1
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Gaba A, Yousefi M, Bhattacharjee S, Chelico L. Variability in HIV-1 transmitted/founder virus susceptibility to combined APOBEC3F and APOBEC3G host restriction. J Virol 2025; 99:e0160624. [PMID: 39714157 PMCID: PMC11784016 DOI: 10.1128/jvi.01606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1. The relative contributions of multiple APOBEC3s in HIV-1 restriction are not fully understood. Here, we investigated the activity of co-expressed APOBEC3F and APOBEC3G against HIV-1 Subtype B and Subtype C transmitted/founder viruses. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain. We provide evidence that this results in protection of APOBEC3F from Vif-mediated degradation because the APOBEC3F N-terminal domain contains residues required for recognition by Vif. We also found that HIV-1 Subtype C Vifs, but not Subtype B Vifs, were less active against APOBEC3G when APOBEC3F and APOBEC3G were co-expressed. Consequently, when APOBEC3F and APOBEC3G were expressed together in a single cycle of HIV-1 replication, only HIV-1 Subtype C viruses showed a decrease in relative infectivity compared to when APOBEC3G was expressed alone. Inspection of Vif amino acid sequences revealed that differences in amino acids adjacent to conserved sequences influenced the Vif-mediated APOBEC3 degradation ability. Altogether, the data provide a possible mechanism for how combined expression of APOBEC3F and APOBEC3G could contribute to mutagenesis of HIV-1 proviral genomes despite the presence of Vif and provide evidence for variability in the Vif-mediated APOBEC3 degradation ability of transmitted/founder viruses.IMPORTANCEAPOBEC3 enzymes suppress HIV-1 infection by inducing cytosine deamination in proviral DNA but are hindered by HIV-1 Vif, which leads to APOBEC3 proteasomal degradation. Moving away from traditional studies that used lab-adapted HIV-1 Subtype B viruses and singular APOBEC3 enzymes, we examined how transmitted/founder isolates of HIV-1 replicated in the presence of APOBEC3F and APOBEC3G. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain and that APOBEC3F, like APOBEC3G, has Vif-mediated degradation determinants in the N-terminal domain. This enabled APOBEC3F to be partially resistant to Vif-mediated degradation. We also demonstrated that Subtype C is more susceptible than Subtype B HIV-1 to combined APOBEC3F/APOBEC3G restriction and identified Vif variations influencing APOBEC3 degradation ability. Importantly, Vif amino acid variation outside of previously identified conserved regions mediated APOBEC3 degradation and HIV-1 Vif subtype-specific differences. Altogether, we identified factors that affect susceptibility to APOBEC3F/APOBEC3G restriction.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Yousefi
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shreoshri Bhattacharjee
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
4
|
Campagna R, Nonne C, Antonelli G, Turriziani O. Archived HIV-1 Drug Resistance Mutations: Role of Proviral HIV-1 DNA Genotype for the Management of Virological Responder People Living with HIV. Viruses 2024; 16:1697. [PMID: 39599811 PMCID: PMC11599110 DOI: 10.3390/v16111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Despite its effectiveness in controlling plasma viremia, antiretroviral therapy (ART) cannot target proviral DNA, which remains an obstacle to HIV-1 eradication. When treatment is interrupted, the reservoirs can act as a source of viral rebound, highlighting the value of proviral DNA as an additional source of information on an individual's overall resistance burden. In cases where the viral load is too low for successful HIV-1 RNA genotyping, HIV-1 DNA can help identify resistance mutations in treated individuals. The absence of treatment history, the need to adjust ART despite undetectable viremia, or the presence of LLV further support the use of genotypic resistance tests (GRTs) on HIV-1 DNA. Conventionally, GRTs have been achieved through Sanger sequencing, but the advances in NGS are leading to an increase in its use, allowing the detection of minority variants present in less than 20% of the viral population. The clinical significance of these mutations remains under debate, with interpretations varying based on context. Additionally, proviral DNA is subject to APOBEC3-induced hypermutation, which can lead to defective, nonviable viral genomes, a factor that must be considered when performing GRTs on HIV-1 DNA.
Collapse
Affiliation(s)
- Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.N.); (G.A.); (O.T.)
| | | | | | | |
Collapse
|
5
|
Jang GM, Annan Sudarsan AK, Shayeganmehr A, Prando Munhoz E, Lao R, Gaba A, Granadillo Rodríguez M, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein Interaction Map of APOBEC3 Enzyme Family Reveals Deamination-Independent Role in Cellular Function. Mol Cell Proteomics 2024; 23:100755. [PMID: 38548018 PMCID: PMC11070599 DOI: 10.1016/j.mcpro.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.
Collapse
Affiliation(s)
- Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Arun Kumar Annan Sudarsan
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arzhang Shayeganmehr
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Amit Gaba
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; J. David Gladstone Institutes, Gladstone Institute for Data Science and Biotechnology, San Francisco, California, USA.
| | - Linda Chelico
- College of Medicine, Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
6
|
Jang GM, Sudarsan AKA, Shayeganmehr A, Munhoz EP, Lao R, Gaba A, Rodríguez MG, Love RP, Polacco BJ, Zhou Y, Krogan NJ, Kaake RM, Chelico L. Protein interaction map of APOBEC3 enzyme family reveals deamination-independent role in cellular function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579137. [PMID: 38370690 PMCID: PMC10871184 DOI: 10.1101/2024.02.06.579137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence is not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and map a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology.
Collapse
Affiliation(s)
- Gwendolyn M. Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arun Kumar Annan Sudarsan
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Centre for Commercialization of Regenerative Medicine (CCRM), 661 University Ave #1002, Toronto, ON M5G 1M1
| | - Arzhang Shayeganmehr
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Erika Prando Munhoz
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW Calgary, AB T2N 4N1
| | - Reanna Lao
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Amit Gaba
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Milaid Granadillo Rodríguez
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| | - Robin P. Love
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
- Current Address: Faculty of Medicine & Dentistry, Department of Medicine, TB Program Evaluation & Research Unit, University of Alberta, 11402 University Avenue NW, Edmonton, AB, T6G 2J3
| | - Benjamin J. Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Robyn M. Kaake
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Linda Chelico
- University of Saskatchewan, College of Medicine, Biochemistry, Microbiology & Immunology, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Kouno T, Shibata S, Shigematsu M, Hyun J, Kim TG, Matsuo H, Wolf M. Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G. Nat Commun 2023; 14:4037. [PMID: 37419875 PMCID: PMC10328928 DOI: 10.1038/s41467-023-39796-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023] Open
Abstract
Great effort has been devoted to discovering the basis of A3G-Vif interaction, the key event of HIV's counteraction mechanism to evade antiviral innate immune response. Here we show reconstitution of the A3G-Vif complex and subsequent A3G ubiquitination in vitro and report the cryo-EM structure of the A3G-Vif complex at 2.8 Å resolution using solubility-enhanced variants of A3G and Vif. We present an atomic model of the A3G-Vif interface, which assembles via known amino acid determinants. This assembly is not achieved by protein-protein interaction alone, but also involves RNA. The cryo-EM structure and in vitro ubiquitination assays identify an adenine/guanine base preference for the interaction and a unique Vif-ribose contact. This establishes the biological significance of an RNA ligand. Further assessment of interactions between A3G, Vif, and RNA ligands show that the A3G-Vif assembly and subsequent ubiquitination can be controlled by amino acid mutations at the interface or by polynucleotide modification, suggesting that a specific chemical moiety would be a promising pharmacophore to inhibit the A3G-Vif interaction.
Collapse
Affiliation(s)
- Takahide Kouno
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago-shi, Tottori, 683-8503, Japan
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jaekyung Hyun
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Gyun Kim
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- Department of Efficacy Evaluation, Innovation Center for Vaccine Industry, Gyeongbuk Institute for Bio Industry, Gyeongsanbuk-do, 36618, Republic of Korea
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, 115, Taipei, Taiwan.
| |
Collapse
|
8
|
Becker JT, Auerbach AA, Harris RS. APEX3 - an optimized tool for rapid and unbiased proximity labeling. J Mol Biol 2023; 435:168145. [PMID: 37182813 DOI: 10.1016/j.jmb.2023.168145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Macromolecular interactions regulate all aspects of biology. The identification of interacting partners and complexes is important for understanding cellular processes, host-pathogen conflicts, and organismal development. Multiple methods exist to label and enrich interacting proteins in living cells. Notably, the soybean ascorbate peroxidase, APEX2, rapidly biotinylates adjacent biomolecules in the presence of biotin-phenol and hydrogen peroxide. However, during initial experiments with this system, we found that APEX2 exhibits a cytoplasmic-biased localization and is sensitive to the nuclear export inhibitor leptomycin B (LMB). This led us to identify a putative nuclear export signal (NES) at the carboxy-terminus of APEX2 (NESAPEX2), structurally adjacent to the conserved heme binding site. This putative NES is functional as evidenced by cytoplasmic localization and LMB sensitivity of a mCherry-NESAPEX2 chimeric construct. Single amino acid substitutions of multiple hydrophobic residues within NESAPEX2 eliminate cytoplasm-biased localization of both mCherry-NESAPEX2 as well as full-length APEX2. However, all but one of these NES substitutions also compromises peroxide-dependent labeling. This unique separation-of-function mutant, APEX2-L242A, is termed APEX3. Localization and functionality of APEX3 are confirmed by fusion to the nucleocytoplasmic shuttling transcriptional factor, RELA. APEX3 is therefore an optimized tool for unbiased proximity labeling of cellular proteins and interacting factors.
Collapse
Affiliation(s)
- Jordan T Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA 55455; Department of Microbiology and Immunology, University of Minnesota Twin Cities, Minneapolis, MN, USA 55455; Institute for Molecular Virology, University of Minnesota Twin Cities, Minneapolis, MN, USA 55455.
| | - Ashley A Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA 78229
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, USA 55455; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA 78229; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA 78229.
| |
Collapse
|
9
|
Li YL, Langley CA, Azumaya CM, Echeverria I, Chesarino NM, Emerman M, Cheng Y, Gross JD. The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 2023; 615:728-733. [PMID: 36754086 PMCID: PMC10033410 DOI: 10.1038/s41586-023-05779-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles1-4. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Collapse
Affiliation(s)
- Yen-Li Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Caroline A Langley
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Caleigh M Azumaya
- Fred Hutchinson Cancer Center, Electron Microscopy Shared Resource, Seattle, WA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yifan Cheng
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Quantitative Bioscience Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
10
|
Ito F, Alvarez-Cabrera AL, Liu S, Yang H, Shiriaeva A, Zhou ZH, Chen XS. Structural basis for HIV-1 antagonism of host APOBEC3G via Cullin E3 ligase. SCIENCE ADVANCES 2023; 9:eade3168. [PMID: 36598981 PMCID: PMC9812381 DOI: 10.1126/sciadv.ade3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection. Here, we report the cryo-electron microscopy structures of A3G bound to HIV-1 Vif in complex with T cell transcription cofactor CBF-β and multiple components of the Cullin-5 RING E3 ubiquitin ligase. The structures reveal unexpected RNA-mediated interactions of Vif with A3G primarily through A3G's noncatalytic domain, while A3G's catalytic domain is poised for ubiquitin transfer. These structures elucidate the molecular mechanism by which HIV-1 Vif hijacks the host ubiquitin ligase to specifically target A3G to establish infection and offer structural information for the rational development of antiretroviral therapeutics.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ana L. Alvarez-Cabrera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anna Shiriaeva
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, USA
- Genetic, Molecular, and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun 2022; 13:7498. [PMID: 36470880 PMCID: PMC9722718 DOI: 10.1038/s41467-022-35201-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
An essential step in restricting HIV infectivity by the antiviral factor APOBEC3G is its incorporation into progeny virions via binding to HIV RNA. However, the mechanism of APOBEC3G capturing viral RNA is unknown. Here, we report crystal structures of a primate APOBEC3G bound to different types of RNAs, revealing that APOBEC3G specifically recognizes unpaired 5'-AA-3' dinucleotides, and to a lesser extent, 5'-GA-3' dinucleotides. APOBEC3G binds to the common 3'A in the AA/GA motifs using an aromatic/hydrophobic pocket in the non-catalytic domain. It binds to the 5'A or 5'G in the AA/GA motifs using an aromatic/hydrophobic groove conformed between the non-catalytic and catalytic domains. APOBEC3G RNA binding property is distinct from that of the HIV nucleocapsid protein recognizing unpaired guanosines. Our findings suggest that the sequence-specific RNA recognition is critical for APOBEC3G virion packaging and restricting HIV infectivity.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Shuxing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089 USA ,grid.42505.360000 0001 2156 6853Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
12
|
Berkhout B, van Hemert FJ. Silent codon positions in the A-rich HIV RNA genome that do not easily become A: Restrictions imposed by the RNA sequence and structure. Virus Evol 2022; 8:veac072. [PMID: 36533144 PMCID: PMC9752802 DOI: 10.1093/ve/veac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 07/30/2023] Open
Abstract
There is a strong evolutionary tendency of the human immunodeficiency virus (HIV) to accumulate A nucleotides in its RNA genome, resulting in a mere 40 per cent A count. This A bias is especially dominant for the so-called silent codon positions where any nucleotide can be present without changing the encoded protein. However, particular silent codon positions in HIV RNA refrain from becoming A, which became apparent upon genome analysis of many virus isolates. We analyzed these 'noA' genome positions to reveal the underlying reason for their inability to facilitate the A nucleotide. We propose that local RNA structure requirements can explain the absence of A at these sites. Thus, noA sites may be prominently involved in the correct folding of the viral RNA. Turning things around, the presence of multiple clustered noA sites may reveal the presence of important sequence and/or structural elements in the HIV RNA genome.
Collapse
Affiliation(s)
| | - Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
The optimal pH of AID is skewed from that of its catalytic pocket by DNA-binding residues and surface charge. Biochem J 2021; 479:39-55. [PMID: 34870314 DOI: 10.1042/bcj20210529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge, most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.
Collapse
|
15
|
Gaba A, Flath B, Chelico L. Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses. Viruses 2021; 13:1084. [PMID: 34200141 PMCID: PMC8228377 DOI: 10.3390/v13061084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (-)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Ben Flath
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada
| |
Collapse
|
16
|
Degradation-Independent Inhibition of APOBEC3G by the HIV-1 Vif Protein. Viruses 2021; 13:v13040617. [PMID: 33916704 PMCID: PMC8066197 DOI: 10.3390/v13040617] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin–proteasome system plays an important role in the cell under normal physiological conditions but also during viral infections. Indeed, many auxiliary proteins from the (HIV-1) divert this system to its own advantage, notably to induce the degradation of cellular restriction factors. For instance, the HIV-1 viral infectivity factor (Vif) has been shown to specifically counteract several cellular deaminases belonging to the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC3 or A3) family (A3A to A3H) by recruiting an E3-ubiquitin ligase complex and inducing their polyubiquitination and degradation through the proteasome. Although this pathway has been extensively characterized so far, Vif has also been shown to impede A3s through degradation-independent processes, but research on this matter remains limited. In this review, we describe our current knowledge regarding the degradation-independent inhibition of A3s, and A3G in particular, by the HIV-1 Vif protein, the molecular mechanisms involved, and highlight important properties of this small viral protein.
Collapse
|
17
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
18
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
19
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
20
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
21
|
Clip for studying protein-RNA interactions that regulate virus replication. Methods 2020; 183:84-92. [PMID: 31765715 DOI: 10.1016/j.ymeth.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
Viral and cellular RNA-binding proteins regulate numerous key steps in the replication of diverse virus genera. Viruses efficiently co-opt the host cell machinery for purposes such as transcription, splicing and subcellular localization of viral genomes. Though viral RNAs often need to resemble cellular RNAs to effectively utilize the cellular machinery, they still retain unique sequence and structural features for recognition by viral proteins for processes such as RNA polymerization, RNA export and selective packaging into virus particles. While beneficial for virus replication, distinct features of viral nucleic acids can also be recognized as foreign by several host defense proteins. Development of the crosslinking immunoprecipitation coupled with sequencing (CLIP) approach has allowed the study of viral and cellular RNA binding proteins that regulate critical aspects of viral replication in unprecedented detail. By combining immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, CLIP provides a global account of RNA sequences bound by RNA-binding proteins of interest in physiological settings and at near-nucleotide resolution. Here, we describe the step-by-step application of the CLIP methodology within the context of two cellular splicing regulatory proteins, hnRNP A1 and hnRNP H1 that regulate HIV-1 splicing. In principle, this versatile protocol can be applied to many other viral and cellular RNA-binding proteins.
Collapse
|
22
|
Bohn JA, DaSilva J, Kharytonchyk S, Mercedes M, Vosters J, Telesnitsky A, Hatziioannou T, Smith JL. Flexibility in Nucleic Acid Binding Is Central to APOBEC3H Antiviral Activity. J Virol 2019; 93:e01275-19. [PMID: 31578294 PMCID: PMC6880157 DOI: 10.1128/jvi.01275-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H) are host restriction factors that inhibit HIV-1 through DNA cytidine deaminase-dependent and -independent mechanisms and have either one (A3H) or two (A3F and A3G) zinc-binding domains. A3H antiviral activity encompasses multiple molecular functions, all of which depend on recognition of RNA or DNA. A3H crystal structures revealed an unusual interaction with RNA wherein an RNA duplex mediates dimerization of two A3H proteins. In this study, we sought to determine the importance of RNA-binding amino acids in the antiviral and biochemical properties of A3H. We show that the wild-type A3H-RNA interaction is essential for A3H antiviral activity and for two deaminase-independent processes: encapsidation into viral particles and inhibition of reverse transcription. Furthermore, an extensive mutagenesis campaign revealed distinct roles for two groups of amino acids at the RNA binding interface. C-terminal helix residues exclusively bind RNA, and loop 1 residues play a dual role in recognition of DNA substrates and in RNA binding. Weakening the interface between A3H and RNA allows DNA substrates to bind with greater affinity and enhances deamination rates, suggesting that RNA binding must be disrupted to accommodate DNA. Intriguingly, we demonstrate that A3H can deaminate overhanging DNA strands of RNA/DNA heteroduplexes, which are early intermediates during reverse transcription and may represent natural A3H substrates. Overall, we present a mechanistic model of A3H restriction and a step-by-step elucidation of the roles of RNA-binding residues in A3H activity, particle incorporation, inhibition of reverse transcriptase inhibition, and DNA cytidine deamination.IMPORTANCE APOBEC3 proteins are host factors that protect the integrity of the host genome by inhibiting retroelements as well as retroviruses, such as HIV-1. To do this, the APOBEC3H protein has evolved unique interactions with structured RNAs. Here, we studied the importance of these interactions in driving antiviral activity of APOBEC3H. Our results provide a clear picture of how RNA binding drives the ability of APOBEC3H to infiltrate new viruses and prevent synthesis of viral DNA. We also explore how RNA binding by APOBEC3H influences recognition and deamination of viral DNA and describe two possible routes by which APOBEC3H might hypermutate the HIV-1 genome. These results highlight how one protein can sense many nucleic acid species for a variety of antiviral activities.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin DaSilva
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Mercedes
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Jennifer Vosters
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Janet L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Wang J, Becker JT, Shi K, Lauer KV, Salamango DJ, Aihara H, Shaban NM, Harris RS. The Role of RNA in HIV-1 Vif-Mediated Degradation of APOBEC3H. J Mol Biol 2019; 431:5019-5031. [PMID: 31628948 DOI: 10.1016/j.jmb.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Abstract
As many as five members of the APOBEC3 family of DNA cytosine deaminases are capable of inhibiting HIV-1 replication by deaminating viral cDNA cytosines and interfering with reverse transcription. HIV-1 counteracts restriction with the virally encoded Vif protein, which forms a hybrid ubiquitin ligase complex that directly binds APOBEC3 enzymes and targets them for proteasomal degradation. APOBEC3H (A3H) is unique among family members by dimerization through cellular and viral duplex RNA species. RNA binding is required for localization of A3H to the cytoplasmic compartment, for efficient packaging into nascent HIV-1 particles and ultimately for effective virus restriction activity. Here we compared wild-type human A3H and RNA binding-defective mutants to ask whether RNA may be a factor in the functional interaction with HIV-1 Vif. We used structural modeling, immunoblotting, live cell imaging, and split green fluorescence protein (GFP) reconstitution approaches to assess the capability of HIV-1 Vif to promote the degradation of wild-type A3H in comparison to RNA binding-defective mutants. The results combined to show that RNA is not strictly required for Vif-mediated degradation of A3H, and that RNA and Vif are likely to bind this single-domain DNA cytosine deaminase on physically distinct surfaces. However, a subset of the results also indicated that the A3H degradation process may be affected by A3H protein structure, subcellular localization, and differences in the constellation of A3H interaction partners, suggesting additional factors may also influence the fate and functionality of this host-pathogen interaction.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kate V Lauer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nadine M Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Matsuoka T, Nagae T, Ode H, Awazu H, Kurosawa T, Hamano A, Matsuoka K, Hachiya A, Imahashi M, Yokomaku Y, Watanabe N, Iwatani Y. Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res 2019; 46:10368-10379. [PMID: 30060196 PMCID: PMC6212771 DOI: 10.1093/nar/gky676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
APOBEC3H (A3H) is a mammal-specific cytidine deaminase that potently restricts the replication of retroviruses. Primate A3Hs are known to exert key selective pressures against the cross-species transmission of primate immunodeficiency viruses from chimpanzees to humans. Despite recent advances, the molecular structures underlying the functional mechanisms of primate A3Hs have not been fully understood. Here, we reveal the 2.20-Å crystal structure of the chimpanzee A3H (cpzA3H) dimer bound to a short double-stranded RNA (dsRNA), which appears to be similar to two recently reported structures of pig-tailed macaque A3H and human A3H. In the structure, the dsRNA-binding interface forms a specialized architecture with unique features. The analysis of the dsRNA nucleotides in the cpzA3H complex revealed the GC-rich palindrome-like sequence preference for dsRNA interaction, which is largely determined by arginine residues in loop 1. In cells, alterations of the cpzA3H residues critical for the dsRNA interaction severely reduce intracellular protein stability due to proteasomal degradation. This suggests that cpzA3H stability is regulated by the dsRNA-mediated dimerization as well as by unknown cellular machinery through proteasomal degradation in cells. Taken together, these findings highlight unique structural features of primate A3Hs that are important to further understand their cellular functions and regulation.
Collapse
Affiliation(s)
- Tatsuya Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan.,Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Hiroaki Awazu
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Teppei Kurosawa
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Akiko Hamano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan.,Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan.,Program in Integrated Molecular Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
25
|
Fukuda H, Li S, Sardo L, Smith JL, Yamashita K, Sarca AD, Shirakawa K, Standley DM, Takaori-Kondo A, Izumi T. Structural Determinants of the APOBEC3G N-Terminal Domain for HIV-1 RNA Association. Front Cell Infect Microbiol 2019; 9:129. [PMID: 31165049 PMCID: PMC6536580 DOI: 10.3389/fcimb.2019.00129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
APOBEC3G (A3G) is a cellular protein that inhibits HIV-1 infection through virion incorporation. The interaction of the A3G N-terminal domain (NTD) with RNA is essential for A3G incorporation in the HIV-1 virion. The interaction between A3G-NTD and RNA is not completely understood. The A3G-NTD is also recognized by HIV-1 Viral infectivity factor (Vif) and A3G-Vif binding leads to A3G degradation. Therefore, the A3G-Vif interaction is a target for the development of antiviral therapies that block HIV-1 replication. However, targeting the A3G-Vif interactions could disrupt the A3G-RNA interactions that are required for A3G's antiviral activity. To better understand A3G-RNA binding, we generated in silico docking models to simulate the RNA-binding propensity of A3G-NTD. We simulated the A3G-NTD residues with high RNA-binding propensity, experimentally validated our prediction by testing A3G-NTD mutations, and identified structural determinants of A3G-RNA binding. In addition, we found a novel amino acid residue, I26 responsible for RNA interaction. The new structural insights provided here will facilitate the design of pharmaceuticals that inhibit A3G-Vif interactions without negatively impacting A3G-RNA interactions.
Collapse
Affiliation(s)
- Hirofumi Fukuda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Songling Li
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, Philadelphia, PA, United States
| | - Jessica L Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kazuo Yamashita
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Anamaria D Sarca
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daron M Standley
- Systems Immunology Laboratory, WPI Research Center Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Taisuke Izumi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance. Heliyon 2019; 5:e01498. [PMID: 31025011 PMCID: PMC6475876 DOI: 10.1016/j.heliyon.2019.e01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023] Open
Abstract
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
Collapse
|
27
|
Salter JD, Polevoda B, Bennett RP, Smith HC. Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. Subcell Biochem 2019; 93:193-219. [PMID: 31939152 DOI: 10.1007/978-3-030-28151-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Bogdan Polevoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA. .,Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Mohammadzadeh N, Follack TB, Love RP, Stewart K, Sanche S, Chelico L. Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology 2018; 527:21-31. [PMID: 30448640 DOI: 10.1016/j.virol.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Kris Stewart
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan Infectious Disease Care Network, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Stephen Sanche
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
29
|
APOBEC3H Subcellular Localization Determinants Define Zipcode for Targeting HIV-1 for Restriction. Mol Cell Biol 2018; 38:MCB.00356-18. [PMID: 30224517 DOI: 10.1128/mcb.00356-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
APOBEC enzymes are DNA cytosine deaminases that normally serve as virus restriction factors, but several members, including APOBEC3H, also contribute to cancer mutagenesis. Despite their importance in multiple fields, little is known about cellular processes that regulate these DNA mutating enzymes. We show that APOBEC3H exists in two distinct subcellular compartments, cytoplasm and nucleolus, and that the structural determinants for each mechanism are genetically separable. First, native and fluorescently tagged APOBEC3Hs localize to these two compartments in multiple cell types. Second, a series of genetic, pharmacologic, and cell biological studies demonstrate active cytoplasmic and nucleolar retention mechanisms, whereas nuclear import and export occur through passive diffusion. Third, APOBEC3H cytoplasmic retention determinants relocalize APOBEC3A from a passive cell-wide state to the cytosol and, additionally, endow potent HIV-1 restriction activity. These results indicate that APOBEC3H has a structural zipcode for subcellular localization and selecting viral substrates for restriction.
Collapse
|
30
|
RNA-Mediated Dimerization of the Human Deoxycytidine Deaminase APOBEC3H Influences Enzyme Activity and Interaction with Nucleic Acids. J Mol Biol 2018; 430:4891-4907. [PMID: 30414963 DOI: 10.1016/j.jmb.2018.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 12/11/2022]
Abstract
Human APOBEC3H is a single-stranded (ss)DNA deoxycytidine deaminase that inhibits replication of retroelements and HIV-1 in CD4+ T cells. When aberrantly expressed in lung or breast tissue, APOBEC3H can contribute to cancer mutagenesis. These different activities are carried out by different haplotypes of APOBEC3H. Here we studied APOBEC3H haplotype II, which is able to restrict HIV-1 replication and retroelements. We determined how the dimerization mechanism, which is mediated by a double-stranded RNA molecule, influenced interactions with and activity on ssDNA. The data demonstrate that the cellular RNA bound by APOBEC3H does not completely inhibit enzyme activity, in contrast to other APOBEC family members. Despite degradation of the cellular RNA, an approximately 12-nt RNA remains bound to the enzyme, even in the presence of ssDNA. The RNA-mediated dimer is disrupted by mutating W115 on loop 7 or R175 and R176 on helix 6, but this also disrupts protein stability. In contrast, mutation of Y112 and Y113 on loop 7 also destabilizes RNA-mediated dimerization but results in a stable enzyme. Mutants unable to bind cellular RNA are unable to bind RNA oligonucleotides, oligomerize, and deaminate ssDNA in vitro, but ssDNA binding is retained. Comparison of A3H wild type and Y112A/Y113A by fluorescence polarization, single-molecule optical tweezer, and atomic force microscopy experiments demonstrates that RNA-mediated dimerization alters the interactions of A3H with ssDNA and other RNA molecules. Altogether, the biochemical analysis demonstrates that RNA binding is integral to APOBEC3H function.
Collapse
|
31
|
Smyth RP, Negroni M, Lever AM, Mak J, Kenyon JC. RNA Structure-A Neglected Puppet Master for the Evolution of Virus and Host Immunity. Front Immunol 2018; 9:2097. [PMID: 30283444 PMCID: PMC6156135 DOI: 10.3389/fimmu.2018.02097] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022] Open
Abstract
The central dogma of molecular biology describes the flow of genetic information from DNA to protein via an RNA intermediate. For many years, RNA has been considered simply as a messenger relaying information between DNA and proteins. Recent advances in next generation sequencing technology, bioinformatics, and non-coding RNA biology have highlighted the many important roles of RNA in virtually every biological process. Our understanding of RNA biology has been further enriched by a number of significant advances in probing RNA structures. It is now appreciated that many cellular and viral biological processes are highly dependent on specific RNA structures and/or sequences, and such reliance will undoubtedly impact on the evolution of both hosts and viruses. As a contribution to this special issue on host immunity and virus evolution, it is timely to consider how RNA sequences and structures could directly influence the co-evolution between hosts and viruses. In this manuscript, we begin by stating some of the basic principles of RNA structures, followed by describing some of the critical RNA structures in both viruses and hosts. More importantly, we highlight a number of available new tools to predict and to evaluate novel RNA structures, pointing out some of the limitations readers should be aware of in their own analyses.
Collapse
Affiliation(s)
- Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Matteo Negroni
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000, Strasbourg, France
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Homerton College, Cambridge, United Kingdom
| |
Collapse
|
32
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
33
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|
34
|
Bennett RP, Salter JD, Smith HC. A New Class of Antiretroviral Enabling Innate Immunity by Protecting APOBEC3 from HIV Vif-Dependent Degradation. Trends Mol Med 2018; 24:507-520. [PMID: 29609878 PMCID: PMC7362305 DOI: 10.1016/j.molmed.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
The infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery. This Review will examine the current state of development of Vif inhibitors that we believe to have therapeutic and functional cure potential.
Collapse
Affiliation(s)
- Ryan P Bennett
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Adolph MB, Love RP, Chelico L. Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infect Dis 2018; 4:224-238. [PMID: 29347817 DOI: 10.1021/acsinfecdis.7b00221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Apolipoprotein B mRNA editing complex (APOBEC) family of enzymes contains single-stranded polynucleotide cytidine deaminases. These enzymes catalyze the deamination of cytidine in RNA or single-stranded DNA, which forms uracil. From this 11 member enzyme family in humans, the deamination of single-stranded DNA by the seven APOBEC3 family members is considered here. The APOBEC3 family has many roles, such as restricting endogenous and exogenous retrovirus replication and retrotransposon insertion events and reducing DNA-induced inflammation. Similar to other APOBEC family members, the APOBEC3 enzymes are a double-edged sword that can catalyze deamination of cytosine in genomic DNA, which results in potential genomic instability due to the many mutagenic fates of uracil in DNA. Here, we discuss how these enzymes find their single-stranded DNA substrate in different biological contexts such as during human immunodeficiency virus (HIV) proviral DNA synthesis, retrotransposition of the LINE-1 element, and the "off-target" genomic DNA substrate. The enzymes must be able to efficiently deaminate transiently available single-stranded DNA during reverse transcription, replication, or transcription. Specific biochemical characteristics promote deamination in each situation to increase enzyme efficiency through processivity, rapid enzyme cycling between substrates, or oligomerization state. The use of biochemical data to clarify biological functions and alignment with cellular data is discussed. Models to bridge knowledge from biochemical, structural, and single molecule experiments are presented.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| |
Collapse
|
36
|
Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS. Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Sci Rep 2018; 8:3763. [PMID: 29491387 PMCID: PMC5830531 DOI: 10.1038/s41598-018-21955-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
APOBEC3H (A3H) is a member of the APOBEC3 subfamily of DNA cytosine deaminases that are important for innate immune defense and have been implicated in cancer biogenesis. To understand the structural basis for A3H biochemical function, we determined a high-resolution structure of human A3H and performed extensive biochemical analysis. The 2.49 Å crystal structure reveals a uniquely long C-terminal helix 6 (h6), a disrupted β5 strand of the canonical five-stranded β-sheet core, and a long loop 1 around the Zn-active center. Mutation of a loop 7 residue, W115, disrupted the RNA-mediated dimerization of A3H yielding an RNA-free monomeric form that still possessed nucleic acid binding and deaminase activity. A3H expressed in HEK293T cells showed RNA dependent HMW complex formation and RNase A-dependent deaminase activity. A3H has a highly positively charged surface surrounding the Zn-active center, and multiple positively charged residues within this charged surface play an important role in the RNA-mediated HMW formation and deaminase inhibition. Furthermore, these positively charged residues affect subcellular localization of A3H between the nucleus and cytosol. Finally, we have identified multiple residues of loop 1 and 7 that contribute to the overall deaminase activity and the methylcytosine selectivity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck & Co., Inc, West Point, PA, USA
| | - Shu-Xing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
37
|
The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Mol Cell 2017; 69:75-86.e9. [PMID: 29290613 DOI: 10.1016/j.molcel.2017.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 12/13/2017] [Indexed: 01/23/2023]
Abstract
Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.
Collapse
|
38
|
Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L. Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS CENTRAL SCIENCE 2017; 3:1180-1188. [PMID: 29202020 PMCID: PMC5704289 DOI: 10.1021/acscentsci.7b00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 05/29/2023]
Abstract
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecular dynamics simulations, based on the available X-ray and NMR structural data for the two protein domains. The model revealed a large-scale dynamics of the A3G monomer, as the two A3G domains can assume compact forms or extended dumbbell type forms with domains visibly separated from each other. To validate the A3G model, we performed time-lapse high-speed atomic force microscopy (HS-AFM) experiments enabling us to get images of a fully hydrated A3G and to directly visualize its dynamics. HS-AFM confirmed that A3G exists in two forms, a globular form (∼84% of the time) and a dumbbell form (∼16% of the time), and can dynamically switch from one form to the other. The obtained HS-AFM results are in line with the computer modeling, which demonstrates a similar distribution between two forms. Furthermore, our simulations capture the complete process of A3G switching from the DNA-bound state to the closed state. The revealed dynamic nature of monomeric A3G could aid in target recognition including scanning for cytosine locations along the DNA strand and in interactions with viral RNA during packaging into HIV-1 particles.
Collapse
Affiliation(s)
- Suresh Gorle
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Yangang Pan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luda S. Shlyakhtenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Reuben S. Harris
- Department
of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular
Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Howard
Hughes Medical Institute, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuri L. Lyubchenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Lela Vuković
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| |
Collapse
|
39
|
Bohn JA, Thummar K, York A, Raymond A, Brown WC, Bieniasz PD, Hatziioannou T, Smith JL. APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. Nat Commun 2017; 8:1021. [PMID: 29044109 PMCID: PMC5647330 DOI: 10.1038/s41467-017-01309-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/06/2017] [Indexed: 11/08/2022] Open
Abstract
The APOBEC3 family of cytidine deaminases cause lethal hypermutation of retroviruses via deamination of newly reverse-transcribed viral DNA. Their ability to bind RNA is essential for virion infiltration and antiviral activity, yet the mechanisms of viral RNA recognition are unknown. By screening naturally occurring, polymorphic, non-human primate APOBEC3H variants for biological and crystallization properties, we obtained a 2.24-Å crystal structure of pig-tailed macaque APOBEC3H with bound RNA. Here, we report that APOBEC3H forms a dimer around a short RNA duplex and, despite the bound RNA, has potent cytidine deaminase activity. The structure reveals an unusual RNA-binding mode in which two APOBEC3H molecules at opposite ends of a seven-base-pair duplex interact extensively with both RNA strands, but form no protein-protein contacts. CLIP-seq analysis revealed that APOBEC3H preferentially binds to sequences in the viral genome predicted to contain duplexes, a property that may facilitate both virion incorporation and catalytic activity.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keyur Thummar
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Ashley York
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Raymond
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - W Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | | | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
40
|
Polevoda B, Joseph R, Friedman AE, Bennett RP, Greiner R, De Zoysa T, Stewart RA, Smith HC. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J Biol Chem 2017; 292:8642-8656. [PMID: 28381554 DOI: 10.1074/jbc.m116.767889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/04/2017] [Indexed: 12/23/2022] Open
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity. Bulk RNA and substrate ssDNA bind to the same three A3G tryptic peptides (amino acids 181-194, 314-320, and 345-374) that form parts of a continuously exposed protein surface extending from the catalytic domain in the C terminus of A3G to its N terminus. We show here that the A3G tyrosines 181 and 315 directly cross-linked ssDNA. Binding experiments showed that a Y315A mutation alone significantly reduced A3G binding to both ssDNA and RNA, whereas Y181A and Y182A mutations only moderately affected A3G nucleic acid binding. Consistent with these findings, the Y315A mutant exhibited little to no deaminase activity in an Escherichia coli DNA mutator reporter, whereas Y181A and Y182A mutants retained ∼50% of wild-type A3G activity. The Y315A mutant also showed a markedly reduced ability to assemble into viral particles and had reduced antiviral activity. In uninfected cells, the impaired RNA-binding capacity of Y315A was evident by a shift of A3G from high-molecular-mass ribonucleoprotein complexes to low-molecular-mass complexes. We conclude that Tyr-315 is essential for coordinating ssDNA interaction with or entry to the deaminase domain and hypothesize that RNA bound to Tyr-315 may be sufficient to competitively inhibit ssDNA deaminase-dependent antiviral activity.
Collapse
Affiliation(s)
- Bogdan Polevoda
- From the Departments of Biochemistry and Biophysics and.,Center for RNA Biology, and
| | | | | | | | | | | | | | - Harold C Smith
- From the Departments of Biochemistry and Biophysics and .,Center for RNA Biology, and.,OyaGen, Inc., Rochester, New York 14623.,Center for AIDS Research, University of Rochester Medical Center, Rochester, New York 14642 and
| |
Collapse
|
41
|
Pan Y, Sun Z, Maiti A, Kanai T, Matsuo H, Li M, Harris RS, Shlyakhtenko LS, Lyubchenko YL. Nanoscale Characterization of Interaction of APOBEC3G with RNA. Biochemistry 2017; 56:1473-1481. [PMID: 28029777 DOI: 10.1021/acs.biochem.6b01189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of the HIV-1 virus in the absence of viral infectivity factor (Vif). The molecular mechanism of A3G antiviral activity is primarily attributed to deamination of single-stranded DNA (ssDNA); however, the nondeamination mechanism also contributes to HIV-1 restriction. The interaction of A3G with ssDNA and RNA is required for its antiviral activity. Here we used atomic force microscopy to directly visualize A3G-RNA and A3G-ssDNA complexes and compare them to each other. Our results showed that A3G in A3G-RNA complexes exists primarily in monomeric-dimeric states, similar to its stoichiometry in complexes with ssDNA. New A3G-RNA complexes in which A3G binds to two RNA molecules were identified. These data suggest the existence of two separate RNA binding sites on A3G. Such complexes were not observed with ssDNA substrates. Time-lapse high-speed atomic force microscopy was applied to characterize the dynamics of the complexes. The data revealed that the two RNA binding sites have different affinities for A3G. On the basis of the obtained results, a model for the interaction of A3G with RNA is proposed.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Atanu Maiti
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Tapan Kanai
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Hiroshi Matsuo
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. , Advanced Technology Research Facility, 8560 Progress Drive, Frederick, Maryland 21702, United States
| | - Ming Li
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, United States.,Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Luda S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, WSH, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
42
|
Ara A, Love RP, Follack TB, Ahmed KA, Adolph MB, Chelico L. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G. J Virol 2017; 91:e02230-16. [PMID: 27881650 PMCID: PMC5244329 DOI: 10.1128/jvi.02230-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4+ T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. IMPORTANCE The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif.
Collapse
Affiliation(s)
- Anjuman Ara
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Khawaja A Ahmed
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Madison B Adolph
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
43
|
Okada A, Iwatani Y. APOBEC3G-Mediated G-to-A Hypermutation of the HIV-1 Genome: The Missing Link in Antiviral Molecular Mechanisms. Front Microbiol 2016; 7:2027. [PMID: 28066353 PMCID: PMC5165236 DOI: 10.3389/fmicb.2016.02027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
APOBEC3G (A3G) is a member of the cellular polynucleotide cytidine deaminases, which catalyze the deamination of cytosine (dC) to uracil (dU) in single-stranded DNA. These enzymes potently inhibit the replication of a variety of retroviruses and retrotransposons, including HIV-1. A3G is incorporated into vif-deficient HIV-1 virions and targets viral reverse transcripts, particularly minus-stranded DNA products, in newly infected cells. It is well established that the enzymatic activity of A3G is closely correlated with the potential to greatly inhibit HIV-1 replication in the absence of Vif. However, the details of the underlying molecular mechanisms are not fully understood. One potential mechanism of A3G antiviral activity is that the A3G-dependent deamination may trigger degradation of the dU-containing reverse transcripts by cellular uracil DNA glycosylases (UDGs). More recently, another mechanism has been suggested, in which the virion-incorporated A3G generates lethal levels of the G-to-A hypermutation in the viral DNA genome, thus potentially driving the viruses into “error catastrophe” mode. In this mini review article, we summarize the deaminase-dependent and deaminase-independent molecular mechanisms of A3G and discuss how A3G-mediated deamination is linked to antiviral mechanisms.
Collapse
Affiliation(s)
- Ayaka Okada
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Microbiology and Immunology, Laboratory of Infectious Diseases, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of AIDS Research, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
44
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|