1
|
Maserumule C, Passemar C, Oh OSH, Hegyi K, Brown K, Weimann A, Dinan A, Davila S, Klapholz C, Bryant J, Verma D, Gadwa J, Krishnananthasivam S, Vongtongsalee K, Kendall E, Trelles A, Hibberd ML, Sanz J, Bertol J, Vázquez-Iniesta L, Andi K, Kumar SS, Ordway D, Prados-Rosales R, MacAry PA, Floto RA. Phagosomal RNA sensing through TLR8 controls susceptibility to tuberculosis. Cell Rep 2025; 44:115657. [PMID: 40338743 DOI: 10.1016/j.celrep.2025.115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/13/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025] Open
Abstract
Genetic determinants of susceptibility to Mycobacterium tuberculosis (Mtb) remain poorly understood but could provide insights into critical pathways involved in infection, informing host-directed therapies and enabling risk stratification at individual and population levels. Through a genome-wide forward genetic screen, we identify Toll-like receptor 8 (TLR8) as a key regulator of intracellular killing of Mtb. Pharmacological TLR8 activation enhances the killing of phylogenetically diverse clinical isolates of drug-susceptible and multidrug-resistant Mtb by macrophages and during in vivo infection in mice. TLR8 is activated by phagosomal mycobacterial RNA released by extracellular membrane vesicles and enhances xenophagy-dependent Mtb killing. We find that the TLR8 variant M1V, common in Far Eastern populations, enhances intracellular killing of Mtb through preferential signal-dependent trafficking to phagosomes. TLR8 signaling may, therefore, both regulate susceptibility to tuberculosis and provide novel drug targets.
Collapse
Affiliation(s)
- Charlotte Maserumule
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Victor Philip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Olivia S H Oh
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kriztina Hegyi
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Karen Brown
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Victor Philip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Victor Philip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Adam Dinan
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Victor Philip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Sonia Davila
- Infectious Disease Group, Genome Institute of Singapore, Singapore, Singapore; SingHealth Duke-NUS Institute of Precision Medicine, SingHealth Duke-NUS Genomic, Medicine Centre, Cardiovascular and Metabolic Disorder Program, Duke-NUS Medical, School, Singapore, Singapore
| | - Catherine Klapholz
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Josephine Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jacob Gadwa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Shivankari Krishnananthasivam
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kridakorn Vongtongsalee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward Kendall
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Andres Trelles
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Martin L Hibberd
- Infectious Disease Group, Genome Institute of Singapore, Singapore, Singapore; London School of Hygiene and Tropical Medicine, London, UK
| | - Joaquín Sanz
- Institute for Bio-computation and Physics of Complex Systems BIFI, Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| | - Jorge Bertol
- Institute for Bio-computation and Physics of Complex Systems BIFI, Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| | - Lucia Vázquez-Iniesta
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Kaliappan Andi
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - S Siva Kumar
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rafael Prados-Rosales
- Department of Preventive Medicine, Public Health and Microbiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul A MacAry
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK; Victor Philip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK; Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK; Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Lohia GK, Riquelme SA. Influence of cell bioenergetics on host-pathogen interaction in the lung. Front Immunol 2025; 16:1549293. [PMID: 40248701 PMCID: PMC12003392 DOI: 10.3389/fimmu.2025.1549293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Pulmonary diseases, arising from infections caused by bacteria, fungi, and viruses, or stemming from underlying genetic factors are one of the leading causes of mortality in humans, accounting for millions of deaths every year. At the onset of pulmonary diseases, crucial roles are played by phagocytic immune cells, particularly tissue-resident macrophages, in regulating the immune response at the mucosal barrier. Recent strides have illuminated the pivotal role of host bioenergetics modulated by metabolites derived from both pathogens and hosts in influencing the pathophysiology of major organs. Their influence extends to processes such as the infiltration of immune cells, activation of macrophages, and the polarization phenomenon. Furthermore, host-derived metabolites, such as itaconate, contribute to the promotion of anti-inflammatory responses, thereby preventing immunopathology and facilitating the preservation of mucosal niches to thrive for the long-term. This review explores recent advancements in the field of immunometabolism, with a particular emphasis on the intricacies of disease progression in pulmonary infections caused by bacteria such as P. aeruginosa, M. tuberculosis and S. aureus and fungi like C. albicans.
Collapse
|
3
|
Zhang K, Jagannath C. Crosstalk between metabolism and epigenetics during macrophage polarization. Epigenetics Chromatin 2025; 18:16. [PMID: 40156046 PMCID: PMC11954343 DOI: 10.1186/s13072-025-00575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/17/2025] [Indexed: 04/01/2025] Open
Abstract
Macrophage polarization is a dynamic process driven by a complex interplay of cytokine signaling, metabolism, and epigenetic modifications mediated by pathogens. Upon encountering specific environmental cues, monocytes differentiate into macrophages, adopting either a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype, depending on the cytokines present. M1 macrophages are induced by interferon-gamma (IFN-γ) and are characterized by their reliance on glycolysis and their role in host defense. In contrast, M2 macrophages, stimulated by interleukin-4 (IL-4) and interleukin-13 (IL-13), favor oxidative phosphorylation and participate in tissue repair and anti-inflammatory responses. Metabolism is tightly linked to epigenetic regulation, because key metabolic intermediates such as acetyl-coenzyme A (CoA), α-ketoglutarate (α-KG), S-adenosylmethionine (SAM), and nicotinamide adenine dinucleotide (NAD+) serve as cofactors for chromatin-modifying enzymes, which in turn, directly influences histone acetylation, methylation, RNA/DNA methylation, and protein arginine methylation. These epigenetic modifications control gene expression by regulating chromatin accessibility, thereby modulating macrophage function and polarization. Histone acetylation generally promotes a more open chromatin structure conducive to gene activation, while histone methylation can either activate or repress gene expression depending on the specific residue and its methylation state. Crosstalk between histone modifications, such as acetylation and methylation, further fine-tunes macrophage phenotypes by regulating transcriptional networks in response to metabolic cues. While arginine methylation primarily functions in epigenetics by regulating gene expression through protein modifications, the degradation of methylated proteins releases arginine derivatives like asymmetric dimethylarginine (ADMA), which contribute directly to arginine metabolism-a key factor in macrophage polarization. This review explores the intricate relationships between metabolism and epigenetic regulation during macrophage polarization. A better understanding of this crosstalk will likely generate novel therapeutic insights for manipulating macrophage phenotypes during infections like tuberculosis and inflammatory diseases such as diabetes.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Li P, Huang Q, Xie Y, Zhu Z, Zhan S, Meng J, Liu H. JIB-04, an inhibitor of Jumonji histone demethylase as a potent antitubercular agent against Mycobacterium tuberculosis. Arch Microbiol 2024; 206:470. [PMID: 39560788 DOI: 10.1007/s00203-024-04197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
The increasing drug resistance of Mycobacterium tuberculosis (Mtb), coupled with the limited availability of effective anti-tuberculosis medications, poses significant challenges for the management and treatment of tuberculosis (TB). Globally, non-tuberculous mycobacteria (NTM) infections are increasing, with Mycobacterium avium complex and Mycobacterium abscessus (Mab) being the most common in labs and having few treatment options. There's an urgent need for innovative therapies against Mtb and NTM that are effective and have minimal side effects. The study evaluated the in vitro efficacy of JIB-04, a Jumonji histone demethylase inhibitor, against Mtb, Mab, and multidrug-resistant (MDR) clinical isolates using the minimum inhibitory concentration (MIC) assay. We also determined the minimum bactericidal concentrations (MBCs) of JIB-04 against the H37Rv and H37Ra strains. A time-kill assay was performed to assess the comparative efficacy of JIB-04 and rifampicin against H37Ra. Additionally, the study investigated the impact of JIB-04 on biofilm formation and the persistence of H37Ra over extended periods. Our findings demonstrated a substantial inhibitory effect of JIB-04 on the growth of Mab, Mtb, and MDR clinical isolates. JIB-04 showed bactericidal effects at twice the MIC, outperforming rifampicin in reducing viable cell counts over 8 days. It showed moderate cytotoxicity to mammalian cells but effectively inhibited biofilm formation. In our anoxia model, JIB-04 induced a significant, concentration-dependent reduction in bacterial load. JIB-04 is a promising candidate for the treatment of MDR tuberculosis.
Collapse
Affiliation(s)
- Pei Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Qiwen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Yanling Xie
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Zhu Zhu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Senlin Zhan
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Jianzhou Meng
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Han Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
| |
Collapse
|
5
|
Zhang B, Guan Y, Zeng D, Wang R. Arginine methylation and respiratory disease. Transl Res 2024; 272:140-150. [PMID: 38453053 DOI: 10.1016/j.trsl.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Arginine methylation, a vital post-translational modification, plays a pivotal role in numerous cellular functions such as signal transduction, DNA damage response and repair, regulation of gene transcription, mRNA splicing, and protein interactions. Central to this modification is the role of protein arginine methyltransferases (PRMTs), which have been increasingly recognized for their involvement in the pathogenesis of various respiratory diseases. This review begins with an exploration of the biochemical underpinnings of arginine methylation, shedding light on the intricate molecular regulatory mechanisms governed by PRMTs. It then delves into the impact of arginine methylation and the dysregulation of arginine methyltransferases in diverse pulmonary disorders. Concluding with a focus on the therapeutic potential and recent advancements in PRMT inhibitors, this article aims to offer novel perspectives and therapeutic avenues for the management and treatment of respiratory diseases.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China
| | - Youhong Guan
- Department of Infectious Diseases, Hefei Second People's Hospital, Hefei 230001, Anhui Province, PR China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, Jiangsu Province, PR China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, PR China.
| |
Collapse
|
6
|
Oh S, Janknecht R. Versatile JMJD proteins: juggling histones and much more. Trends Biochem Sci 2024; 49:804-818. [PMID: 38926050 PMCID: PMC11380596 DOI: 10.1016/j.tibs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Jumonji C domain-containing (JMJD) proteins are found in bacteria, fungi, animals, and plants. They belong to the 2-oxoglutarate-dependent oxygenase superfamily and are endowed with various enzymatic activities, including demethylation of histones and hydroxylation of non-histone proteins. Many JMJD proteins are involved in the epigenetic control of gene expression, yet they also modulate a myriad other cellular processes. In this review we focus on the 33 human JMJD proteins and their established and controversial catalytic properties, survey their epigenetic and non-epigenetic functions, emphasize their contribution to sex-specific disease differences, and highlight how they sense metabolic changes. All this underlines not only their key roles in development and homeostasis, but also that JMJD proteins are destined to become drug targets in multiple diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Jin W, Yan W, Ma M, Hasi A, Che G. Genome-wide identification and expression analysis of the JMJ-C gene family in melon (Cucumis melo L.) reveals their potential role in fruit development. BMC Genomics 2023; 24:771. [PMID: 38093236 PMCID: PMC10720240 DOI: 10.1186/s12864-023-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Proteins with the jumonji (JMJ)-C domain belong to the histone demethylase family and contribute to reverse histone methylation. Although JMJ-C family genes have an essential role in regulating plant growth and development, the characterization of the JMJ-C family genes in melon has not been uncovered. RESULTS In this study, a total of 17 JMJ-C proteins were identified in melon (Cucumis melo L.). CmJMJs were categorized into five subfamilies based on the specific conserved domain: KDM4/JHDM3, KDM5/JARID1, JMJD6, KDM3/JHDM2, and JMJ-C domain-only. The chromosome localization analyses showed that 17 CmJMJs were distributed on nine chromosomes. Cis-acting element analyses of the 17 CmJMJ genes showed numerous hormone, light, and stress response elements distributed in the promoter region. Covariance analysis revealed one pair of replicated fragments (CmJMJ3a and CmJMJ3b) in 17 CmJMJ genes. We investigated the expression profile of 17 CmJMJ genes in different lateral organs and four developmental stages of fruit by RNA-seq transcriptome analysis and RT-qPCR. The results revealed that most CmJMJ genes were prominently expressed in female flowers, ovaries, and developing fruits, suggesting their active role in melon fruit development. Subcellular localization showed that the fruit-related CmJMJ5a protein is specifically localized in the cell nucleus. CONCLUSIONS This study provides a comprehensive understanding of the gene structure, classification, and evolution of JMJ-C in melon and supports the clarification of the JMJ-C functions in further research.
Collapse
Affiliation(s)
- Wuyun Jin
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Wei Yan
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Ma
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Agula Hasi
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| | - Gen Che
- Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
8
|
Prakhar P, Bhatt B, Lohia GK, Shah A, Mukherjee T, Kolthur-Seetharam U, Sundaresan NR, Rajmani RS, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog 2023; 19:e1011731. [PMID: 37871034 PMCID: PMC10621959 DOI: 10.1371/journal.ppat.1011731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.
Collapse
Affiliation(s)
- Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Awantika Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Nagalingam R. Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore–, Karnataka, India
| | | |
Collapse
|
9
|
Kalam H, Chou CH, Kadoki M, Graham DB, Deguine J, Hung DT, Xavier RJ. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence. Cell Host Microbe 2023; 31:978-992.e5. [PMID: 37269834 PMCID: PMC10373099 DOI: 10.1016/j.chom.2023.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023]
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to establish latency affects disease and response to treatment. The host factors that influence the establishment of latency remain elusive. We engineered a multi-fluorescent Mtb strain that reports survival, active replication, and stressed non-replication states and determined the host transcriptome of the infected macrophages in these states. Additionally, we conducted a genome-wide CRISPR screen to identify host factors that modulated the phenotypic state of Mtb. We validated hits in a phenotype-specific manner and prioritized membrane magnesium transporter 1 (MMGT1) for a detailed mechanistic investigation. Mtb infection of MMGT1-deficient macrophages promoted a switch to persistence, upregulated lipid metabolism genes, and accumulated lipid droplets during infection. Targeting triacylglycerol synthesis reduced both droplet formation and Mtb persistence. The orphan G protein-coupled receptor GPR156 is a key inducer of droplet accumulation in ΔMMGT1 cells. Our work uncovers the role of MMGT1-GPR156-lipid droplets in the induction of Mtb persistence.
Collapse
Affiliation(s)
- Haroon Kalam
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Motohiko Kadoki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Zhang S, Xue X, Qiao S, Jia L, Wen X, Wang Y, Wang C, Li H, Cui J. Umifenovir Epigenetically Targets the IL-10 Pathway in Therapy against Coxsackievirus B4 Infection. Microbiol Spectr 2023; 11:e0424822. [PMID: 36541788 PMCID: PMC9927110 DOI: 10.1128/spectrum.04248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Umifenovir, a broad-spectrum nonnucleoside antiviral drug, has a promising efficacy against coxsackievirus B4 (CVB4) infection, but its mechanism remains unclear. CVB4 is a common human single-stranded RNA virus that belongs to the Picornaviridae family and the Enterovirus genus. Enterovirus can cause severe diseases, such as meningitis, myocarditis, pancreatitis, insulin-dependent diabetes, and several other diseases, in both adults and children. We have previously demonstrated the critical role of interleukin 10 (IL-10) in promoting CVB4 infection and the downregulation of IL-10 by umifenovir. To further explore the underlying mechanisms of umifenovir, we characterized the epigenetic regulation of IL-10 in IL-10 knockout RAW264.7 cells and a BALB/c mouse splenocyte model. Mechanistically, we found that umifenovir inhibited CVB4-activated IL-10 by enhancing the methylation level of the repressive histones H3K9me3 and H3K27me3 while reducing the acetylation level of the activating histone H3K9ac in the promoter region of the IL-10 gene. Furthermore, using a chromosome conformation capture approach, we discovered that CVB4 infection activated the IL-10 gene by forming an intrachromosomal interaction between the IL-10 gene promoter and an intronic enhancer of the downstream MK2 (mitogen-activated protein kinase [MAPK]-activated protein kinase 2 [MAPKAPK2]) gene, a critical component of the p38-MAPK signaling pathway, which is required for IL-10 gene expression. However, umifenovir treatment abolished this spatial conformation and chromatin interaction, thus reducing the continuous expression of IL-10 and subsequent CVB4 replication. In conclusion, this study reveals a novel epigenetic mechanism by which umifenovir controls CVB4 infections, thus laying a theoretical foundation for therapeutic use of umifenovir. IMPORTANCE Viral infections are major threats to human health because of their strong association with a variety of inflammation-related diseases, especially cancer. Many antiviral drugs are performing poorly in treating viral infections. This is probably due to the immunosuppressive effect of highly expressed IL-10, which is caused by viral infection. Umifenovir is a broad-spectrum antiviral drug. Our recent studies showed that umifenovir has a significant inhibitory effect on CVB4 infection and can reduce IL-10 expression caused by CVB4. However, another antiviral drug, rupintrivir, showed good antiviral activity but had no effect on the expression of IL-10. This suggests that the regulation of IL-10 expression is a key part of the antiviral mechanism of umifenovir. Therefore, due to the dual function of the inhibition of CVB4 replication and the regulation of immune antiviral pathway, the mechanism of umifenovir is of great value to study.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xiao Xue
- Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Sennan Qiao
- Institute of Frontier Medical Science of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lin Jia
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xue Wen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yichen Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cong Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Hongrui Li
- Institute of Frontier Medical Science of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
11
|
Birari P, Mal S, Majumder D, Sharma AK, Kumar M, Das T, Ghosh Z, Jana K, Gupta UD, Kundu M, Basu J. Nur77 influences immunometabolism to regulate the release of proinflammatory cytokines and the formation of lipid bodies during Mycobacterium tuberculosis infection of macrophages. Pathog Dis 2023; 81:ftad033. [PMID: 38017622 DOI: 10.1093/femspd/ftad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1β. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1β in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.
Collapse
Affiliation(s)
- Pankaj Birari
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Soumya Mal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Debayan Majumder
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Arun K Sharma
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Manish Kumar
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra 282001, India
| | - Manikuntala Kundu
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| |
Collapse
|
12
|
Seto S, Nakamura H, Guo TC, Hikichi H, Wakabayashi K, Miyabayashi A, Nagata T, Hijikata M, Keicho N. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:968543. [PMID: 36237431 PMCID: PMC9551193 DOI: 10.3389/fcimb.2022.968543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Infection with Mycobacterium tuberculosis leads to the development of tuberculosis (TB) with the formation of granulomatous lesions. Foamy macrophages (FM) are a hallmark of TB granulomas, because they provide the primary platform of M. tuberculosis proliferation and the main source of caseous necrosis. In this study, we applied spatial multiomic profiling to identify the signatures of FM within the necrotic granulomas developed in a mouse model resembling human TB histopathology. C3HeB/FeJ mice were infected with M. tuberculosis to induce the formation of necrotic granulomas in the lungs. Using laser microdissection, necrotic granulomas were fractionated into three distinct regions, including the central caseous necrosis, the rim containing FM, and the peripheral layer of macrophages and lymphocytes, and subjected to proteomic and transcriptomic analyses. Comparison of proteomic and transcriptomic analyses of three distinct granulomatous regions revealed that four proteins/genes are commonly enriched in the rim region. Immunohistochemistry confirmed the localization of identified signatures to the rim of necrotic granulomas. We also investigated the localization of the representative markers for M1 macrophages in granulomas because the signatures of the rim included M2 macrophage markers. The localization of both macrophage markers suggests that FM in necrotic granulomas possessed the features of M1 or M2 macrophages. Gene set enrichment analysis of transcriptomic profiling revealed the upregulation of genes related to M2 macrophage activation and mTORC1 signaling in the rim. These results will provide new insights into the process of FM biogenesis, leading to further understanding of the pathophysiology of TB granulomas.
Collapse
Affiliation(s)
- Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- *Correspondence: Shintaro Seto,
| | - Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Tz-Chun Guo
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiko Wakabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Miyabayashi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Toshi Nagata
- Department of Health Science, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Vice Director, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
13
|
Borbora SM, Rajmani RS, Balaji KN. PRMT5 epigenetically regulates the E3 ubiquitin ligase ITCH to influence lipid accumulation during mycobacterial infection. PLoS Pathog 2022; 18:e1010095. [PMID: 35658060 PMCID: PMC9200362 DOI: 10.1371/journal.ppat.1010095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/15/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies. Mycobacterium tuberculosis infection leads to the formation of lipid-laden cells (foamy macrophages-FMs) that offer a favorable shelter for its persistence. During infection, we observe a significant reduction in the expression of the E3 ubiquitin ligase, ITCH. This repression allows the sustenance of key lipid accretion molecules (ADRP and CD36), by curbing their proteasomal degradation. Further, we show the repression of ITCH to be dependent on the concerted action of the bifunctional transcription factor, YY1 and the arginine methyl transferase, PRMT5. NOTCH signaling pathway was identified as a master-regulator of YY1 expression. In vitro and in vivo analyses revealed the significance of PRMT5 in regulating FM formation and consequently mycobacterial burden.
Collapse
Affiliation(s)
- Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
14
|
Abstract
Tuberculosis (TB) remains the leading cause of bacterial disease-related death and is among the top 10 overall causes of death worldwide. The complex nature of this infectious lung disease has proven difficult to treat, and significant research efforts are now evaluating the feasibility of host-directed, adjunctive therapies. An attractive approach in host-directed therapy targets host epigenetics, or gene regulation, to redirect the immune response in a host-beneficial manner. Substantial evidence exists demonstrating that host epigenetics are dysregulated during TB and that epigenetic-based therapies may be highly effective to treat TB. However, the caveat is that much of the knowledge that exists on the modulation of the host epigenome during TB has been gained using in vitro, small-animal, or blood-derived cell models, which do not accurately reflect the pulmonary nature of the disease. In humans, the first and major target cells of Mycobacterium tuberculosis are alveolar macrophages (AM). As such, their response to infection and treatment is clinically relevant and ultimately drives the outcome of disease. In this review, we compare the fundamental differences between AM and circulating monocyte-derived macrophages in the context of TB and summarize the recent advances in elucidating the epigenomes of these cells, including changes to the transcriptome, DNA methylome, and chromatin architecture. We will also discuss trained immunity in AM as a new and emerging field in TB research and provide some perspectives for the translational potential of targeting host epigenetics as an alternative TB therapy.
Collapse
|
15
|
Mukherjee T, Bhatt B, Prakhar P, Lohia GK, Rajmani R, Balaji KN. Epigenetic reader BRD4 supports mycobacterial pathogenesis by co-modulating host lipophagy and angiogenesis. Autophagy 2022; 18:391-408. [PMID: 34074211 PMCID: PMC8942508 DOI: 10.1080/15548627.2021.1936355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb)-driven lipid accumulation is intricately associated with the progression of tuberculosis (TB) disease. Although several studies elucidating the mechanisms for lipid droplet (LD) biosynthesis exist, we provide evidence for the significance of their regulated turnover via macroautophagy/autophagy during Mtb infection. We demonstrate that Mtb utilizes EGFR (epidermal growth factor receptor) signaling to induce the expression of the histone acetylation reader, BRD4 (bromodomain containing 4). The EGFR-BRD4 axis suppresses lipid-specific autophagy, and hence favors cellular lipid accumulation. Specifically, we found that pharmacological inhibition or knockdown of Egfr or Brd4 enhances autophagic flux and concomitantly decreases cellular LDs that is otherwise maintained at a significant level in chloroquine-treated or Atg5 knocked down autophagy-compromised host cells. In line with the enhanced lipophagy, we found that loss of EGFR or BRD4 function restricts mycobacterial burden that is rescued by external replenishment with oleic acid. We also report that the EGFR-BRD4 axis exerts additional effects by modulating pro-angiogenic gene expression and consequently aberrant angiogenesis during mycobacterial infection. This is important in the context of systemic Mtb dissemination as well as for the efficient delivery of anti-mycobacterial therapeutics to the Mtb-rich core of TB granuloma. Finally, utilizing an in vivo mouse model of TB, we show that pharmacological inhibition of EGFR and BRD4 compromises LD buildup via enhanced lipophagy and normalizes angiogenesis, thereby restricting Mtb burden and rescuing mice from severe TB-like pathology. These findings shed light on the novel roles of BRD4 during Mtb infection, and its possible implication in potentiating anti-TB responses.Abbreviations: ATG5: autophagy related 5; BRDs: bromodomain containing; COL18A1: collagen type XVIII alpha 1 chain; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; KDR: kinase insert domain receptor; KLF5: Kruppel like factor 5; LDs: lipid droplets; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; Mtb: Mycobacterium tuberculosis; PECAM1: platelet and endothelial cell adhesion molecule 1; SQSTM1/p62: sequestosome 1; TB: tuberculosis; THBS1: thrombospondin 1; VEGF: vascular endothelial growth factor.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - R.S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
16
|
Rana S, Maurya S, Mohapatra G, Singh S, Babar R, Chandrasekhar H, Chamoli G, Rathore D, Kshetrapal P, Srikanth CV. Activation of epigenetic regulator KDM6B by Salmonella Typhimurium enables chronic infections. Gut Microbes 2022; 13:1986665. [PMID: 34696686 PMCID: PMC8555538 DOI: 10.1080/19490976.2021.1986665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) infections result in self limiting gastroenteritis except in rare cases wherein manifestations of chronic infections can occur. Strategies employed by Salmonella to thrive in hostile environments of host during chronic infections are complex and multifaceted. In chronic state, a coordinated action of bacterial effectors allows reprogramming of macrophages to M2 subtype and thereby creating a permissible replicative niche. The mechanistic details of these processes are not fully known. In the current study we identified, histone H3-lysine 27 trimethylation (H3K27me3)-specific demethylase, KDM6B to be upregulated in both cell culture and in murine model of Salmonella infection. KDM6B recruitment upon infection exhibited an associated loss of overall H3K27me3 in host cells and was Salmonella SPI1 effectors coordinated. ChIP-qRT-PCR array analysis revealed several new gene promoter targets of KDM6B demethylase activity including PPARδ, a crucial regulator of fatty acid oxidation pathway and Salmonella-persistent infections. Furthermore, pharmacological inhibition of KDM6B demethylase activity with GSKJ4 in chronic Salmonella infection mice model led to a significant reduction in pathogen load and M2 macrophage polarization in peripheral lymphoid organs. The following work thus reveals Salmonella effector-mediated epigenetic reprogramming of macrophages responsible for its long-term survival and chronic carriage.
Collapse
Affiliation(s)
- Sarika Rana
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonalika Maurya
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Gayatree Mohapatra
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Savita Singh
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohan Babar
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Hridya Chandrasekhar
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Garima Chamoli
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India
| | - Deepak Rathore
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - C. V. Srikanth
- Laboratory of Gut Infection and Inflammation Biology, Regional Centre for Biotechnology, Faridabad, India,CONTACT C. V. Srikanth Regional Centre for Biotechnology, 3rd Milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
17
|
Bhatt B, Prakhar P, Lohia GK, Rajmani RS, Balaji KN. Pre-existing mycobacterial infection modulates Candida albicans-driven pyroptosis. FEBS J 2021; 289:1536-1551. [PMID: 34670010 DOI: 10.1111/febs.16243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Active tuberculosis patients are at high risk of coinfection with opportunistic fungal pathogen Candida albicans. However, the molecular mechanisms that orchestrate pathogenesis of Mycobacterium tuberculosis (Mtb)-C. albicans coinfection remain elusive. In the current study, we utilize a mouse model to demonstrate that Mtb promotes a macrophage environment that is conducive for C. albicans survival. Mtb-dependent protein kinase Cζ-WNT signalling axis induces expression of an E3 ubiquitin ligase, constitutive photomorphogenesis protein 1 (COP1). A secondary infection of C. albicans in such Mtb-infected macrophages causes COP1 to mediate the proteasomal degradation of interferon regulatory factor 9 (IRF9), a cardinal factor that we identified to arbitrate an inflammatory programmed cell death, pyroptosis. In vivo experiments mimicking a pre-existing Mtb infection demonstrate that inhibition of pyroptosis in mice results in increased C. albicans burden and aberrant lung tissue architecture, leading to increased host mortality. Together, our study reveals the crucial role of pyroptosis regulation for manifesting a successful C. albicans-Mtb coinfection.
Collapse
Affiliation(s)
- Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raju S Rajmani
- Centre of Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
18
|
Khandelwal N, Shaikh M, Mhetre A, Singh S, Sajeevan T, Joshi A, Balaji KN, Chakrapani H, Kamat SS. Fatty acid chain length drives lysophosphatidylserine-dependent immunological outputs. Cell Chem Biol 2021; 28:1169-1179.e6. [PMID: 33571455 PMCID: PMC7611549 DOI: 10.1016/j.chembiol.2021.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022]
Abstract
In humans, lysophosphatidylserines (lyso-PSs) are potent lipid regulators of important immunological processes. Given their structural diversity and commercial paucity, here we report the synthesis of methyl esters of lyso-PS (Me-lyso-PSs) containing medium- to very-long-chain (VLC) lipid tails. We show that Me-lyso-PSs are excellent substrates for the lyso-PS lipase ABHD12, and that these synthetic lipids are acted upon by cellular carboxylesterases to produce lyso-PSs. Next, in macrophages we demonstrate that VLC lyso-PSs orchestrate pro-inflammatory responses and in turn neuroinflammation via a Toll-like receptor 2 (TLR2)-dependent pathway. We also show that long-chain (LC) lyso-PSs robustly induce intracellular cyclic AMP production, cytosolic calcium influx, and phosphorylation of the nodal extracellular signal-regulated kinase to regulate macrophage activation via a TLR2-independent pathway. Finally, we report that LC lyso-PSs potently elicit histamine release during the mast cell degranulation process, and that ABHD12 is the major lyso-PS lipase in these immune cells.
Collapse
Affiliation(s)
- Neha Khandelwal
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Minhaj Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Amol Mhetre
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
| | - Shubham Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Theja Sajeevan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Alaumy Joshi
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | | | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.
| |
Collapse
|
19
|
Brandenburg J, Marwitz S, Tazoll SC, Waldow F, Kalsdorf B, Vierbuchen T, Scholzen T, Gross A, Goldenbaum S, Hölscher A, Hein M, Linnemann L, Reimann M, Kispert A, Leitges M, Rupp J, Lange C, Niemann S, Behrends J, Goldmann T, Heine H, Schaible UE, Hölscher C, Schwudke D, Reiling N. WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. J Clin Invest 2021; 131:e141833. [PMID: 34255743 DOI: 10.1172/jci141833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Marwitz
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Simone C Tazoll
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Franziska Waldow
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Bioanalytical Chemistry
| | - Barbara Kalsdorf
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases
| | | | | | - Annette Gross
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Svenja Goldenbaum
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | | | - Lara Linnemann
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | | | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael Leitges
- Division of BioMedical Sciences/Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jan Rupp
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Department of Infectious Diseases and Microbiology and
| | - Christoph Lange
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Torsten Goldmann
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Ulrich E Schaible
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Infection Immunology, and
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.,Bioanalytical Chemistry
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
20
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
21
|
Musashi-1 Regulates MIF1-Mediated M2 Macrophage Polarization in Promoting Glioblastoma Progression. Cancers (Basel) 2021; 13:cancers13081799. [PMID: 33918794 PMCID: PMC8069545 DOI: 10.3390/cancers13081799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most lethal type of brain cancer. It is well known that the malignancy of cancers is dependent not only on the oncogenic properties of the tumor cells, but also on the composition of the tumor microenvironment, which includes macrophages of the immune system. The prevalence of M2 type macrophages usually promotes tumor progression as opposed to tumor-suppressing function of M1 type macrophages. In our previous studies, we identified Musashi-1 (MSI1) RNA-binding protein as a principal oncogenic factor in GBM. In this study, in a pursuit of finding secreted factors that may alter tumor microenvironment in GBM, we identified MIF1 cytokine to be positively regulated by MSI1. Moreover, we found that MSI1-mediated MIF1 secretion promotes differentiation of macrophages into pro-oncogenic M2 phenotype. The oncogenic role of MSI1/MIF1/M2 macrophage regulatory axis was also confirmed in GBM mouse models, which makes it a promising target for novel drug discovery. Abstract Glioblastoma (GBM) is the most malignant brain tumor which is characterized by high proliferation and migration capacity. The poor survival rate has been attributed to limitations of the current standard therapies. The search for novel biological targets that can effectively hamper tumor progression remains extremely challenging. Previous studies indicated that tumor-associated macrophages (TAMs) are the abundant elements in the tumor microenvironment that are closely implicated in glioma progression and tumor pathogenesis. M2 type TAMs are immunosuppressive and promote GBM proliferation. RNA-binding protein Musashi-1 (MSI1) has recently been identified as a marker of neural stem/progenitor cells, and its high expression has been shown to correlate with the growth of GBM. Nevertheless, the relationship between MSI1 and TAMs in GBM is still unknown. Thus, in our present study, we aimed to investigate the molecular interplay between MSI1 and TAMs in contributing to GBM tumorigenesis. Our data revealed that the secretion of macrophage inhibitory factor 1 (MIF1) is significantly upregulated by MSI1 overexpression in vitro. Importantly, M2 surface markers of THP-1-derived macrophages were induced by recombinant MIF1 and reduced by using MIF1 inhibitor (S,R)-3-(4-hHydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1). Furthermore, GBM tumor model data suggested that the tumor growth, MIF1 expression and M2 macrophage population were significantly downregulated when MSI1 expression was silenced in vivo. Collectively, our findings identified a novel role of MSI1 in the secretion of MIF1 and the consequent polarization of macrophages into the M2 phenotype in promoting GBM tumor progression.
Collapse
|
22
|
Sun Z, Wang X, Qiao K, Fan S, Ma Q. Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:420-433. [PMID: 33257231 DOI: 10.1016/j.plaphy.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The jumonji C (JMJ-C) domain-containing protein is a histone demethylase and is involved in plant stress. However, the function of the JMJ-C gene family in cotton is still not confirmed. Herein, 25, 26, 52, and 53 members belonging to the JMJ-C gene family were identified in Gossypium raimondii, Gossypium arboreum, Gossypium hirsutum, and Gossypium barbadense, respectively. Based on phylogenetic relationships and conserved domains, the JMJ-C genes were categorized into five subfamilies, KDM3, KDM4, KDM5, JMJC, and JMJD6. The chromosomal location, gene structure, motif compositions, and cis-elements have been displayed. The collinear investigation showed that whole-genome duplication event is the mainly power to drive JMJ-C gene family expansion. Transcriptome and qRT-PCR analysis revealed that eight GhJMJs were induced by salt and PEG treatment. Further assays confirmed that GhJMJ34/40 greatly improved salt and osmotic tolerance in Saccharomyces cerevisiae. These results help clarify JMJ-C protein functions in preparation for further study.
Collapse
Affiliation(s)
- Zhimao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiaoyan Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, China.
| | - Kaikai Qiao
- State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Shuli Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| | - Qifeng Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan, 455000, China.
| |
Collapse
|
23
|
Verma BK, Kondaiah P. Regulation of β-catenin by IGFBP2 and its cytoplasmic actions in glioma. J Neurooncol 2020; 149:209-217. [PMID: 32803659 DOI: 10.1007/s11060-020-03596-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/08/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE IGFBP2 is one of the highly expressed genes in glioblastoma (GBM). It has both IGF dependent and independent activities. IGF independent actions are mediated by the activation of integrin signalling through its RGD motif present at C-terminal domain. One of the actions of IGFBP2 is to regulate β-catenin by the inactivation of GSK3β, which preferentially accumulates in the cytoplasm. The mechanism of nuclear β-catenin regulation by IGFBP2 and role of cytoplasmic β-catenin is not clear. We aimed to understand the mechanism in GBM cell lines. METHODS The gene expression studies were performed by RT-PCR, western blot analysis; the knockdown of genes was performed by shRNA transfection; RNAIP and luciferase reporter assays were utilized to study the cytoplasmic regulation of genes by β-catenin; neurosphere assays were performed to study the stemness of cells. RESULTS IGFBP2 overexpression or treatment in GBM cells regulates β-catenin, TRIM33 (E3 ubiquitin ligase) and Oct4 genes. TRIM33 was induced by IGFBP2. β-catenin was found to accumulate predominantly in the cytoplasm and nuclear β-catenin was depleted by IGFBP2 induced TRIM33. IGFBP2 regulated cytoplasmic β-catenin binds to 3' UTR of Oct4 RNA. IGFBP2 was also able to induce stemness of glioma cells. CONCLUSIONS IGFBP2 induces TRIM33 which regulates the nuclear β-catenin protein. In addition, IGFBP2 stabilizes the cytoplasmic β-catenin which is involved in the regulation of Oct4 transcript and consequently induction of stemness of glioma cells.
Collapse
Affiliation(s)
- Brijesh Kumar Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Biological Sciences Building, Bangalore, 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Biological Sciences Building, Bangalore, 560012, India.
| |
Collapse
|
24
|
Vavougios GD, Zarogiannis SG, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Epigenetic regulation of apoptosis via the PARK7 interactome in peripheral blood mononuclear cells donated by tuberculosis patients vs. healthy controls and the response to treatment: A systems biology approach. Tuberculosis (Edinb) 2020; 123:101938. [PMID: 32741527 DOI: 10.1016/j.tube.2020.101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aims of our study were to determine for the first time differentially expressed genes (DEGs) and enriched molecular pathways involving the PARK7 interactome in PBMCs donated from tuberculosis patients. METHODS Data on a previously reconstructed PARK7 interactome (Vavougios et al., 2017) from datasets GDS4966 (Case-Control) and GDS4781 (Treatment Series) were retrieved from the Gene Expression Omnibus (GEO) repository. Gene Enrichment analysis was performed via the STRING algorithm and the GeneTrail2 software. RESULTS 17 and 22 PARK7 interactores were determined as DEGs in the active TB vs HD and Treatment Series subset analyses, correspondingly, associated with significantly enriched pathways (FDR <0.05) involving p53 and PTEN mediated, stress responsive apoptosis regulation pathways. The treatment subset was characterized by the emergence of an additional layer of transcriptional regulation mediated by polycomb proteins among others, as well as TLR-mediated and cytokine survival signaling. Finally, the enrichment of a Parkinson's disease signature including PARK7 interactors was determined by its differential regulation both in the exploratory analyses (FDR = 0.024), as well as the confirmatory analyses (FDR = 1.81e-243). CONCLUSIONS Our in silico analysis revealed for the first time the role of PARK7's interactome in regulating the epigenetics of the PBMC lifecycle and Mtb symbiosis.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21, Athens, Greece; Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece.
| | - Sotirios G Zarogiannis
- Department of Pleural Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41500, Larisa, Greece
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Universitetsvej 1, 28A.1, DK-4000, Roskilde, Denmark
| | - George Stamoulis
- Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41110, Larisa, Greece
| |
Collapse
|
25
|
Kumar M, Majumder D, Mal S, Chakraborty S, Gupta P, Jana K, Gupta UD, Ghosh Z, Kundu M, Basu J. Activating transcription factor 3 modulates the macrophage immune response to Mycobacterium tuberculosis infection via reciprocal regulation of inflammatory genes and lipid body formation. Cell Microbiol 2019; 22:e13142. [PMID: 31709711 DOI: 10.1111/cmi.13142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
Infection of macrophages by Mycobacterium tuberculosis elicits an immune response that clears the bacterium. However, the bacterium is able to subvert the innate immune response. Differential expression of transcription factors (TFs) is central to the dynamic balance of this interaction. Among other functions, TFs regulate the production of antibacterial agents such as nitric oxide, pro-inflammatory cytokines and neutral lipids which are stored in lipid bodies (LBs) and favour bacterial survival. Here, we demonstrate that the TF activating transcription factor 3 (ATF3) is upregulated early during infection of macrophages or mice. Depletion of ATF3 enhances mycobacterial survival in macrophages suggesting its host-protective role. ATF3 interacts with chromatin remodelling protein brahma-related gene 1 and both associate with the promoters of interleukin-12p40, interleukin-6 and nitric oxide synthase 2, to activate expression of these genes. Strikingly, ATF3 downregulates LB formation by associating at the promoters of positive regulators of LB formation such as cholesterol 25 hydroxylase and the microRNA-33 locus. ATF3 represses the association of the activating mark, acetyl histone H4 lysine 8 at the promoter of cholesterol 25 hydroxylase. Our study suggests opposing roles of ATF3 in regulation of distinct sets of macrophage genes during infection, converging on a host-protective immune response.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Soumya Mal
- Department of Chemistry, Bose Institute, Kolkata, India
| | | | - Pushpa Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
26
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol 2019; 44:101324. [PMID: 31676122 DOI: 10.1016/j.smim.2019.101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IL-10 is a critical immunoregulatory cytokine expressed in virtually all immune cell types. Maintaining a delicate balance between effective immune response and tolerance requires meticulous and dynamic control of IL-10 expression both epigenetically and transcriptionally. In this Review, we describe the epigenetic mechanisms controlling IL-10 expression, including chromatin remodeling, 3D chromatin loops, histone modification and DNA methylation. We discuss the role of transcription factors in directing chromatin modifications, with a special highlight on the emerging concept of pioneer transcription factors in setting up the chromatin landscape in T helper cells for IL-10 induction. Besides summarizing the recent progress on transcriptional regulation in specialized IL-10 producers such as type 1 regulatory T cells, regulatory B cells and regulatory innate lymphoid cells, we also discuss common transcriptional mechanisms for IL-10 regulation that are shared with other IL-10 producing cells.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
28
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
29
|
Yi L, Li Z, Hu T, Liu J, Li N, Cao X, Liu S. Intracellular HSP70L1 inhibits human dendritic cell maturation by promoting suppressive H3K27me3 and H2AK119Ub1 histone modifications. Cell Mol Immunol 2019; 17:85-94. [PMID: 30635648 DOI: 10.1038/s41423-018-0195-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulation has been attracting increasing attention due to its role in cell differentiation and behaviors. However, the epigenetic mechanisms that regulate human dendritic cell (DC) differentiation and development remain poorly understood. Our previous studies show that extracellular heat shock protein 70-like protein (HSP70L1) is a potent adjuvant of Th1 responses via stimulating DCs when released from cells; however, the role of intracellular HSP70L1 in DC differentiation and maturation remains unknown. Herein, we demonstrate that intracellular HSP70L1 inhibits human DC maturation by suppressing MHC and costimulatory molecule expression, in contrast to the adjuvant activity of extracellular HSP70L1. The stability of intracellular HSP70L1 is dependent on DNAJC2, a known epigenetic regulator. Mechanistically, intracellular HSP70L1 inhibits the recruitment of Ash1l to and maintains the repressive H3K27me3 and H2AK119Ub1 modifications on the promoter regions of costimulatory, MHC and STAT3 genes. Thus, intracellular HSP70L1 is an inhibitor of human DC maturation. Our results provide new insights into the epigenetic regulation of cell development by intracellular HSP70L1.
Collapse
Affiliation(s)
- Lin Yi
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Tianju Hu
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Nan Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China. .,Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China.
| | - Shuxun Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
30
|
Mahadik K, Yadav P, Bhatt B, Shah RA, Balaji KN. Deregulated AUF1 Assists BMP-EZH2-Mediated Delayed Wound Healing during Candida albicans Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:3617-3629. [PMID: 30429285 DOI: 10.4049/jimmunol.1800688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Tissue repair is a complex process that necessitates an interplay of cellular processes, now known to be dictated by epigenetics. Intriguingly, macrophages are testimony to a large repertoire of evolving functions in this process. We identified a role for BMP signaling in regulating macrophage responses to Candida albicans infection during wound repair in a murine model. In this study, the RNA binding protein, AU-rich element-binding factor 1, was posttranslationally destabilized to bring about ubiquitin ligase, NEDD4-directed activation of BMP signaling. Concomitantly, PI3K/PKCδ mobilized the rapid phosphorylation of BMP-responsive Smad1/5/8. Activated BMP pathway orchestrated the elevated recruitment of EZH2 at promoters of genes assisting timely wound closure. In vivo, the repressive H3K27 trimethylation was observed to persist, accompanied by a robust upregulation of BMP pathway upon infection with C. albicans, culminating in delayed wound healing. Altogether, we uncovered the signaling networks coordinated by fungal colonies that are now increasingly associated with the infected wound microbiome, resulting in altered wound fate.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
31
|
JMJD3 facilitates C/EBPβ-centered transcriptional program to exert oncorepressor activity in AML. Nat Commun 2018; 9:3369. [PMID: 30135572 PMCID: PMC6105679 DOI: 10.1038/s41467-018-05548-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
JMJD3, a stress-inducible H3K27 demethylase, plays a critical regulatory role in the initiation and progression of malignant hematopoiesis. However, how this histone modifier affects in a cell type-dependent manner remains unclear. Here, we show that in contrast to its oncogenic effect in preleukemia state and lymphoid malignancies, JMJD3 relieves the differentiation-arrest of certain subtypes (such as M2 and M3) of acute myeloid leukemia (AML) cells. RNA sequencing and ChIP−PCR analyses revealed that JMJD3 exerts anti-AML effect by directly modulating H3K4 and H3K27 methylation levels to activate the expression of a number of key myelopoietic regulatory genes. Mechanistic exploration identified a physical and functional association of JMJD3 with C/EBPβ that presides the regulatory network of JMJD3. Thus, the leukemia regulatory role of JMJD3 varies in a disease phase- and lineage-dependent manner, and acts as a potential oncorepressor in certain subsets of AML largely by coupling to C/EBPβ-centered myelopoietic program. Histone demethylase JMJD3 is known to be oncogenic in preleukemic states and T-cell acute lymphocytic leukemia. Here, the authors show that in some acute myeloid leukemia subsets, JMJD3 can actually act as a potential oncorepressor via mediation of C/EBPβ-centered transcriptional programming.
Collapse
|
32
|
Jaisinghani N, Dawa S, Singh K, Nandy A, Menon D, Bhandari PD, Khare G, Tyagi A, Gandotra S. Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:1490. [PMID: 30018616 PMCID: PMC6037689 DOI: 10.3389/fimmu.2018.01490] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary tuberculosis (TB) exhibits granulomatous inflammation, a site of controlling bacterial dissemination at the cost of host tissue damage. Intrigued by the granuloma type-dependent expression of inflammatory markers in TB, we sought to investigate underlying metabolic changes that drive amplification of inflammation in TB. Here, we show an association of higher inflammation in necrotic granulomas with the presence of triglyceride (TG)-rich foamy macrophages. The conspicuous absence of these macrophages in solid granulomas identified a link between the ensuing pathology and the metabolic programming of foamy macrophages. Consistent with in vivo findings, in vitro infection of macrophages with Mycobacterium tuberculosis (Mtb) led to increase in TG synthesis only under conditions of ~60% necrosis. Genetic and pharmacologic intervention that reduced necrosis prevented this bystander response. We further demonstrate that necrosis independent of Mtb also elicits the same bystander response in human macrophages. We identified a role for the human enzyme involved in TG synthesis, diacylglycerol O-acyltransferase (DGAT1), in this phenomenon. The increased TG levels in necrosis-associated foamy macrophages promoted the pro-inflammatory state of macrophages to infection while silencing expression of diacylglycerol O-acyltransferase (DGAT1) suppressed expression of pro-inflammatory genes. Our data thus invoke a role for storage lipids in the heightened host inflammatory response during infection-associated necrosis. Our data provide a functional role to macrophage lipid droplets in host defense and open new avenues for developing host-directed therapies against TB.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Stanzin Dawa
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kaurab Singh
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ananya Nandy
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dilip Menon
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Purva Deepak Bhandari
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sheetal Gandotra
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
33
|
Daskalaki MG, Tsatsanis C, Kampranis SC. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. J Cell Physiol 2018; 233:6495-6507. [PMID: 29574768 DOI: 10.1002/jcp.26497] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
Macrophages respond to noxious stimuli and contribute to inflammatory responses by eliminating pathogens or damaged tissue and maintaining homeostasis. Response to activation signals and maintenance of homeostasis require tight regulation of genes involved in macrophage activation and inactivation processes, as well as genes involved in determining their polarization state. Recent evidence has revealed that such regulation occurs through histone modifications that render inflammatory or polarizing gene promoters accessible to transcriptional complexes. Thus, inflammatory and anti-inflammatory genes are regulated by histone acetylation and methylation, determining their activation state. Herein, we review the current knowledge on the role of histone modifying enzymes (acetyltransferases, deacetylases, methyltransferases, and demethylases) in determining the responsiveness and M1 or M2 polarization of macrophages. The contribution of these enzymes in the development of inflammatory diseases is also presented.
Collapse
Affiliation(s)
- Maria G Daskalaki
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece.,Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christos Tsatsanis
- Laboratory of Clinical Chemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios C Kampranis
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
34
|
Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 2018; 14:e1006874. [PMID: 29370315 PMCID: PMC5800697 DOI: 10.1371/journal.ppat.1006874] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/06/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Lipid droplet (LD) formation occurs during infection of macrophages with numerous intracellular pathogens, including Mycobacterium tuberculosis. It is believed that M. tuberculosis and other bacteria specifically provoke LD formation as a pathogenic strategy in order to create a depot of host lipids for use as a carbon source to fuel intracellular growth. Here we show that LD formation is not a bacterially driven process during M. tuberculosis infection, but rather occurs as a result of immune activation of macrophages as part of a host defense mechanism. We show that an IFN-γ driven, HIF-1α dependent signaling pathway, previously implicated in host defense, redistributes macrophage lipids into LDs. Furthermore, we show that M. tuberculosis is able to acquire host lipids in the absence of LDs, but not in the presence of IFN-γ induced LDs. This result uncouples macrophage LD formation from bacterial acquisition of host lipids. In addition, we show that IFN-γ driven LD formation supports the production of host protective eicosanoids including PGE2 and LXB4. Finally, we demonstrate that HIF-1α and its target gene Hig2 are required for the majority of LD formation in the lungs of mice infected with M. tuberculosis, thus demonstrating that immune activation provides the primary stimulus for LD formation in vivo. Taken together our data demonstrate that macrophage LD formation is a host-driven component of the adaptive immune response to M. tuberculosis, and suggest that macrophage LDs are not an important source of nutrients for M. tuberculosis.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan Braverman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kaleb Asfaha
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Singh V, Prakhar P, Rajmani RS, Mahadik K, Borbora SM, Balaji KN. Histone Methyltransferase SET8 Epigenetically Reprograms Host Immune Responses to Assist Mycobacterial Survival. J Infect Dis 2017; 216:477-488. [DOI: 10.1093/infdis/jix322] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
|
36
|
Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly Expressed Long Non‐Coding RNAs In CD8
+
T Cells Response to Active Tuberculosis. J Cell Biochem 2017; 118:4275-4284. [DOI: 10.1002/jcb.26078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine CollegeWeifang Medical UniversityShandong Weifang261053China
- School infirmary of Weifang Medical UniversityShandong Weifang261053China
| | - Kunshan Gao
- Department of Laboratory MedicineKey Laboratory of Clinical Laboratory Diagnostics in Universities of ShandongWeifang Medical UniversityShandong Weifang261053China
| | - Enxue Tao
- School infirmary of Weifang Medical UniversityShandong Weifang261053China
| | - Ruifang Li
- Department of Medical Microbiology of Clinical Medicine CollegeWeifang Medical UniversityShandong Weifang261053China
| | - Zhengjun Yi
- Department of Laboratory MedicineKey Laboratory of Clinical Laboratory Diagnostics in Universities of ShandongWeifang Medical UniversityShandong Weifang261053China
| |
Collapse
|
37
|
The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells. Biochem Biophys Res Commun 2017; 485:62-68. [DOI: 10.1016/j.bbrc.2017.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/21/2022]
|
38
|
Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Sci Rep 2017; 7:42225. [PMID: 28176867 PMCID: PMC5296737 DOI: 10.1038/srep42225] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions.
Collapse
|
39
|
Santucci P, Bouzid F, Smichi N, Poncin I, Kremer L, De Chastellier C, Drancourt M, Canaan S. Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis. Front Cell Infect Microbiol 2016; 6:122. [PMID: 27774438 PMCID: PMC5054039 DOI: 10.3389/fcimb.2016.00122] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Despite a slight decline since 2014, tuberculosis (TB) remains the major deadly infectious disease worldwide with about 1.5 million deaths each year and with about one-third of the population being latently infected with Mycobacterium tuberculosis, the etiologic agent of TB. During primo-infection, the recruitment of immune cells leads to the formation of highly organized granulomas. Among the different cells, one outstanding subpopulation is the foamy macrophage (FM), characterized by the abundance of triacylglycerol-rich lipid bodies (LB). M. tuberculosis can reside in FM, where it acquires, from host LB, the neutral lipids which are subsequently processed and stored by the bacilli in the form of intracytosolic lipid inclusions (ILI). Although host LB can be viewed as a reservoir of nutrients for the pathogen during latency, the molecular mechanisms whereby intraphagosomal mycobacteria interact with LB and assimilate the LB-derived lipids are only beginning to be understood. Past studies have emphasized that these physiological processes are critical to the M. tuberculosis infectious-life cycle, for propagation of the infection, establishment of the dormancy state and reactivation of the disease. In recent years, several animal and cellular models have been developed with the aim of dissecting these complex processes and of determining the nature and contribution of their key players. Herein, we review some of the in vitro and in vivo models which allowed to gain significant insight into lipid accumulation and consumption in M. tuberculosis, two important events that are directly linked to pathogenicity, granuloma formation/maintenance and survival of the tubercle bacillus under non-replicative conditions. We also discuss the advantages and limitations of each model, hoping that this will serve as a guide for future investigations dedicated to persistence and innovative therapeutic approaches against TB.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Feriel Bouzid
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITEMarseille, France
| | - Nabil Smichi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPLMarseille, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France
| | - Isabelle Poncin
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Laurent Kremer
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Centre National de la Recherche Scientifique FRE3689, Université de MontpellierMontpellier, France; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Chantal De Chastellier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| | - Michel Drancourt
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, URMITE Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, EIPL Marseille, France
| |
Collapse
|