zuniga-Soto E, Mullins E. Ensifer-Mediated Transformation (EMT) of Rice (Monocot) and Oilseed Rape (Dicot). Methods Mol Biol 2019; 1864:37-48. [PMID: 30415327 DOI: 10.1007/978-1-4939-8778-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ensifer adhaerens OV14 underpins the successful crop transformation protocol, termed Ensifer-mediated transformation (EMT). The adaptability and efficiency of EMT technology to successfully transform both monocot and dicots have been previously reported. To facilitate community users' transition to EMT, the modified rice and oilseed rape plants generated in this work were developed using EMT protocols that were grounded in standard Agrobacterium-mediated transformation (AMT) processes. Therefore, this chapter describes simple yet crucial steps involved in transferring the use of EMT of rice and oilseed rape for generation of fertile and independent transgenic lines.
Collapse
Affiliation(s)
- Dheeraj Singh Rathore
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland
| | - Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc, Oak Park, Carlow R93 XE12, Co. Carlow, Republic of Ireland.
| |
Collapse
|
29
|
Li X, Tu H, Pan SQ. Agrobacterium Delivers Anchorage Protein VirE3 for Companion VirE2 to Aggregate at Host Entry Sites for T-DNA Protection. Cell Rep 2018; 25:302-311.e6. [PMID: 30304671 DOI: 10.1016/j.celrep.2018.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/13/2018] [Accepted: 09/07/2018] [Indexed: 01/21/2023] Open
Abstract
Agrobacterium tumefaciens transfers oncogenic DNA (T-DNA) and effector proteins into various host plants. T-DNA is generated inside the bacteria and subsequently delivered into plant cells along with the companion effectors VirD2, VirE2, and VirE3. However, it is not clear how the T-complex consisting of VirD2 and VirE2 is assembled inside plant cells. Here, we report that the effector protein VirE3 localized to plant plasma membranes as an anchorage through a conserved α-helical-bundle domain. VirE3 interacted with itself and enabled VirE2 accumulation at host entry sites through direct interactions. VirE3 was critical for VirE2 function in T-DNA protection. Our data indicate that VirE3 functions as a previously unrecognized anchorage protein consisting of membrane-binding, self-interacting, and VirE2-interacting domains. Both VirE2 and VirE3 are conserved among Agrobacterium and rhizobia species but not other organisms, suggesting that a group of anchorage proteins have been generated through evolution to facilitate the nucleoprotein assembly at plant membranes.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore
| | - Haitao Tu
- Foshan Institute of Molecular Bio-Engineering, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, 10 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
30
|
Martínez-Cruz J, Romero D, de la Torre FN, Fernández-Ortuño D, Torés JA, de Vicente A, Pérez-García A. The Functional Characterization of Podosphaera xanthii Candidate Effector Genes Reveals Novel Target Functions for Fungal Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:914-931. [PMID: 29513627 DOI: 10.1094/mpmi-12-17-0318-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Diego Romero
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Fernando N de la Torre
- 2 Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain; and
| | - Dolores Fernández-Ortuño
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Juan A Torés
- 3 Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - Antonio de Vicente
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| | - Alejandro Pérez-García
- 1 Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga and Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora"-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain
| |
Collapse
|
31
|
Wang L, Lacroix B, Guo J, Citovsky V. The Agrobacterium VirE2 effector interacts with multiple members of the Arabidopsis VIP1 protein family. MOLECULAR PLANT PATHOLOGY 2018; 19:1172-1183. [PMID: 28802023 PMCID: PMC5809326 DOI: 10.1111/mpp.12595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/05/2023]
Abstract
T-DNA transfer from Agrobacterium to its host plant genome relies on multiple interactions between plant proteins and bacterial effectors. One such plant protein is the Arabidopsis VirE2 interacting protein (AtVIP1), a transcription factor that binds Agrobacterium tumefaciens C58 VirE2, potentially acting as an adaptor between VirE2 and several other host factors. It remains unknown, however, whether the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and whether VirE2 homologues encoded by different bacterial strains/species recognize AtVIP1 or its homologues. Here, we addressed these questions by systematic analysis (using the yeast two-hybrid and co-immunoprecipitation approaches) of interactions between VirE2 proteins encoded by four major representatives of known bacterial species/strains with functional T-DNA transfer machineries and eight VIP1 homologues from Arabidopsis and tobacco. We also analysed the determinants of the VirE2 sequence involved in these interactions. These experiments showed that the VirE2 interaction is degenerate: the same VirE2 protein has evolved to interact with multiple VIP1 homologues in the same host, and different and mutually independent VirE2 domains are involved in interactions with different VIP1 homologues. Furthermore, the VIP1 functionality related to the interaction with VirE2 is independent of its function as a transcriptional regulator. These observations suggest that the ability of VirE2 to interact with VIP1 homologues is deeply ingrained into the process of Agrobacterium infection. Indeed, mutations that abolished VirE2 interaction with AtVIP1 produced no statistically significant effects on interactions with VIP1 homologues or on the efficiency of genetic transformation.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingJiangsu Province 210095China
| | - Benoît Lacroix
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingJiangsu Province 210095China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell BiologyState University of New YorkStony BrookNY 11794‐5215USA
| |
Collapse
|
32
|
Carella P, Schornack S. Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:651-660. [PMID: 29177478 PMCID: PMC6018959 DOI: 10.1093/pcp/pcx182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
The colonization of plant tissues by pathogenic and symbiotic microbes is associated with a strong and directed effort to reprogram host cells in order to permit, promote and sustain microbial growth. In response to colonization, hosts accommodate or sequester invading microbes by activating a set of complex regulatory programs that initiate symbioses or bolster defenses. Extensive research has elucidated a suite of molecular and physiological responses occurring in plant hosts and their microbial partners; however, this information is mostly limited to model systems representing evolutionarily young plant lineages such as angiosperms. The extent to which these processes are conserved across land plants is therefore poorly understood. In this review, we outline key aspects of host reprogramming that occur during plant-microbe interactions in early diverging land plants belonging to the bryophytes (liverworts, hornworts and mosses). We discuss how further knowledge of bryophyte-microbe interactions will advance our understanding of how plants and microbes co-operated and clashed during the conquest of land.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| |
Collapse
|
33
|
Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Curr Top Microbiol Immunol 2018; 418:443-462. [DOI: 10.1007/82_2018_82] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI, Stevens DM, Creason AL, Belcher MS, Serdani M, Wiseman MS, Grünwald NJ, Putnam ML, Chang JH. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017; 6:30925. [PMID: 29231813 PMCID: PMC5726852 DOI: 10.7554/elife.30925] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/03/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding how bacteria affect plant health is crucial for developing sustainable crop production systems. We coupled ecological sampling and genome sequencing to characterize the population genetic history of Rhodococcus and the distribution patterns of virulence plasmids in isolates from nurseries. Analysis of chromosome sequences shows that plants host multiple lineages of Rhodococcus, and suggested that these bacteria are transmitted due to independent introductions, reservoir populations, and point source outbreaks. We demonstrate that isolates lacking virulence genes promote beneficial plant growth, and that the acquisition of a virulence plasmid is sufficient to transition beneficial symbionts to phytopathogens. This evolutionary transition, along with the distribution patterns of plasmids, reveals the impact of horizontal gene transfer in rapidly generating new pathogenic lineages and provides an alternative explanation for pathogen transmission patterns. Results also uncovered a misdiagnosed epidemic that implicated beneficial Rhodococcus bacteria as pathogens of pistachio. The misdiagnosis perpetuated the unnecessary removal of trees and exacerbated economic losses. All organisms live in a world teeming with bacteria. Some bacteria are beneficial and, for example, provide their hosts with nutrients. Others cause harm, for example, by stealing nutrients and causing disease. Many bacteria can also gain DNA from other bacteria, and the genes encoded within the new DNA can help them to live with other organisms. This can start the bacteria on an evolutionary path to becoming beneficial or harmful. Rhodococcus are bacteria that live in association with many species of plants, including trees. Most are harmless but some cause disease. Plants infected with harmful Rhodococcus can show deformed growth, which causes major losses to the nursery industry. Savory, Fuller, Weisberg et al. set out to understand how disease-causing Rhodococcus are introduced into nurseries, if they are transferred between nurseries, whether they persist in nurseries, and how to limit their spread. It turns out that harmless Rhodococcus are beneficial to plants. However, if these harmless bacteria gain a certain DNA molecule – called a virulence plasmid – they can convert into harmful bacteria. Further analysis showed that some nurseries repeatedly acquired the harmful bacteria. The pattern of affected nurseries suggested that some might have purchased diseased plants from a common provider. In other cases, the sources remained a mystery. Savory et al. also report that, contrary to previous findings, there is no evidence to support the diagnosis that Rhodococcus without a virulence plasmid are responsible for an unusual growth problem that has plagued the pistachio industry. In recent years, this incorrect diagnosis led to trees being unnecessarily destroyed, worsening the economic losses. These findings suggest that genes moving between bacteria can dramatically change how those bacteria interact with the organisms in which they live. It needs to be shown whether this is an exceptional process, unique to only certain groups of bacteria, or if it is more widespread in nature. These findings could inform future disease management strategies to better protect agricultural systems.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Skylar L Fuller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - William J Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michael I Gordon
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Danielle M Stevens
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Allison L Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States
| | - Michael S Belcher
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Maryna Serdani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Michele S Wiseman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Niklaus J Grünwald
- Horticultural Crops Research Laboratory, United States Department of Agriculture and Agricultural Research Service, Corvallis, United States
| | - Melodie L Putnam
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, United States.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, United States.,Center for Genome Research, Oregon State University, Corvallis, United States
| |
Collapse
|
35
|
Abstract
Agrobacterium strains transfer a single-strand form of T-DNA (T-strands) and Virulence (Vir) effector proteins to plant cells. Following transfer, T-strands likely form complexes with Vir and plant proteins that traffic through the cytoplasm and enter the nucleus. T-strands may subsequently randomly integrate into plant chromosomes and permanently express encoded transgenes, a process known as stable transformation. The molecular processes by which T-strands integrate into the host genome remain unknown. Although integration resembles DNA repair processes, the requirement of known DNA repair pathways for integration is controversial. The configuration and genomic position of integrated T-DNA molecules likely affect transgene expression, and control of integration is consequently important for basic research and agricultural biotechnology applications. This article reviews our current knowledge of the process of T-DNA integration and proposes ways in which this knowledge may be manipulated for genome editing and synthetic biology purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA;
| |
Collapse
|
36
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
37
|
Pasin F, Bedoya LC, Bernabé-Orts JM, Gallo A, Simón-Mateo C, Orzaez D, García JA. Multiple T-DNA Delivery to Plants Using Novel Mini Binary Vectors with Compatible Replication Origins. ACS Synth Biol 2017; 6:1962-1968. [PMID: 28657330 DOI: 10.1021/acssynbio.6b00354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improved plants are necessary to meet human needs. Agrobacterium-mediated transformation is the most common method used to rewire plant capabilities. For plant gene delivery, DNA constructs are assembled into binary T-DNA vectors that rely on broad host range origins for bacterial replication. Here we present pLX vectors, a set of mini binary T-DNA plasmids suitable for Type IIS restriction endonuclease- and overlap-based assembly methods. pLX vectors include replicons from compatible broad host range plasmids. Simultaneous usage of pBBR1- and RK2-based pLX vectors in a two-plasmid/one-Agrobacterium strain strategy allowed multigene delivery to plants. Adoption of pLX vectors will facilitate routine plant transformations and targeted mutagenesis, as well as complex part and circuit characterization.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Leonor C. Bedoya
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP, CSIC-UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | | |
Collapse
|
38
|
Abstract
Beneficial microbes such as rhizobia possess effector proteins that are secreted into the host cytoplasm where they modulate host-signaling pathways. Among these effectors, type 3 secreted effectors (T3Es) of rhizobia play roles in promoting nitrogen-fixing nodule symbiosis, suppressing host defenses and directly activating symbiosis-related processes. Rhizobia use the same strategy as pathogenic bacteria to suppress host defenses such as targeting the MAPK cascade. In addition, rhizobial T3E can promote root nodule symbiosis by directly activating Nod factor signaling, which bypasses Nod factor perception. The various strategies employed by beneficial microbes to promote infection and maintain viability in the host are therefore crucial for plant endosymbiosis.
Collapse
Affiliation(s)
- Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
39
|
Wang L, Lacroix B, Guo J, Citovsky V. Transcriptional Activation of Virulence Genes of Rhizobium etli. J Bacteriol 2017; 199:e00841-16. [PMID: 28069822 PMCID: PMC5331667 DOI: 10.1128/jb.00841-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/03/2017] [Indexed: 01/24/2023] Open
Abstract
Recently, Rhizobium etli, in addition to Agrobacterium spp., has emerged as a prokaryotic species whose genome encodes a functional machinery for DNA transfer to plant cells. To understand this R. etli-mediated genetic transformation, it would be useful to define how its vir genes respond to the host plants. Here, we explored the transcriptional activation of the vir genes contained on the R. etli p42a plasmid. Using a reporter construct harboring lacZ under the control of the R. etli virE promoter, we show that the signal phenolic molecule acetosyringone (AS) induces R. etli vir gene expression both in an R. etli background and in an Agrobacterium tumefaciens background. Furthermore, in both bacterial backgrounds, the p42a plasmid also promoted plant genetic transformation with a reporter transfer DNA (T-DNA). Importantly, the R. etli vir genes were transcriptionally activated by AS in a bacterial species-specific fashion in regard to the VirA/VirG signal sensor system, and this activation was induced by signals from the natural host species of this bacterium but not from nonhost plants. The early kinetics of transcriptional activation of the major vir genes of R. etli also revealed several features distinct from those known for A. tumefaciens: the expression of the virG gene reached saturation relatively quickly, and virB2, which in R. etli is located outside the virB operon, was expressed only at low levels and did not respond to AS. These differences in vir gene transcription may contribute to the lower efficiency of T-DNA transfer of R. etli p42a than of T-DNA transfer of pTiC58 of A. tumefaciensIMPORTANCE The region encoding homologs of Agrobacterium tumefaciens virulence genes in the Rhizobium etli CE3 p42a plasmid was the first endogenous virulence system encoded by the genome of a non-Agrobacterium species demonstrated to be functional in DNA transfer and stable integration into the plant cell genome. In this study, we explored the transcriptional regulation and induction of virulence genes in R. etli and show similarities to and differences from those of their A. tumefaciens counterparts, contributing to an understanding and a comparison of these two systems. Whereas most vir genes in R. etli follow an induction pattern similar to that of A. tumefaciens vir genes, a few significant differences may at least in part explain the variations in T-DNA transfer efficiency.
Collapse
Affiliation(s)
- Luyao Wang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, Jiangsu Province, China
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, USA
| |
Collapse
|
40
|
Abstract
Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.
Collapse
|
41
|
Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN. Advancing Crop Transformation in the Era of Genome Editing. THE PLANT CELL 2016; 28:1510-20. [PMID: 27335450 PMCID: PMC4981132 DOI: 10.1105/tpc.16.00196] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/14/2016] [Indexed: 05/17/2023]
Abstract
Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.
Collapse
Affiliation(s)
- Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, University of Florida, IFAS, Gainesville, Florida 32611
| | - Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma 73019
| | - Ann E Blechl
- U.S. Department of Agriculture-Agriculture Research Service, Western Regional Research Center, Albany, California 94710
| | - Thomas P Brutnell
- Enterprise Institute for Renewable Fuels, Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794
| | - Liza J Conrad
- Natural Sciences Collegium, Eckerd College, St. Petersburg, Florida 33711
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - David P Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Albert P Kausch
- Department of Cellular and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881
| | - Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - June I Medford
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523
| | | | - David M Tricoli
- Plant Transformation Facility, University of California, Davis, California 95616
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305
| | - Kan Wang
- Department of Agronomy and Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|