1
|
Hainzl T, Scortti M, Lindgren C, Grundström C, Krypotou E, Vázquez-Boland JA, Sauer-Eriksson AE. Structural basis of promiscuous inhibition of Listeria virulence activator PrfA by oligopeptides. Cell Rep 2025; 44:115290. [PMID: 39970044 DOI: 10.1016/j.celrep.2025.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/20/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
The facultative pathogen Listeria monocytogenes uses a master regulator, PrfA, to tightly control the fitness-costly expression of its virulence factors. We found that PrfA activity is repressed via competitive occupancy of the binding site for the PrfA-activating cofactor, glutathione, by exogenous nutritional oligopeptides. The inhibitory peptides show different sequence and physicochemical properties, but how such a wide variety of oligopeptides can bind PrfA was unclear. Using crystal structure analysis of PrfA complexed with inhibitory tri- and tetrapeptides, we show here that the binding promiscuity is due to the ability of PrfA β5 in the glutathione-binding inter-domain tunnel to establish parallel or antiparallel β sheet-like interactions with the peptide backbone. Spacious tunnel pockets provide additional flexibility for unspecific peptide accommodation while providing selectivity for hydrophobic residues. Hydrophobic contributions from two adjacent peptide residues appear to be critical for efficient PrfA inhibitory binding. In contrast to glutathione, peptide binding prevents the conformational change required for the correct positioning of the DNA-binding helix-turn-helix motifs of PrfA, effectively inhibiting virulence gene expression.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Mariela Scortti
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Cecilia Lindgren
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Christin Grundström
- Department of Chemistry and Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Emilia Krypotou
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - José A Vázquez-Boland
- Microbial Pathogenomics Group, Edinburgh Medical School (Biomedical Sciences), Edinburgh BioQuarter, IRR Bldg. South, University of Edinburgh, Edinburgh EH16 4UU, UK.
| | | |
Collapse
|
2
|
Richardson JD, Guo E, Wyllie RM, Jensen P, Dawid S. The pneumococcal bacteriocin streptococcin B is produced as part of the early competence cascade and promotes intraspecies competition. mBio 2025; 16:e0299324. [PMID: 39688419 PMCID: PMC11796350 DOI: 10.1128/mbio.02993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Streptococcus pneumoniae is an important human pathogen that normally resides in the human nasopharynx. Competence-mediated bacteriocin expression by S. pneumoniae plays a major role in both the establishment and persistence of colonization on this polymicrobial surface. Over 20 distinct bacteriocin loci have been identified in pneumococcal genomes, but only a small number have been characterized phenotypically. In this work, we demonstrate that three-fourths of S. pneumoniae strains contain a highly conserved scb locus that encodes an active lactococcin 972-like bacteriocin called streptococcin B. In these backgrounds, the scbABC locus is part of the early competence cascade due to a ComE binding site in the promoter region. Streptococcin B producing strains target both members of the population that have failed to activate competence and the 25% of the population that carry a naturally occurring deletion of the ComE binding site and the functional bacteriocin gene. The ComR-type regulator found directly upstream of the scb locus in S. pneumoniae strains can activate scb expression independent of the presence of the ComE binding site but only when stimulated by a peptide that is encoded in the scb locus of Streptococcus pseudopneumoniae, a closely related bacterium that also inhabits the human nasopharynx. Given the co-regulation with competence and the phenotypic confirmation of activity, streptococcin B represents a previously unrecognized fratricide effector that gives producing strains an additional advantage over the naturally occurring deleted strains during colonization. IMPORTANCE Streptococcus pneumoniae is a common cause of pneumonia, meningitis, sinusitis, and otitis media. In order to successfully colonize humans, a prerequisite to the development of invasive disease, S. pneumoniae must compete with other bacterial inhabitants of the nasal surface for space and nutrients. Bacteriocins are small antimicrobial peptides produced by bacteria that typically target neighboring bacteria by disruption of the cell surface. S. pnuemoniae encodes a large number of potential bacteriocin, but, for most, their role in competitive interactions has not been defined. This work demonstrates that isolates that produce the bacteriocin streptococcin B have an advantage over non-producers. These observations contribute to our understanding of the competitive interactions that precede the development of S. pneumoniae disease.
Collapse
Affiliation(s)
- J. D. Richardson
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan M. Wyllie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul Jensen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Suzanne Dawid
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Muna T, Rutbeek N, Horne J, Lao Y, Krokhin O, Prehna G. The phage protein paratox is a multifunctional metabolic regulator of Streptococcus. Nucleic Acids Res 2025; 53:gkae1200. [PMID: 39673798 PMCID: PMC11754733 DOI: 10.1093/nar/gkae1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a commensal bacteria and human pathogen. Central to GAS pathogenesis is the presence of prophage encoded virulence genes. The conserved phage gene for the protein paratox (Prx) is genetically linked to virulence genes, but the reason for this linkage is unknown. Prx inhibits GAS quorum sensing and natural competence by binding the transcription factor ComR. However, inhibiting ComR does not explain the virulence gene linkage. To address this, we took a mass spectrometry approach to search for other Prx interaction partners. The data demonstrates that Prx binds numerous DNA-binding proteins and transcriptional regulators. We show binding of Prx in vitro with the GAS protein Esub1 (SpyM3_0890) and the phage protein JM3 (SpyM3_1246). An Esub1:Prx complex X-ray crystal structure reveals that Esub1 and ComR possess a conserved Prx-binding helix. Computational modelling predicts that the Prx-binding helix is present in several, but not all, binding partners. Namely, JM3 lacks the Prx-binding helix. As Prx is conformationally dynamic, this suggests partner-dependent binding modes. Overall, Prx acts as a metabolic regulator of GAS to maintain the phage genome. As such, Prx maybe a direct contributor to the pathogenic conversion of GAS.
Collapse
Affiliation(s)
- Tasneem Hassan Muna
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Nicole R Rutbeek
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Julia Horne
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Ying W Lao
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| |
Collapse
|
4
|
Gardan R, Honvo-Houeto E, Mézange C, Maillot NJ, Balvay A, Rabot S, Bermúdez-Humarán LG, Langella P, Monnet V, Juillard V. Use of Rgg quorum-sensing machinery to create an innovative recombinant protein expression system in Streptococcus thermophilus. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001487. [PMID: 39302176 PMCID: PMC11414475 DOI: 10.1099/mic.0.001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024]
Abstract
Streptococcus thermophilus holds promise as a chassis for producing and secreting heterologous proteins. Used for thousands of years to ferment milk, this species has generally recognized as safe (GRAS) status in the USA and qualified presumption of safety (QPS) status in Europe. In addition, it can be easily genetically modified thanks to its natural competence, and it secretes very few endogenous proteins, which means less downstream processing is needed to purify target proteins, reducing costs. Extracellular degradation of heterologous proteins can be eliminated by introducing mutations that inactivate the genes encoding the bacterium's three major surface proteases. Here, we constructed an inducible expression system that utilizes a peptide pheromone (SHP1358) and a transcriptional regulator (Rgg1358) involved in quorum-sensing regulation. We explored the functionality of a complete version of the system, in which the inducer is produced by the bacterium itself, by synthesizing a luciferase reporter protein. This complete version was assessed with bacteria grown in a chemically defined medium but also in vivo, in the faeces of germ-free mice. We also tested an incomplete version, in which the inducer had to be added to the culture medium, by synthesizing luciferase and a secreted form of elafin, a human protein with therapeutic properties. Our results show that, in our system, protein production can be modulated by employing different concentrations of the SHP1358 inducer or other SHPs with closed amino acid sequences. We also constructed a genetic background in which all system leakiness was eliminated. In conclusion, with this new inducible expression system, we have added to the set of tools currently used to produce secreted proteins in S. thermophilus, whose myriad applications include the delivery of therapeutic peptides or proteins.
Collapse
Affiliation(s)
- Rozenn Gardan
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Edith Honvo-Houeto
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Mézange
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Aurélie Balvay
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Véronique Monnet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Vincent Juillard
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
5
|
Huang J, Xue S, Xie Y, Teixeira AP, Fussenegger M. Ultrashort-Peptide-Responsive Gene Switches for Regulation of Therapeutic Protein Expression in Mammalian Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309411. [PMID: 38741284 PMCID: PMC11267282 DOI: 10.1002/advs.202309411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Indexed: 05/16/2024]
Abstract
Despite the array of mammalian transgene switches available for regulating therapeutic protein expression in response to small molecules or physical stimuli, issues remain, including cytotoxicity of chemical inducers and limited biocompatibility of physical cues. This study introduces gene switches driven by short peptides comprising eight or fewer amino acid residues. Utilizing a competence regulator (ComR) and sigma factor X-inducing peptide (XIP) from Streptococcus vestibularis as the receptor and inducer, respectively, this study develops two strategies for a peptide-activated transgene control system. The first strategy involves fusing ComR with a transactivation domain and utilizes ComR-dependent synthetic promoters to drive expression of the gene-of-interest, activated by XIP, thereby confirming its membrane penetrability and intracellular functionality. The second strategy features an orthogonal synthetic receptor exposing ComR extracellularly (ComREXTRA), greatly increasing sensitivity with exceptional responsiveness to short peptides. In a proof-of-concept study, peptides are administered to type-1 diabetic mice with microencapsulated engineered human cells expressing ComREXTRA for control of insulin expression, restoring normoglycemia. It is envisioned that this system will encourage the development of short peptide drugs and promote the introduction of non-toxic, orthogonal, and highly biocompatible personalized biopharmaceuticals for gene- and cell-based therapies.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Present address:
Key Laboratory of Growth Regulation and Translational Research of Zhejiang ProvinceSchool of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Yu‐Qing Xie
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
6
|
Brasino M, Wagnell E, Ozdemir ES, Ranganathan S, Merritt J. Mutation of the peptide-regulated transcription factor ComR for amidated peptide specificity and heterologous function in Lactiplantibacillus plantarum WCFS1. Microbiol Spectr 2024; 12:e0051724. [PMID: 38687019 PMCID: PMC11237612 DOI: 10.1128/spectrum.00517-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There is a growing interest in the use of probiotic bacteria as biosensors for the detection of disease. However, there is a lack of bacterial receptors developed for specific disease biomarkers. Here, we have investigated the use of the peptide-regulated transcription factor ComR from Streptococcus spp. for specific peptide biomarker detection. ComR exhibits a number of attractive features that are potentially exploitable to create a biomolecular switch for engineered biosensor circuitry within the probiotic organism Lactiplantibacillus plantarum WCFS1. Through iterative design-build-test cycles, we developed a genomically integrated, ComR-based biosensor circuit that allowed WCFS1 to detect low nanomolar concentrations of ComR's cognate peptide XIP. By screening a library of ComR proteins with mutant residues substituted at the K100 position, we identified mutations that increased the specificity of ComR toward an amidated version of its cognate peptide, demonstrating the potential for ComR to detect this important class of biomarker.IMPORTANCEUsing bacteria to detect disease is an exciting possibility under active study. Detecting extracellular peptides with specific amino acid sequences would be particularly useful as these are important markers of health and disease (biomarkers). In this work, we show that a probiotic bacteria (Lactiplantibacillus plantarum) can be genetically engineered to detect specific extracellular peptides using the protein ComR from Streptococcus bacteria. In its natural form, ComR allowed the probiotic bacteria to detect a specific peptide, XIP. We then modified XIP to be more like the peptide biomarkers found in humans and engineered ComR so that it activated with this modified XIP and not the original XIP. This newly engineered ComR also worked in the probiotic bacteria, as expected. This suggests that with additional engineering, ComR might be able to activate with human peptide biomarkers and be used by genetically engineered probiotic bacteria to better detect disease.
Collapse
Affiliation(s)
- Michael Brasino
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Eli Wagnell
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - E. Sila Ozdemir
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Srivathsan Ranganathan
- Cancer Early Detection Advanced Research (CEDAR) Center, Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Asakereh I, Rutbeek NR, Singh M, Davidson D, Prehna G, Khajehpour M. The Streptococcus phage protein paratox is an intrinsically disordered protein. Protein Sci 2024; 33:e5037. [PMID: 38801244 PMCID: PMC11129628 DOI: 10.1002/pro.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR. However, solution-state biophysical measurements suggested that Prx may be conformationally dynamic. To address this discrepancy, we investigated the stability and dynamic properties of Prx in solution using circular dichroism, nuclear magnetic resonance, and several fluorescence-based protein folding assays. Our work shows that under dilute buffer conditions Prx is intrinsically disordered. We also show that the addition of kosmotropic salts or protein stabilizing osmolytes induces Prx folding. However, the solute stabilized fold is different from the conformation Prx adopts when it is bound to ComR. Furthermore, we have characterized Prx folding thermodynamics and folding kinetics through steady-state fluorescence and stopped flow kinetic measurements. Our results show that Prx is a highly dynamic protein in dilute solution, folding and refolding within the 10 ms timescale. Overall, our results demonstrate that the streptococcal phage protein Prx is an intrinsically disordered protein in a two-state equilibrium with a solute-stabilized folded form. Furthermore, the solute-stabilized fold is likely the predominant form of Prx in a solute-crowded bacterial cell. Finally, our work suggests that Prx binds and inhibits ComR, and thus quorum sensing in Streptococcus, by a combination of conformational selection and induced-fit binding mechanisms.
Collapse
Affiliation(s)
- Iman Asakereh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Nicole R. Rutbeek
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Manvir Singh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - David Davidson
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Gerd Prehna
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | | |
Collapse
|
8
|
Penner TV, Lorente Cobo N, Patel DT, Patel DH, Savchenko A, Brassinga AKC, Prehna G. Structural characterization of the Sel1-like repeat protein LceB from Legionella pneumophila. Protein Sci 2024; 33:e4889. [PMID: 38160319 PMCID: PMC10868440 DOI: 10.1002/pro.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Legionella are freshwater Gram-negative bacteria that in their normal environment infect protozoa. However, this adaptation also allows Legionella to infect human alveolar macrophages and cause pneumonia. Central to Legionella pathogenesis are more than 330 secreted effectors, of which there are nine core effectors that are conserved in all pathogenic species. Despite their importance, the biochemical function of several core effectors remains unclear. To address this, we have taken a structural approach to characterize the core effector of unknown function LceB, or Lpg1356, from Legionella pneumophila. Here, we solve an X-ray crystal structure of LceB using an AlphaFold model for molecular replacement. The experimental structure shows that LceB adopts a Sel1-like repeat (SLR) fold as predicted. However, the crystal structure captured multiple conformations of LceB, all of which differed from the AlphaFold model. A comparison of the predicted model and the experimental models suggests that LceB is highly flexible in solution. Additionally, the molecular analysis of LceB using its close structural homologs reveals sequence and structural motifs of known biochemical function. Specifically, LceB harbors a repeated KAAEQG motif that both stabilizes the SLR fold and is known to participate in protein-protein interactions with eukaryotic host proteins. We also observe that LceB forms several higher-order oligomers in solution. Overall, our results have revealed that LceB has conformational flexibility, self-associates, and contains a molecular surface for binding a target host-cell protein. Additionally, our data provides structural insights into the SLR family of proteins that remain poorly studied.
Collapse
Affiliation(s)
- Tiffany V Penner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Guo M, Renshaw CP, Mull RW, Tal-Gan Y. Noncanonical Streptococcus sanguinis ComCDE circuitry integrates environmental cues in transformation outcome decision. Cell Chem Biol 2024; 31:298-311.e6. [PMID: 37832551 PMCID: PMC10922391 DOI: 10.1016/j.chembiol.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Natural competence is the principal driver of streptococcal evolution. While acquisition of new traits could facilitate rapid fitness improvement for bacteria, entry into the competent state is a highly orchestrated event, involving an interplay between various pathways. We present a new type of competence-predation coordination mechanism in Streptococcus sanguinis. Unlike other streptococci that mediate competence through the ComABCDE regulon, several key components are missing in the S. sanguinis ComCDE circuitry. We assembled two synthetic biology devices linking competence-stimulating peptide (CSP) cleavage and export with a quantifiable readout to unravel the unique features of the S. sanguinis circuitry. Our results revealed the ComC precursor cleavage pattern and the two host ABC transporters implicated in the export of the S. sanguinis CSP. Moreover, we discovered a ComCDE-dependent bacteriocin locus. Overall, this study presents a mechanism for commensal streptococci to maximize transformation outcome in a fluid environment through extensive circuitry rewiring.
Collapse
Affiliation(s)
- Mingzhe Guo
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Clay P Renshaw
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
11
|
Rued BE, Federle MJ. The ComRS-SigX Pathway Regulates Natural Transformation in Streptococcus ferus. J Bacteriol 2023; 205:e0008923. [PMID: 37195233 PMCID: PMC10294618 DOI: 10.1128/jb.00089-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
Affiliation(s)
- Britta E. Rued
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Rued BE, Federle MJ. The ComRS-SigX pathway regulates natural transformation in Streptococcus ferus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531454. [PMID: 36945404 PMCID: PMC10028898 DOI: 10.1101/2023.03.06.531454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans . S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX ), whose expression is induced by two types of peptide signals: CSP ( c ompetence s timulating p eptide, encoded by comC ) and XIP ( sig X -inducing p eptide, encoded by comS ). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus , but not homologs of S. mutans blpRH (also known as comDE ). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing competence-inducing peptide (XIP), akin to that of S. mutans , and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans , implying that crosstalk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
|
13
|
A Genome-Wide CRISPR Interference Screen Reveals an StkP-Mediated Connection between Cell Wall Integrity and Competence in Streptococcus salivarius. mSystems 2022; 7:e0073522. [PMID: 36342134 PMCID: PMC9765292 DOI: 10.1128/msystems.00735-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Competence is one of the most efficient bacterial evolutionary and adaptative strategies by synchronizing production of antibacterial compounds and integration of DNA released by dead cells. In most streptococci, this tactic is orchestrated by the ComRS system, a pheromone communication device providing a short time window of activation in which only part of the population is responsive. Understanding how this developmental process integrates multiple inputs to fine-tune the adequate response is a long-standing question. However, essential genes involved in the regulation of ComRS have been challenging to study. In this work, we built a conditional mutant library using CRISPR interference and performed three complementary screens to investigate competence genetic regulation in the human commensal Streptococcus salivarius. We show that initiation of competence increases upon cell wall impairment, suggesting a connection between cell envelope stress and competence activation. Notably, we report a key role for StkP, a serine-threonine kinase known to regulate cell wall homeostasis. We show that StkP controls competence by a mechanism that reacts to peptidoglycan fragments. Together, our data suggest a key cell wall sensing mechanism coupling competence to cell envelope integrity. IMPORTANCE Survival of human commensal streptococci in the digestive tract requires efficient strategies which must be tightly and collectively controlled for responding to competitive pressure and drastic environmental changes. In this context, the autocrine signaling system ComRS controlling competence for natural transformation and predation in salivarius streptococci could be seen as a multi-input device integrating a variety of environmental stimuli. In this work, we revealed novel positive and negative competence modulators by using a genome-wide CRISPR interference strategy. Notably, we highlighted an unexpected connection between bacterial envelope integrity and competence activation that involves several cell wall sensors. Together, these results showcase how commensal streptococci can fine-tune the pheromone-based competence system by responding to multiple inputs affecting their physiological status in order to calibrate an appropriate collective behavior.
Collapse
|
14
|
Exploiting Conserved Quorum Sensing Signals in Streptococcus mutans and Streptococcus pneumoniae. Microorganisms 2022; 10:microorganisms10122386. [PMID: 36557639 PMCID: PMC9785397 DOI: 10.3390/microorganisms10122386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial species of the Streptococcus genera are considered either commensal bacteria or potential pathogens, according to their metabolic evolution and production of quorum sensing (QS)-controlled virulence factors. S. mutans, in particular, has become one of the best-studied examples of bacteria that are able to get along or cheat commensal species, even of the same genera. S. mutans and S. pneumoniae share homolog QS pathways and a competence stimulating peptide (CSP) for regulating bacteriocin production. Intriguingly, the abundance of S. pneumoniae and S. mutans alternates in complex microbial communities, thus opening the role for the fratricide communication of homolog QS systems. Since the inhibition of the QS has been proposed in treating bacterial infections, in this study, we designed and synthesized analogs of S. pneumoniae CSP with precise residual modifications. We reported that S. pneumoniae CSP analogs reduced the expression of genes involved in the QS of S. mutans and biofilm formation without affecting bacterial growth. The CSP analogs inhibited bacteriocin production in S. mutans, as reported by co-cultures with commensal bacteria of the oral cavity. The peptide CSP1AA, bearing substitutions in the residues involved in QS receptor recognition and activation, reported the most significant quorum-quenching activities. Our findings provide new insights into specific chemical drivers in the CSP sequences controlling the interconnection between S. mutans and S. pneumoniae. We think that the results reported in this study open the way for new therapeutic interventions in controlling the virulence factors in complex microbial communities such as the oral microbiota.
Collapse
|
15
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
16
|
Knoops A, Ledesma-García L, Waegemans A, Lamontagne M, Decat B, Degand H, Morsomme P, Soumillion P, Delvigne F, Hols P. Competence shut-off by intracellular pheromone degradation in salivarius streptococci. PLoS Genet 2022; 18:e1010198. [PMID: 35613247 PMCID: PMC9173638 DOI: 10.1371/journal.pgen.1010198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci. The human oral cavity is one of the most challenging ecological niches for bacteria. In this ecosystem, hundreds of species compete for food and survival in a physicochemical fluctuating environment. To outcompete, Streptococcus salivarius has developed a particular physiological state called competence during which antibacterial compounds are produced together with the uptake of external DNA that can be integrated in its own genome. Although this strategy is of main importance for evolution and adaptation, its short-term cost in terms of energy and metabolism reprogramming are important. To restrain competence activation to a sharp window of time, bacteria use a process known as shut-off. Although described in some species, this process is still mostly unknown in streptococci. In this work, we used predictive mathematical simulations to infer the role of a pheromone-degradation machinery involved in the exit from competence. We confirmed experimentally this mechanism by identifying PepF as a competence-induced oligoendopeptidase with a specific activity towards the XIP pheromone. Importantly, we show that this peptidase is not only shutting down competence but also preventing its development under inappropriate conditions.
Collapse
Affiliation(s)
- Adrien Knoops
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Laura Ledesma-García
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Alexandra Waegemans
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Morgane Lamontagne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Baptiste Decat
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Research and Teaching Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Pascal Hols
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- * E-mail:
| |
Collapse
|
17
|
The CovRS Environmental Sensor Directly Controls the ComRS Signaling System To Orchestrate Competence Bimodality in Salivarius Streptococci. mBio 2022; 13:e0312521. [PMID: 35089064 PMCID: PMC8725580 DOI: 10.1128/mbio.03125-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, phenotypic heterogeneity in an isogenic population compensates for the lack of genetic diversity and allows concomitant multiple survival strategies when choosing only one is too risky. This powerful tactic is exploited for competence development in streptococci where only a subset of the community triggers the pheromone signaling system ComR-ComS, resulting in a bimodal activation. However, the regulatory cascade and the underlying mechanisms of this puzzling behavior remained partially understood. Here, we show that CovRS, a well-described virulence regulatory system in pathogenic streptococci, directly controls the ComRS system to generate bimodality in the gut commensal Streptococcus salivarius and the closely related species Streptococcus thermophilus. Using single-cell analysis of fluorescent reporter strains together with regulatory mutants, we revealed that the intracellular concentration of ComR determines the proportion of competent cells in the population. We also showed that this bimodal activation requires a functional positive-feedback loop acting on ComS production, as well as its exportation and reinternalization via dedicated permeases. As the intracellular ComR concentration is critical in this process, we hypothesized that an environmental sensor could control its abundance. We systematically inactivated all two-component systems and identified CovRS as a direct repression system of comR expression. Notably, we showed that the system transduces its negative regulation through CovR binding to multiple sites in the comR promoter region. Since CovRS integrates environmental stimuli, we suggest that it is the missing piece of the puzzle that connects environmental conditions to (bimodal) competence activation in salivarius streptococci. IMPORTANCE Combining production of antibacterial compounds and uptake of DNA material released by dead cells, competence is one of the most efficient survival strategies in streptococci. Yet, this powerful tactic is energy consuming and reprograms the metabolism to such an extent that cell proliferation is transiently impaired. To circumvent this drawback, competence activation is restricted to a subpopulation, a process known as bimodality. In this work, we explored this phenomenon in salivarius streptococci and elucidated the molecular mechanisms governing cell fate. We also show that an environmental sensor controlling virulence in pathogenic streptococci is diverted to control competence in commensal streptococci. Together, those results showcase how bacteria can sense and transmit external stimuli to complex communication devices for fine-tuning collective behaviors.
Collapse
|
18
|
Di Giacomo S, Toussaint F, Ledesma-García L, Knoops A, Vande Capelle F, Fremaux C, Horvath P, Ladrière JM, Ait-Abderrahim H, Hols P, Mignolet J. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6543703. [PMID: 35254446 PMCID: PMC9300618 DOI: 10.1093/femsre/fuac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
Collapse
Affiliation(s)
- Stefano Di Giacomo
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Frédéric Toussaint
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Adrien Knoops
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Florence Vande Capelle
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5, (box L7.07.06), B-1348 Louvain-la-Neuve, Belgium
| | - Christophe Fremaux
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Philippe Horvath
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | - Jean-Marc Ladrière
- Health and Biosciences, IFF Danisco France SAS, CS 10010, F-86220 Dangé-Saint-Romain, France
| | | | - Pascal Hols
- Corresponding author: Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud 4-5 (box L7.07.06), B-1348 Louvain-La-Neuve, Belgium. Tel: +3210478896; Fax: +3210472825; E-mail:
| | | |
Collapse
|
19
|
Coevolution of the bacterial pheromone ComS and sensor ComR fine-tunes natural transformation in streptococci. J Biol Chem 2021; 297:101346. [PMID: 34715127 PMCID: PMC8605241 DOI: 10.1016/j.jbc.2021.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Competence for natural transformation extensively contributes to genome evolution and the rapid adaptability of bacteria dwelling in challenging environments. In most streptococci, this process is tightly controlled by the ComRS signaling system, which is activated through the direct interaction between the (R)RNPP-type ComR sensor and XIP pheromone (mature ComS). The overall mechanism of activation and the basis of pheromone selectivity have been previously reported in Gram-positive salivarius streptococci; however, detailed 3D-remodeling of ComR leading up to its activation remains only partially understood. Here, we identified using a semirational mutagenesis approach two residues in the pheromone XIP that bolster ComR sensor activation by interacting with two aromatic residues of its XIP-binding pocket. Random and targeted mutagenesis of ComR revealed that the interplay between these four residues remodels a network of aromatic–aromatic interactions involved in relaxing the sequestration of the DNA-binding domain. Based on these data, we propose a comprehensive model for ComR activation based on two major conformational changes of the XIP-binding domain. Notably, the stimulation of this newly identified trigger point by a single XIP substitution resulted in higher competence and enhanced transformability, suggesting that pheromone-sensor coevolution counter-selects for hyperactive systems in order to maintain a trade-off between competence and bacterial fitness. Overall, this study sheds new light on the ComRS activation mechanism and how it could be exploited for biotechnological and biomedical purposes.
Collapse
|
20
|
Rutbeek NR, Rezasoltani H, Patel TR, Khajehpour M, Prehna G. Molecular mechanism of quorum sensing inhibition in Streptococcus by the phage protein paratox. J Biol Chem 2021; 297:100992. [PMID: 34298018 PMCID: PMC8383118 DOI: 10.1016/j.jbc.2021.100992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus, is a Gram-positive bacterium that can be both a human commensal and a pathogen. Central to this dichotomy are temperate bacteriophages that incorporate into the bacterial genome as prophages. These genetic elements encode both the phage proteins and the toxins harmful to the human host. One such conserved phage protein, paratox (Prx), is always found encoded adjacent to the toxin genes, and this linkage is preserved during all stages of the phage life cycle. Within S. pyogenes, Prx functions to inhibit the quorum-sensing receptor-signal pair ComRS, the master regulator of natural competence, or the ability to uptake endogenous DNA. However, the mechanism by which Prx directly binds and inhibits the receptor ComR is unknown. To understand how Prx inhibits ComR at the molecular level, we pursued an X-ray crystal structure of Prx bound to ComR. The structural data supported by solution X-ray scattering data demonstrate that Prx induces a conformational change in ComR to directly access its DNA-binding domain. Furthermore, electromobility shift assays and competition binding assays reveal that Prx effectively uncouples the interdomain conformational change required for activation of ComR via the signaling molecule XIP. Although to our knowledge the molecular mechanism of quorum-sensing inhibition by Prx is unique, it is analogous to the mechanism employed by the phage protein Aqs1 in Pseudomonas aeruginosa. Together, this demonstrates an example of convergent evolution between Gram-positive and Gram-negative phages to inhibit quorum-sensing and highlights the versatility of small phage proteins.
Collapse
Affiliation(s)
- Nicole R Rutbeek
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hanieh Rezasoltani
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta, Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Li JW, Wyllie RM, Jensen PA. A Novel Competence Pathway in the Oral Pathogen Streptococcus sobrinus. J Dent Res 2021; 100:542-548. [PMID: 33876976 DOI: 10.1177/0022034520979150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus sobrinus is an etiologic cause of dental caries (tooth decay) in humans. Our knowledge of S. sobrinus is scant despite the organism's important role in oral health. It is widely believed that S. sobrinus lacks the natural competence pathways that are used by other streptococci to regulate growth, virulence, and quorum sensing. The lack of natural competence has also prevented genetic manipulation of S. sobrinus, limiting our knowledge of its pathogenicity. We discovered that most strains of S. sobrinus contain a new class of the ComRS competence system. Although S. sobrinus is typically placed among the mutans group streptococci, the S. sobrinus ComRS system is most similar to the competence pathways in the salivarius group. Unlike all other ComRS systems, the S. sobrinus pathway contains 2 copies of the transcriptional regulator ComR and has a peptide pheromone (XIP) that lacks any aromatic amino acids. Synthetic XIP enables transformation of S. sobrinus with plasmid or linear DNA, and we leverage this newfound genetic tractability to confirm that only 1 of the ComR homologs is required for induced competence while the other appears to suppress competence. Exogenous XIP increases the expression of bacteriocin gene clusters and produces an antimicrobial response that inhibits growth of S. mutans. We also identified 2 strains of S. sobrinus that appear to be "cheaters" by either not responding to or not producing XIP. We show how a recombination event in the nonresponsive strain could restore function of the ComRS pathway but delete the gene encoding XIP. Thus, the S. sobrinus ComRS pathway provides new tools for studying this pathogen and offers a lens into the evolution of ecological cheaters.
Collapse
Affiliation(s)
- J W Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - R M Wyllie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P A Jensen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
22
|
García-Curiel L, Del Rocío López-Cuellar M, Rodríguez-Hernández AI, Chavarría-Hernández N. Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 2021; 37:15. [PMID: 33394178 DOI: 10.1007/s11274-020-02973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.
Collapse
Affiliation(s)
- Laura García-Curiel
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México.
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| |
Collapse
|
23
|
Molecular dissection of pheromone selectivity in the competence signaling system ComRS of streptococci. Proc Natl Acad Sci U S A 2020; 117:7745-7754. [PMID: 32198205 DOI: 10.1073/pnas.1916085117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Competence allows bacteria to internalize exogenous DNA fragments for the acquisition of new phenotypes such as antibiotic resistance or virulence traits. In most streptococci, competence is regulated by ComRS signaling, a system based on the mature ComS pheromone (XIP), which is internalized to activate the (R)RNPP-type ComR sensor by triggering dimerization and DNA binding. Cross-talk analyses demonstrated major differences of selectivity between ComRS systems and raised questions concerning the mechanism of pheromone-sensor recognition and coevolution. Here, we decipher the molecular determinants of selectivity of the closely related ComRS systems from Streptococcus thermophilus and Streptococcus vestibularis Despite high similarity, we show that the divergence in ComR-XIP interaction does not allow reciprocal activation. We perform the structural analysis of the ComRS system from S. vestibularis. Comparison with its ortholog from S. thermophilus reveals an activation mechanism based on a toggle switch involving the recruitment of a key loop by the XIP C terminus. Together with a broad mutational analysis, we identify essential residues directly involved in peptide binding. Notably, we generate a ComR mutant that displays a fully reversed selectivity toward the heterologous pheromone with only five point mutations, as well as other ComR variants featuring XIP bispecificity and/or neofunctionalization for hybrid XIP peptides. We also reveal that a single XIP mutation relaxes the strictness of ComR activation, suggesting fast adaptability of molecular communication phenotypes. Overall, this study is paving the way toward the rational design or directed evolution of artificial ComRS systems for a range of biotechnological and biomedical applications.
Collapse
|
24
|
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 2020; 77:1319-1343. [PMID: 31612240 PMCID: PMC11104945 DOI: 10.1007/s00018-019-03326-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Quorum sensing (QS), a microbial cell-to-cell communication process, dynamically regulates a variety of metabolism and physiological activities. In this review, we provide an update on QS applications based on autoinducer molecules including acyl-homoserine lactones (AHLs), auto-inducing peptides (AIPs), autoinducer 2 (AI-2) and indole in population-level control of bacteria, and highlight the potential in developing novel clinical therapies. We summarize the development in the combination of various genetic circuits such as genetic oscillators, toggle switches and logic gates with AHL-based QS devices in Gram-negative bacteria. An overview is then offered to the state-of-the-art of much less researched applications of AIP-based QS devices with Gram-positive bacteria, followed by a review of the applications of AI-2 and indole based QS for interspecies communication among microbial communities. Building on these general-purpose QS applications, we highlight the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance and the phage invasion. The last part of reviewed literature is dedicated to mathematical modelling for QS applications. Finally, the key challenges and future perspectives of QS applications in monoclonal synthetic biology and synthetic ecology are discussed.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
25
|
Mignolet J, Cerckel G, Damoczi J, Ledesma-Garcia L, Sass A, Coenye T, Nessler S, Hols P. Subtle selectivity in a pheromone sensor triumvirate desynchronizes competence and predation in a human gut commensal. eLife 2019; 8:e47139. [PMID: 31433299 PMCID: PMC6703854 DOI: 10.7554/elife.47139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022] Open
Abstract
Constantly surrounded by kin or alien organisms in nature, eukaryotes and prokaryotes developed various communication systems to coordinate adaptive multi-entity behavior. In complex and overcrowded environments, they require to discriminate relevant signals in a myriad of pheromones to execute appropriate responses. In the human gut commensal Streptococcus salivarius, the cytoplasmic Rgg/RNPP regulator ComR couples competence to bacteriocin-mediated predation. Here, we describe a paralogous sensor duo, ScuR and SarF, which circumvents ComR in order to disconnect these two physiological processes. We highlighted the recurring role of Rgg/RNPP in the production of antimicrobials and designed a robust genetic screen to unveil potent/optimized peptide pheromones. Further mutational and biochemical analyses dissected the modifiable selectivity toward their pheromone and operating sequences at the subtle molecular level. Additionally, our results highlight how we might mobilize antimicrobial molecules while silencing competence in endogenous populations of human microflora and temper gut disorders provoked by bacterial pathogens.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
- SyngulonSeraingBelgium
| | - Guillaume Cerckel
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Julien Damoczi
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Laura Ledesma-Garcia
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| | - Andrea Sass
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityGhentBelgium
| | - Tom Coenye
- Laboratory of Pharmaceutical MicrobiologyGhent UniversityGhentBelgium
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198Gif-sur-Yvette cedexFrance
| | - Pascal Hols
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and TechnologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
| |
Collapse
|
26
|
The oligopeptide ABC-importers are essential communication channels in Gram-positive bacteria. Res Microbiol 2019; 170:338-344. [PMID: 31376485 DOI: 10.1016/j.resmic.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022]
Abstract
The transport of peptides in microorganisms plays an important role in their physiology and behavior, both as a nutrient source and as a proxy to sense their environment. This latter function is evidenced in Gram-positive bacteria where cell-cell communication is mediated by small peptides. Here, we highlight the importance of the oligopeptide permease (Opp) systems in the various major processes controlled by signaling peptides, such as sporulation, virulence and conjugation. We underline that the functioning of these communication systems is tightly linked to the developmental status of the bacteria via the regulation of opp gene expression by transition phase regulators.
Collapse
|
27
|
Do H, Makthal N, VanderWal AR, Saavedra MO, Olsen RJ, Musser JM, Kumaraswami M. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat Commun 2019; 10:2586. [PMID: 31197146 PMCID: PMC6565748 DOI: 10.1038/s41467-019-10556-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria control gene expression in concert with their population density by a process called quorum sensing, which is modulated by bacterial chemical signals and environmental factors. In the human pathogen Streptococcus pyogenes, production of secreted virulence factor SpeB is controlled by a quorum-sensing pathway and environmental pH. The quorum-sensing pathway consists of a secreted leaderless peptide signal (SIP), and its cognate receptor RopB. Here, we report that the SIP quorum-sensing pathway has a pH-sensing mechanism operative through a pH-sensitive histidine switch located at the base of the SIP-binding pocket of RopB. Environmental acidification induces protonation of His144 and reorganization of hydrogen bonding networks in RopB, which facilitates SIP recognition. The convergence of two disparate signals in the SIP signaling pathway results in induction of SpeB production and increased bacterial virulence. Our findings provide a model for investigating analogous crosstalk in other microorganisms.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Kaspar JR, Walker AR. Expanding the Vocabulary of Peptide Signals in Streptococcus mutans. Front Cell Infect Microbiol 2019; 9:194. [PMID: 31245303 PMCID: PMC6563777 DOI: 10.3389/fcimb.2019.00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococci, including the dental pathogen Streptococcus mutans, undergo cell-to-cell signaling that is mediated by small peptides to control critical physiological functions such as adaptation to the environment, control of subpopulation behaviors and regulation of virulence factors. One such model pathway is the regulation of genetic competence, controlled by the ComRS signaling system and the peptide XIP. However, recent research in the characterization of this pathway has uncovered novel operons and peptides that are intertwined into its regulation. These discoveries, such as cell lysis playing a critical role in XIP release and importance of bacterial self-sensing during the signaling process, have caused us to reevaluate previous paradigms and shift our views on the true purpose of these signaling systems. The finding of new peptides such as the ComRS inhibitor XrpA and the peptides of the RcrRPQ operon also suggests there may be more peptides hidden in the genomes of streptococci that could play critical roles in the physiology of these organisms. In this review, we summarize the recent findings in S. mutans regarding the integration of other circuits into the ComRS signaling pathway, the true mode of XIP export, and how the RcrRPQ operon controls competence activation. We also look at how new technologies can be used to re-annotate the genome to find new open reading frames that encode peptide signals. Together, this summary of research will allow us to reconsider how we perceive these systems to behave and lead us to expand our vocabulary of peptide signals within the genus Streptococcus.
Collapse
Affiliation(s)
- Justin R. Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | | |
Collapse
|
29
|
Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. Circuitry Rewiring Directly Couples Competence to Predation in the Gut Dweller Streptococcus salivarius. Cell Rep 2019; 22:1627-1638. [PMID: 29444418 DOI: 10.1016/j.celrep.2018.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Small distortions in transcriptional networks might lead to drastic phenotypical changes, especially in cellular developmental programs such as competence for natural transformation. Here, we report a pervasive circuitry rewiring for competence and predation interplay in commensal streptococci. Canonically, in streptococci paradigms such as Streptococcus pneumoniae and Streptococcus mutans, the pheromone-based two-component system BlpRH is a central node that orchestrates the production of antimicrobial compounds (bacteriocins) and incorporates signal from the competence activation cascade. However, the human commensal Streptococcus salivarius does not contain a functional BlpRH pair, while the competence signaling system ComRS directly couples bacteriocin production and competence commitment. This network shortcut might underlie an optimal adaptation against microbial competitors and explain the high prevalence of S. salivarius in the human digestive tract. Moreover, the broad spectrum of bacteriocin activity against pathogenic bacteria showcases the commensal and genetically tractable S. salivarius species as a user-friendly model for competence and bacterial predation.
Collapse
Affiliation(s)
- Johann Mignolet
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | - Laetitia Fontaine
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Pascal Hols
- Biochemistry, Biophysics, and Genetics of Microorganisms (BBGM), Institute of Life Sciences, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Inniss NL, Prehna G, Morrison DA. The pneumococcal σ X activator, ComW, is a DNA-binding protein critical for natural transformation. J Biol Chem 2019; 294:11101-11118. [PMID: 31160340 DOI: 10.1074/jbc.ra119.007571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
Natural genetic transformation via horizontal gene transfer enables rapid adaptation to dynamic environments and contributes to both antibiotic resistance and vaccine evasion among bacterial populations. In Streptococcus pneumoniae (pneumococcus), transformation occurs when cells enter competence, a transient state in which cells express the competence master regulator, SigX (σΧ), an alternative σ factor (σ), and a competence co-regulator, ComW. Together, ComW and σX facilitate expression of the genes required for DNA uptake and genetic recombination. SigX activity depends on ComW, as ΔcomW cells transcribe late genes and transform at levels 10- and 10,000-fold below that of WT cells, respectively. Previous findings suggest that ComW functions during assembly of the RNA polymerase-σX holoenzyme to help promote transcription from σX-targeted promoters. However, it remains unknown how ComW facilitates holoenzyme assembly. As ComW seems to be unique to Gram-positive cocci and has no sequence similarity with known transcriptional activators, here we used Rosetta to generate an ab initio model of pneumococcal ComW's 3D-structure. Using this model as a basis for further biochemical, biophysical, and genetic investigations into the molecular features important for its function, we report that ComW is a predicted globular protein and that it interacts with DNA, independently of DNA sequence. We also identified conserved motifs in ComW and show that key residues in these motifs contribute to DNA binding. Lastly, we provide evidence that ComW's DNA-binding activity is important for transformation in pneumococcus. Our findings begin to fill the gaps in understanding how ComW regulates σΧ activity during bacterial natural transformation.
Collapse
Affiliation(s)
- Nicole L Inniss
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
31
|
Guan Z, Pei K, Wang J, Cui Y, Zhu X, Su X, Zhou Y, Zhang D, Tang C, Yin P, Liu Z, Zou T. Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage. Cell Discov 2019; 5:29. [PMID: 31149347 PMCID: PMC6536502 DOI: 10.1038/s41421-019-0101-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
A newly identified arbitrium communication system regulates the lysis-to-lysogeny decision in a Bacillus bacteriophage. This system contains an arbitrium hexapeptide as a signal, the cellular receptor AimR, and the lysogenic negative regulator AimX. AimR specifically targets the downstream DNA to activate aimX gene expression. The arbitrium peptide binds to AimR, inhibiting its DNA-binding to promote phage lysogeny. Recently, we and other groups have elucidated how arbitrium peptide sensed by AimR. However, the molecular mechanisms of DNA recognition by AimR and the regulation of its DNA-binding activity by the peptide remain largely unknown. Here, we report the crystal structure of the AimR–DNA complex at 2.1 Å resolution. The N-terminal HTH motif recognizes the palindromic DNA sequence, buttressed by interactions between positively charged residues and the DNA phosphate groups. The DNA-bound AimR assembles a more closed dimer than the peptide-bound form. Single-molecule FRET and crosslinking assays revealed that the AimR protein samples both open and closed conformations in solution. Arbitrium peptide binding induces a closed-to-open conformational change of AimR, eliminating DNA targeting. Our structural and functional analysis provides new insights into the DNA recognition mechanism of AimR and its regulation by the arbitrium peptide in the context of phage lysis-lysogeny decisions.
Collapse
Affiliation(s)
- Zeyuan Guan
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Kai Pei
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jing Wang
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yongqing Cui
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Zhu
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Su
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Yuanbao Zhou
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Delin Zhang
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chun Tang
- 2CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 Hubei Province China
| | - Ping Yin
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Zhu Liu
- 1National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Tingting Zou
- 3College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
32
|
Sun Y, Veseli IA, Vaillancourt K, Frenette M, Grenier D, Pombert JF. The bacteriocin from the prophylactic candidate Streptococcus suis 90-1330 is widely distributed across S. suis isolates and appears encoded in an integrative and conjugative element. PLoS One 2019; 14:e0216002. [PMID: 31039174 PMCID: PMC6490898 DOI: 10.1371/journal.pone.0216002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/12/2019] [Indexed: 01/09/2023] Open
Abstract
The Gram-positive α-hemolytic Streptococcus suis is a major pathogen in the swine industry and an emerging zoonotic agent that can cause several systemic issues in both pigs and humans. A total of 35 S. suis serotypes (SS) have been identified and genotyped into > 700 sequence types (ST) by multilocus sequence typing (MLST). Eurasian ST1 isolates are the most virulent of all S. suis SS2 strains while North American ST25 and ST28 strains display moderate to low/no virulence phenotypes, respectively. Notably, S. suis 90–1330 is an avirulent Canadian SS2-ST28 isolate producing a lantibiotic bacteriocin with potential prophylactic applications. To investigate the suitability of this strain for such purposes, we sequenced its complete genome using the Illumina and PacBio platforms. The S. suis 90–1330 bacteriocin was found encoded in a locus cargoed in what appears to be an integrative and conjugative element (ICE). This bacteriocin locus was also found to be widely distributed across several streptococcal species and in a few Staphylococcus aureus strains. Because the locus also confers protection from the bacteriocin, the potential prophylactic benefits of using this strain may prove limited due to the spread of the resistance to its effects. Furthermore, the S. suis 90–1330 genome was found to code for genes involved in blood survival, suggesting that strain may not be a benign as previously thought.
Collapse
Affiliation(s)
- Yukun Sun
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Iva A. Veseli
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
| | - Katy Vaillancourt
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Fonds de Recherche du Québec–Nature et Technologies, Québec, QC, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole, Fonds de Recherche du Québec–Nature et Technologies, Québec, QC, Canada
| | - Jean-François Pombert
- Department of Biology, Illinois Institute of Technology, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol 2019; 27:690-702. [PMID: 30987817 DOI: 10.1016/j.tim.2019.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
With the specter of resurgence of pathogens due to the propagation of antibiotic-resistance genes, innovative antimicrobial strategies are needed. In this review, we summarize the beneficial aspects of bacteriocins, a set of miscellaneous peptide-based bacterium killers, compared with classical antibiotics, and emphasize their use in cocktails to curb the emergence of new resistance. We highlight that their prey spectrum, their molecular malleability, and their multiple modes of production might lead to specific and personalized treatments to prevent systemic disorders. Complementarily, we discuss how we might exploit prevailing bacterial commensals, such as Streptococcus salivarius, and deliberately mobilize their bacteriocin arsenal 'on site' to cure multiresistant infections or finely reshape the endogenous microbiota for prophylaxis purposes.
Collapse
Affiliation(s)
- Pascal Hols
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Philippe Gabant
- Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium
| | - Johann Mignolet
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium; Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium.
| |
Collapse
|
34
|
The conserved mosaic prophage protein paratox inhibits the natural competence regulator ComR in Streptococcus. Sci Rep 2018; 8:16535. [PMID: 30409983 PMCID: PMC6224593 DOI: 10.1038/s41598-018-34816-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023] Open
Abstract
Horizontal gene transfer is an important means of bacterial evolution. This includes natural genetic transformation, where bacterial cells become “competent” and DNA is acquired from the extracellular environment. Natural competence in many species of Streptococcus, is regulated by quorum sensing via the ComRS receptor-signal pair. The ComR-XIP (mature ComS peptide) complex induces expression of the alternative sigma factor SigX, which targets RNA polymerase to CIN-box promoters to activate genes involved in DNA uptake and recombination. In addition, the widely distributed Streptococcus prophage gene paratox (prx) also contains a CIN-box, and here we demonstrate it to be transcriptionally activated by XIP. In vitro experiments demonstrate that Prx binds ComR directly and prevents the ComR-XIP complex from interacting with DNA. Mutations of prx in vivo caused increased expression of the late competence gene ssb when induced with XIP as compared to wild-type, and Prx orthologues are able to inhibit ComR activation by XIP in a reporter strain which lacks an endogenous prx. Additionally, an X-ray crystal structure of Prx reveals a unique fold that implies a novel molecular mechanism to inhibit ComR. Overall, our results suggest Prx functions to inhibit the acquisition of new DNA by Streptococcus.
Collapse
|
35
|
Abstract
Entry into genetic competence in streptococci is controlled by ComX, an alternative sigma factor for genes that enable the import of exogenous DNA. In Streptococcus mutans, the immediate activator of comX is the ComRS quorum system. ComS is the precursor of XIP, a seven-residue peptide that is imported into the cell and interacts with the cytosolic receptor ComR to form a transcriptional activator for both comX and comS Although intercellular quorum signaling by ComRS has been demonstrated, observations of bimodal expression of comX suggest that comRS may also function as an intracellular feedback loop, activating comX without export or detection of extracellular XIP. Here we used microfluidic and single-cell methods to test whether ComRS induction of comX requires extracellular XIP or ComS. We found that individual comS-overexpressing cells activate their own comX, independently of the rate at which their growth medium is replaced. However, in the absence of lysis they do not activate comS-deficient mutants growing in coculture. We also found that induction of comR and comS genes introduced into Escherichia coli cells leads to activation of a comX reporter. Therefore, ComRS control of comX does not require either the import or extracellular accumulation of ComS or XIP or specific processing of ComS to XIP. We also found that endogenously and exogenously produced ComS and XIP have inequivalent effects on comX activation. These data are fully consistent with identification of intracellular positive feedback in comS transcription as the origin of bimodal comX expression in S. mutans IMPORTANCE The ComRS system can function as a quorum sensing trigger for genetic competence in S. mutans The signal peptide XIP, which is derived from the precursor ComS, enters the cell and interacts with the Rgg-type cytosolic receptor ComR to activate comX, which encodes the alternative sigma factor for the late competence genes. Previous studies have demonstrated intercellular signaling via ComRS, although release of the ComS or XIP peptide to the extracellular medium appears to require lysis of the producing cells. Here we tested the complementary hypothesis that ComRS can drive comX through a purely intracellular mechanism that does not depend on extracellular accumulation or import of ComS or XIP. By combining single-cell, coculture, and microfluidic approaches, we demonstrated that endogenously produced ComS can enable ComRS to activate comX without requiring processing, export, or import. These data provide insight into intracellular mechanisms that generate noise and heterogeneity in S. mutans competence.
Collapse
|
36
|
Structural basis of the arbitrium peptide–AimR communication system in the phage lysis–lysogeny decision. Nat Microbiol 2018; 3:1266-1273. [DOI: 10.1038/s41564-018-0239-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 11/08/2022]
|
37
|
Kaspar J, Shields RC, Burne RA. Competence inhibition by the XrpA peptide encoded within the comX gene of Streptococcus mutans. Mol Microbiol 2018; 109:345-364. [PMID: 29802741 DOI: 10.1111/mmi.13989] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
Abstract
Streptococcus mutans displays complex regulation of natural genetic competence. Competence development in S. mutans is controlled by a peptide derived from ComS (XIP); which along with the cytosolic regulator ComR controls the expression of the alternative sigma factor comX, the master regulator of competence development. Recently, a gene embedded within the coding region of comX was discovered and designated xrpA (comX regulatory peptide A). XrpA was found to be an antagonist of ComX, but the mechanism was not established. In this study, we reveal through both genomic and proteomic techniques that XrpA is the first described negative regulator of ComRS systems in streptococci. Transcriptomic and promoter activity assays in the ΔxrpA strain revealed an up-regulation of genes controlled by both the ComR- and ComX-regulons. An in vivo protein crosslinking and in vitro fluorescent polarization assays confirmed that the N-terminal region of XrpA were found to be sufficient in inhibiting ComR-XIP complex binding to ECom-box located within the comX promoter. This inhibitory activity was sufficient for decreases in PcomX activity, transformability and ComX accumulation. XrpA serving as a modulator of ComRS activity ultimately results in changes to subpopulation behaviors and cell fate during competence activation.
Collapse
Affiliation(s)
- Justin Kaspar
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert C Shields
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
38
|
Neiditch MB, Capodagli GC, Prehna G, Federle MJ. Genetic and Structural Analyses of RRNPP Intercellular Peptide Signaling of Gram-Positive Bacteria. Annu Rev Genet 2017; 51:311-333. [PMID: 28876981 PMCID: PMC6588834 DOI: 10.1146/annurev-genet-120116-023507] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Glenn C Capodagli
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, USA; ,
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center and Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| |
Collapse
|
39
|
Wilkening RV, Capodagli GC, Khataokar A, Tylor KM, Neiditch MB, Federle MJ. Activating mutations in quorum-sensing regulator Rgg2 and its conformational flexibility in the absence of an intermolecular disulfide bond. J Biol Chem 2017; 292:20544-20557. [PMID: 29030429 DOI: 10.1074/jbc.m117.801670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Rap/Rgg/NprR/PlcR/PrgX (RRNPP) quorum-sensing systems use extracellular peptide pheromones that are detected by cytoplasmic receptors to regulate gene expression in firmicute bacteria. Rgg-type receptors are allosterically regulated through direct pheromone binding to control transcriptional activity; however, the receptor activation mechanism remains poorly understood. Previous work has identified a disulfide bond between Cys-45 residues within the homodimer interface of Rgg2 from Streptococcus dysgalactiae (Rgg2Sd). Here, we compared two Rgg2Sd(C45S) X-ray crystal structures with that of wild-type Rgg2Sd and found that in the absence of the intermolecular disulfide, the Rgg2Sd dimer interface is destabilized and Rgg2Sd can adopt multiple conformations. One conformation closely resembled the "disulfide-locked" Rgg2Sd secondary and tertiary structures, but another displayed more extensive rigid-body shifts as well as dramatic secondary structure changes. In parallel experiments, a genetic screen was used to identify mutations in rgg2 of Streptococcus pyogenes (rgg2Sp ) that conferred pheromone-independent transcriptional activation of an Rgg2-stimulated promoter. Eight mutations yielding constitutive Rgg2 activity, designated Rgg2Sp*, were identified, and five of them clustered in or near an Rgg2 region that underwent conformational changes in one of the Rgg2Sd(C45S) crystal structures. The Rgg2Sp* mutations increased Rgg2Sp sensitivity to pheromone and pheromone variants while displaying decreased sensitivity to the Rgg2 antagonist cyclosporine A. We propose that Rgg2Sp* mutations invoke shifts in free-energy bias to favor the active state of the protein. Finally, we present evidence for an electrostatic interaction between an N-terminal Asp of the pheromone and Arg-153 within the proposed pheromone-binding pocket of Rgg2Sp.
Collapse
Affiliation(s)
- Reid V Wilkening
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Glenn C Capodagli
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Atul Khataokar
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Kaitlyn M Tylor
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Matthew B Neiditch
- the Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, New Jersey 07103, and
| | - Michael J Federle
- From the Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60607, .,the Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
40
|
Intercellular Communication via the comX-Inducing Peptide (XIP) of Streptococcus mutans. J Bacteriol 2017; 199:JB.00404-17. [PMID: 28808131 DOI: 10.1128/jb.00404-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/29/2022] Open
Abstract
Gram-positive bacteria utilize exported peptides to coordinate genetic and physiological processes required for biofilm formation, stress responses, and ecological competitiveness. One example is activation of natural genetic competence by ComR and the com X -inducing peptide (XIP) in Streptococcus mutans Although the competence pathway can be activated by the addition of synthetic XIP in defined medium, the hypothesis that XIP is able to function as an intercellular signaling molecule has not been rigorously tested. Coculture model systems were developed that included a "sender" strain that overexpressed the XIP precursor (ComS) and a "responder" strain harboring a green fluorescent protein (GFP) reporter fused to a ComR-activated gene (comX) promoter. The ability of the sender strain to provide a signal to activate GFP expression was monitored at the individual cell and population levels using (i) planktonic culture systems, (ii) cells suspended in an agarose matrix, or (iii) cells growing in biofilms. XIP was shown to be freely diffusible, and XIP signaling between the S. mutans sender and responder strains did not require cell-to-cell contact. The presence of a sucrose-derived exopolysaccharide matrix diminished the efficiency of XIP signaling in biofilms, possibly by affecting the spatial distribution of XIP senders and potential responders. Intercellular signaling was greatly impaired in a strain lacking the primary autolysin, AtlA, and was substantially greater when the sender strain underwent lysis. Collectively, these data provide evidence that S. mutans XIP can indeed function as a peptide signal between cells and highlight the importance of studying signaling with an endogenously produced peptide(s) in populations in various environments and physiologic states.IMPORTANCE The comX-inducing peptide (XIP) of Streptococcus mutans is a key regulatory element in the activation of genetic competence, which allows cells to take up extracellular DNA. XIP has been found in cell culture fluids, and the addition of synthetic XIP to physiologically receptive cells can robustly induce competence gene expression. However, there is a lack of consensus as to whether XIP can function as an intercellular communication signal. Here, we show that XIP indeed signals between cells in S. mutans, but that cell lysis may be a critical factor, as opposed to a dedicated secretion/processing system, in allowing for release of XIP into the environment. The results have important implications in the context of the ecology, virulence, and evolution of a ubiquitous human pathogen and related organisms.
Collapse
|
41
|
Chromatography of Quorum Sensing Peptides: An Important Functional Class of the Bacterial Peptidome. Chromatographia 2017. [DOI: 10.1007/s10337-017-3411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|
43
|
Talagas A, Fontaine L, Ledesma-García L, Mignolet J, Li de la Sierra-Gallay I, Lazar N, Aumont-Nicaise M, Federle MJ, Prehna G, Hols P, Nessler S. Correction: Structural Insights into Streptococcal Competence Regulation by the Cell-to-Cell Communication System ComRS. PLoS Pathog 2017; 13:e1006208. [PMID: 28196127 PMCID: PMC5308606 DOI: 10.1371/journal.ppat.1006208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
44
|
Quorum Sensing Regulation of Competence and Bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel) 2017; 8:genes8010015. [PMID: 28067778 PMCID: PMC5295010 DOI: 10.3390/genes8010015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 11/17/2022] Open
Abstract
The human pathogens Streptococcus pneumoniae and Streptococcus mutans have both evolved complex quorum sensing (QS) systems that regulate the production of bacteriocins and the entry into the competent state, a requirement for natural transformation. Natural transformation provides bacteria with a mechanism to repair damaged genes or as a source of new advantageous traits. In S. pneumoniae, the competence pathway is controlled by the two-component signal transduction pathway ComCDE, which directly regulates SigX, the alternative sigma factor required for the initiation into competence. Over the past two decades, effectors of cellular killing (i.e., fratricides) have been recognized as important targets of the pneumococcal competence QS pathway. Recently, direct interactions between the ComCDE and the paralogous BlpRH pathway, regulating bacteriocin production, were identified, further strengthening the interconnections between these two QS systems. Interestingly, a similar theme is being revealed in S. mutans, the primary etiological agent of dental caries. This review compares the relationship between the bacteriocin and the competence QS pathways in both S. pneumoniae and S. mutans, and hopes to provide clues to regulatory pathways across the genus Streptococcus as a potential tool to efficiently investigate putative competence pathways in nontransformable streptococci.
Collapse
|
45
|
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species. PLoS Pathog 2016; 12:e1005979. [PMID: 27907154 PMCID: PMC5131902 DOI: 10.1371/journal.ppat.1005979] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Collapse
Affiliation(s)
- Erin Shanker
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|